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Abstract

In this study, we aim at investigating the geometry of surfaces corresponding to the geometry of solutions of the geometric curve

flows in Euclidean 3-space R 3 considering the Frenet frame. In particular, we express some geometric properties and some

characterizations of u-parameter curves and t-parameter curves of some trajectory surfaces including the Hasimoto surface,

shortening trajectory surface, minimal trajectory surface, τ -normal trajectory surface in R 3 .
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Summary

In this study, we aim at investigating the geometry of surfaces corresponding to the
geometry of solutions of the geometric curve flows in Euclidean 3-space ℝ3 con-
sidering the Frenet frame. In particular, we express some geometric properties and
some characterizations of 𝑢-parameter curves and 𝑡-parameter curves of some trajec-
tory surfaces including the Hasimoto surface, shortening trajectory surface, minimal
trajectory surface,

√
𝜏-normal trajectory surface in ℝ3.
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1 INTRODUCTION

This article investigates geometry of Surfaces defined as trajectories of evolving geometric curves flow in Euclidean 3-space
ℝ3. In recent years, the theory of surfaces with the connection of the geometric curve flows in different spaces and integrable
non-linear equations is a subject of research attention (see e.g.1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16) and finding geometric curves flows
which generate various types of surfaces may expand our understanding of their geometric and topological properties, in order
to a deep understanding of the physical world (see e.g.17,18,19,20).

Hasimoto10 in 1972 showed the connection between the binormal flow and the nonlinear Schrödinger equation. Surfaces
generated by the binormal flow, referred to as Hasimoto surfaces, have been previously considered in1,12. For Hashimoto sur-
faces, A lot of researches were done using the different frames (such as the Frenet frame1, the Bishop frame13, the Darboux
frame7,9, the quasi-frame11, the modified orthogonal frame8, the hybrid frame16 and so on ) in Euclidean 3-space1, Minkowski
3-space5,14,15, Galilean 3-space6 and pseudo-Galilean 3-space2. Trajectory surfaces have been studied for the special case of
inextensible flows in21, curves flows of elastic rods in22, and the curve shortening flow in23,24,25. Recently, J. Minarčík and M.
Beneš26 introduced minimal surface generating flow for space curves of non-vanishing torsion in Euclidean 3-space ℝ3, and
analyzed some properties of space curves evolved by the minimal surface generating flow.

The aim of this paper is to study the geometry of trajectory surfaces corresponding to the geometry of solutions of the
geometric curve flows in Euclidean 3-space. The paper is organized as follows. Section 2 contains an introduction to geometric
curves flow and recalls the notion of trajectory surfaces, including the Hasimoto surface, shortening trajectory surface, minimal
trajectory surface,

√
𝜏-normal trajectory surface in ℝ3. In Section 3, we investigate the geometric properties of some trajectory

surfaces via the Frenet frame. Also, the characterization of the 𝑢-parameter curves and 𝑡-parameter curves of the trajectory
surfaces is examined. In section 4, we draw the main conclusions, as well as some questions that we postpone for the future.

†This is an example for title footnote.



2 AUTHOR ONE ET AL

2 TRAJECTORY SURFACES FOR THE GEOMETRIC CURVE FLOWS IN SPACE

In this section, we define the necessary notation for the parametric space curves in motion, recall the governing equations for a
general geometric flow of curves in ℝ3 27 and introduce the notion of trajectory surfaces generated by this general motion law,
and finally we obtain the Gaussian curvature, mean curvature, principal curvatures, the geodesic torsion, geodesic curvature,
and normal curvature of the trajectory surfaces.

Assume the family of evolving curves is parametrized as follows:

{Γ𝑡}𝑡∈[0,𝑡𝑚𝑎𝑥) = {𝐗(𝑢, 𝑡), 𝑢 ∈ 𝕊1, 𝑡 ∈ [0, 𝑡𝑚𝑎𝑥)},

where 𝐗 = 𝐗(𝑢, 𝑡) ∶ 𝕊1 × [0, 𝑡𝑚𝑎𝑥) → ℝ3 is a smooth mapping, 𝑡𝑚𝑎𝑥 > 0 is the terminal time and 𝕊1 = ℝ∕2𝜋ℤ is a unit circle.
Then the unit arc-length parametrization 𝑠 is given by 𝑑𝑠 = 𝑔𝑑𝑢, where 𝑔 = |𝜕𝑢𝐗|. The unit tangent vector is given by 𝐓 = 𝜕𝑠𝐗.
In the case when the curvature 𝜅 = |𝐓× 𝜕𝑠𝐓| > 0 is strictly positive, we can define the so-called Frenet frame. It means that the
unit normal and binormal vectors 𝐍 and 𝐁 can be uniquely defined as follows:

𝐍 = 𝜅−1𝜕𝑠𝐓, 𝐁 = 𝐓 × 𝐍.

These unit vectors satisfy the following identities:

𝐁 = 𝐓 × 𝐍, 𝐓 = 𝐍 × 𝐁, 𝐍 = 𝐁 × 𝐓,

and the Frenet-Serret formulae:
𝑑
𝑑𝑠

⎛⎜⎜⎝
𝐓
𝐍
𝐁

⎞⎟⎟⎠ =
⎛⎜⎜⎝

0 𝜅 0
−𝜅 0 𝜏
0 −𝜏 0

⎞⎟⎟⎠
⎛⎜⎜⎝
𝐓
𝐍
𝐁

⎞⎟⎟⎠ ,
where 𝜏 is the torsion of a curve. For 𝜅 > 0 the torsion 𝜏 is given by

𝜏 = 𝜅−2(𝐓 × 𝜕𝑠𝐓) ⋅ 𝜕2𝑠𝐓 = 𝜅−2(𝜕𝑠𝐗 × 𝜕2𝑠𝐗) ⋅ 𝜕
3
𝑠𝐗.

The time evolution of {Γ𝑡}𝑡∈[0,𝑡𝑚𝑎𝑥) is given by the geometric flow in the form of the following initial-value problem for the
parametrization 𝐗 = 𝐗(𝑢, 𝑡) in ℝ3

𝜕𝑡𝐗 = 𝑣𝑁𝐍 + 𝑣𝐵𝐁 + 𝑣𝑇𝐓. in 𝕊1 × [0, 𝑡𝑚𝑎𝑥),
𝐗|𝑡=0 = 𝐗0 in 𝕊1,

(1)

where 𝐗0 is the parametrization for the initial curve Γ0 .
Firstly, we recall that the dynamic equations for unit vectors 𝐍,𝐁,𝐓 and the local geometric quantities ( i.e., the curvature 𝜅,

torsion 𝜏) during the motion given by (1) in the following (see27 for details).

• The unit vectors 𝐍,𝐁,𝐓 forming the Frenet frame satisfy the evolution equations:

𝜕𝑡𝐓 =
(
𝜕𝑠𝑣𝑁 + 𝜅𝑣𝑇 − 𝜏𝑣𝐵

)
𝐍 +

(
𝜕𝑠𝑣𝐵 + 𝜏𝑣𝑁

)
𝐁,

𝜅𝜕𝑡𝐍 = −𝜅
(
𝜕𝑠𝑣𝑁 + 𝜅𝑣𝑇 − 𝜏𝑣𝐵

)
𝐓 +

(
𝜕2𝑠𝑣𝐵 + 𝑣𝑁𝜕𝑠𝜏 + 2𝜏𝜕𝑠𝑣𝑁 + 𝜏

(
𝜅𝑣𝑇 − 𝜏𝑣𝐵

))
𝐁,

𝜅𝜕𝑡𝐁 = −𝜅
(
𝜕𝑠𝑣𝐵 + 𝜏𝑣𝑁

)
𝐓 −

(
𝜕2𝑠𝑣𝐵 + 𝑣𝑁𝜕𝑠𝜏 + 2𝜏𝜕𝑠𝑣𝑁 + 𝜏

(
𝜅𝑣𝑇 − 𝜏𝑣𝐵

))
𝐍.

(2)

• The local length element 𝑔 = |𝜕𝑢𝐗| satisfy 𝜕𝑡𝑔 = (−𝜅𝑣𝑁 + 𝜕𝑠𝑣𝑇 )𝑔.

• The curvature 𝜅 and torsion 𝜏 (for 𝜅(𝑠, 𝑡) > 0) satisfy the following system of evolution partial differential equations

𝜕𝑡𝜅 = 𝜕2𝑠𝑣𝑁 + 𝜅2𝑣𝑁 + 𝑣𝑇 𝜕𝑠𝜅 − 𝜕𝑠(𝜏𝑣𝐵) − 𝜏𝜕𝑠𝑣𝐵 − 𝜏2𝑣𝑁 , (3)
𝜕𝑡𝜏 = 𝜅

(
𝜕𝑠𝑣𝐵 + 𝜏𝑣𝑁

)
+ 𝜕𝑠

(
𝜅−1 (𝜕2𝑠𝑣𝐵 + 𝑣𝑁𝜕𝑠𝜏 + 2𝜏𝜕𝑠𝑣𝑁 + 𝜏

(
𝜅𝑣𝑇 − 𝜏𝑣𝐵

)))
+𝜏(𝜅𝑣𝑁 − 𝜕𝑠𝑣𝑇 ). (4)

Definition 1. 21,26 (Trajectory surface) For given velocities 𝑣𝑇 , 𝑣𝑁 and 𝑣𝐵 , an initial curve Γ0 and terminal time 𝑡𝑚𝑎𝑥 , we define
the trajectory surface

∑
𝑡𝑚𝑎𝑥

as
∑

𝑡𝑚𝑎𝑥
∶=

⋃
𝑡∈[0,𝑡𝑚𝑎𝑥)

Γ𝑡.

Trajectory surfaces have been studied in1,21,23,26 for the following cases, such as the binormal flow (i.e., 𝑣𝑇 = 𝑣𝑁 = 0, 𝑣𝐵 = 𝜅),
the curve shortening flow (i.e., 𝑣𝑇 = 𝑣𝐵 = 0, 𝑣𝑁 = 𝜅), minimal surface generating flow (i.e., 𝑣𝑇 = 𝑣𝐵 = 0, 𝑣𝑁 = 𝜏−

1
2 ),

inextensible flows (i.e., geometric flows with 𝜕𝑔
𝜕𝑡

= 0).
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(i) A Hasimoto surface
∑

1 is the surface traced out by a curve 𝐗(𝑢, 𝑡) in ℝ3 as it evolves over time according to this evolution
equation:

𝜕𝑡𝐗 = 𝜅𝐁, (5)

which motion law is the binormal flow, also known as the localized induction approximation of the vortex filament flow ,
which has applications in the incompressible flows (see e.g.1).

(ii) A shortening trajectory surface
∑

2 is the surface traced out by a family of curves {Γ𝑡}𝑡∈[0,𝑡𝑚𝑎𝑥) in ℝ3 as it evolves over time
according to the the curve shortening flow:

𝜕𝑡𝐗 = 𝜅𝐍, in 𝕊1 × [0, 𝑡𝑚𝑎𝑥),
𝐗|𝑡=0 = 𝐗0, in 𝕊1,

(6)

where 𝐗0 is the parametrization for the initial curve Γ0 in ℝ3. Moreover, if the curve approaches singularity as 𝑡 goes to 𝑡𝑚𝑎𝑥
, the shortening trajectory surface will be an embedded disc without a point in the center of the original sphere (see e.g.23).

(iii) A minimal trajectory surface
∑

3 is the surface traced out by a family of curves {Γ𝑡}𝑡∈[0,𝑡𝑚𝑎𝑥) in ℝ3 as it evolves over time
according to the minimal surface generating flow (see26):

𝜕𝑡𝐗 = 𝜏−
1
2𝐍, in 𝕊1 × [0, 𝑡𝑚𝑎𝑥),

𝐗|𝑡=0 = 𝐗0, in 𝕊1,
(7)

where 𝐗0 is the parametrization for the initial curve Γ0 in ℝ3 with positive curvature and torsion.

(iv) A
√
𝜏-normal trajectory surface

∑
4 is the surface traced out by a family of curves {Γ𝑡}𝑡∈[0,𝑡𝑚𝑎𝑥) in ℝ3 as it evolves over

time according to the
√
𝜏-normal geometric flow:

𝜕𝑡𝐗 =
√
𝜏𝐍, in 𝕊1 × [0, 𝑡𝑚𝑎𝑥),

𝐗|𝑡=0 = 𝐗0, in 𝕊1,
(8)

where 𝐗0 is the parametrization for the initial curve Γ0 in ℝ3 with positive curvature and nonnegative torsion.

The first and the second fundamental forms of the surface
∑

𝑡𝑚𝑎𝑥
generated by (1) are given by

𝐼 ≡
(  

)
=

( ||𝜕𝑢𝐗||2 ⟨𝜕𝑢𝐗, 𝜕𝑡𝐗⟩⟨𝜕𝑡𝐗, 𝜕𝑢𝐗⟩ ||𝜕𝑡𝐗||2
)
,

𝐼𝐼 ≡
(   

)
=

( ⟨𝜕2𝑢𝐗, 𝑛⟩ ⟨𝜕𝑢𝜕𝑡𝐗, 𝑛⟩⟨𝜕𝑡𝜕𝑢𝐗, 𝑛⟩ ⟨𝜕2𝑡 𝐗, 𝑛⟩
)
,

where the unit normal vector 𝑛 of the trajectory surface
∑

𝑡𝑚𝑎𝑥
can be expressed as

𝑛 =
𝜕𝑢𝐗 × 𝜕𝑡𝐗||𝜕𝑢𝐗 × 𝜕𝑡𝐗|| = −𝑣𝐵𝐍 + 𝑣𝑁𝐁√

𝑣2𝐵 + 𝑣2𝑁

.

Using evolution equations (2)-(4), the elements of the first fundamental form 𝐼 read

 = 𝑔2,  = 𝑔𝑣𝑇 ,  = 𝑣2𝑁 + 𝑣2𝐵 + 𝑣2𝑇 , (9)

and we give the elements of 𝐼 :

 = − 𝑔2𝜅𝑣𝐵√
𝑣2𝐵+𝑣

2
𝑁

,

 = 𝑔

(
−𝑣𝐵𝜕𝑠𝑣𝑁+𝑣𝑁𝜕𝑠𝑣𝐵−𝜅𝑣𝑇 𝑣𝐵√

𝑣2𝐵+𝑣
2
𝑁

+ 𝜏
√

𝑣2𝐵 + 𝑣2𝑁

)
,

 = 𝑣𝑁𝜕𝑡𝑣𝐵−𝑣𝐵𝜕𝑡𝑣𝑁+𝑣𝑇 [𝑣𝑁 (𝜕𝑠𝑣𝐵+𝜏𝑣𝑁 )−𝑣𝐵(𝜕𝑠𝑣𝑁+𝜅𝑣𝑇−𝜏𝑣𝐵)]√
𝑣2𝐵+𝑣

2
𝑁

+𝜅−1
√

𝑣2𝐵 + 𝑣2𝑁
(
𝜕2𝑠𝑣𝐵 + 𝑣𝑁𝜕𝑠𝜏 + 2𝜏𝜕𝑠𝑣𝑁 + 𝜅𝜏𝑣𝑇 − 𝜏2𝑣𝐵

)
.

(10)
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The Gaussian curvature 𝐾 , mean curvature 𝐻 , and principal curvatures 𝑃𝑖, 𝑖 = 1, 2 of the trajectory surface
∑

𝑡𝑚𝑎𝑥
as

𝐾 = det𝐼𝐼
det𝐼

=  −2

 − 2
, 𝐻 = 1

2
Tr(𝐼𝐼(𝐼)−1) =  − 2 +

2( − 2)
,

𝑃1 = 𝐻 +
√
𝐻2 −𝐾, 𝑃2 = 𝐻 −

√
𝐻2 −𝐾,

respectively. By Eqs. (9) and Eqs. (10), we can write 𝐾 and 𝐻 in terms of the functions 𝑣𝑇 , 𝑣𝑁 , 𝑣𝐵 , 𝜅 and 𝜏 as

𝐾 =
𝜅𝑣𝐵

(
𝑣𝐵𝜕𝑡𝑣𝑁 − 𝑣𝑁𝜕𝑡𝑣𝐵 + 𝑣𝑇 (−𝑣𝑁 (𝜕𝑠𝑣𝐵 + 𝜏𝑣𝑁 ) + 𝑣𝐵(𝜕𝑠𝑣𝑁 + 𝜅𝑣𝑇 − 𝜏𝑣𝐵))

)
(𝑣2𝐵 + 𝑣2𝑁 )2

−
𝑣𝐵(𝜕2𝑠𝑣𝐵 + 2𝜏𝜕𝑠𝑣𝑁 + 𝜕𝑠𝜏𝜕𝑠𝑣𝑁 + 𝜅𝜏𝑣𝑇 − 𝜏2𝑣𝐵)

𝑣2𝐵 + 𝑣2𝑁
−

(𝑣𝑁𝜕𝑠𝑣𝐵 − 𝑣𝐵𝜕𝑠𝑣𝑁 − 𝜅𝑣𝑇 𝑣𝐵)2

(𝑣2𝐵 + 𝑣2𝑁 )2

−
2𝜏(𝑣𝑁𝜕𝑠𝑣𝐵 − 𝑣𝐵𝜕𝑠𝑣𝑁 − 𝜅𝑣𝑇 𝑣𝐵)

𝑣2𝐵 + 𝑣2𝑁
− 𝜏2,

𝐻 = −
𝜅𝑣𝐵(𝑣2𝑁 + 𝑣2𝐵 + 𝑣2𝑇 )

2(𝑣2𝑁 + 𝑣2𝐵)
3
2

− 𝑣𝑇
⎛⎜⎜⎝
𝑣𝑁𝜕𝑠𝑣𝐵 − 𝑣𝐵𝜕𝑠𝑣𝑁 − 𝜅𝑣𝐵𝑣𝑇

(𝑣2𝑁 + 𝑣2𝐵)
3
2

+ 𝜏
⎞⎟⎟⎠

+
𝑣𝑁𝜕𝑡𝑣𝐵 − 𝑣𝐵𝜕𝑡𝑣𝑁 + 𝑣𝑇 (𝑣𝑁 (𝜕𝑠𝑣𝐵 + 𝜏𝑣𝑁 ) − 𝑣𝐵(𝜕𝑠𝑣𝑁 + 𝜅𝑣𝑇 − 𝜏𝑣𝐵))

2(𝑣2𝑁 + 𝑣2𝐵)
3
2

+
𝜕2𝑠𝑣𝐵 + 2𝜏𝜕𝑠𝑣𝑁 + 𝑣𝑁𝜕𝑠𝜏 + 𝜅𝜏𝑣𝑇 − 𝜏2𝑣𝐵

2𝜅
√

𝑣2𝐵 + 𝑣2𝑁

.

For a regular curve 𝛾(𝑥) on trajectory surface
∑

𝑡𝑚𝑎𝑥
in ℝ3 , the geodesic torsion 𝑔 , geodesic curvature 𝑔 , and normal

curvature 𝑛 are given by

𝑔 = ⟨𝛾̇ , 𝑛 × 𝑛̇⟩||𝛾̇||2 , 𝑔 =
⟨𝛾̈ , 𝑛 × 𝛾̇⟩||𝛾̇||2 , 𝑛 =

⟨𝛾̈ , 𝑛⟩||𝛾̇||2 ,
respectively, where 𝛾̇ = 𝜕𝛾

𝜕𝑥
, 𝛾̈ = 𝜕2𝛾

𝜕𝑥2
, 𝑛̇ = 𝜕𝑛

𝜕𝑥
.

Now, we can write the following important definitions:
Definition 2. 28

• A regular surface
∑

is a developable (flat) surface if its Gaussian curvature 𝐾 ≡ 0, whereas it is a minimal surface if its
mean curvature 𝐻 ≡ 0;

• For a regular curve 𝛾(𝑡) on a trajectory surface
∑

𝑡𝑚𝑎𝑥
, the following facts are well-known:

1) 𝛾(𝑡) is a principal line if and only if the geodesic torsion 𝑔 ≡ 0;

2) 𝛾(𝑡) is an asymptotic line if and only if the normal curvature 𝑛 ≡ 0;

3) 𝛾(𝑡) is a geodesic curve if and only if the geodesic curvature 𝑔 ≡ 0.

Definition 3. The family of all 𝑢-parameter curves and the family of all 𝑡-parameter curves of a the trajectory surface
∑

𝑡𝑚𝑎𝑥
in

ℝ3 are denoted by Λ𝑢 and Ω𝑡, respectively.

Using evolution equations (2)-(4), we obtain the geodesic torsion 𝑡𝑔 , geodesic curvature 𝑡𝑔 , and normal curvature 𝑡𝑛 of
the 𝑡 parameter curves 𝐗(𝑢, 𝑡) on trajectory surface

∑
𝑡𝑚𝑎𝑥

as

𝑡𝑔 =
⟨𝐗̇, 𝑛 × 𝑛̇⟩||𝐗̇||2 =

𝜌[(𝑣2𝑁 + 𝑣2𝐵)𝑛1 − (𝑣𝐵𝑛3 + 𝑣𝑁𝑛2)𝑣𝑇 ]

𝑣2𝑁 + 𝑣2𝐵 + 𝑣2𝑇
, (11)

𝑡𝑔 =
⟨𝐗̈, 𝑛 × 𝐗̇⟩||𝐗̇||2 =

𝜌[−(𝑣2𝑁 + 𝑣2𝐵)𝜉1 + (𝑣𝐵𝜉2 + 𝑣𝑁𝜉3)𝑣𝑇 ]

𝑣2𝑁 + 𝑣2𝐵 + 𝑣2𝑇
, (12)

𝑡𝑛 =
⟨𝐗̈, 𝑛⟩||𝐗̇||2 =

𝜌(𝑣𝑁𝜉3 − 𝑣𝐵𝜉2)
𝑣2𝑁 + 𝑣2𝐵 + 𝑣2𝑇

, (13)
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respectively, where

𝜉1 = 𝜕𝑡𝑣𝑇 − 𝑣𝑁 (𝜕𝑠𝑣𝑁 + 𝜅𝑣𝑇 − 𝜏𝑣𝐵) − 𝑣𝐵(𝜕𝑠𝑣𝐵 + 𝜏𝑣𝑁 ),
𝜉2 = 𝜕𝑡𝑣𝑁 − 𝑣𝐵𝜅

−1(𝜕2𝑠𝑣𝐵 + 2𝜏𝜕𝑠𝑣𝑁 + 𝑣𝑁𝜕𝑠𝜏 + 𝜏𝜅𝑣𝑇 − 𝜏2𝑣𝐵) + 𝑣𝑇 (𝜕𝑠𝑣𝑁 + 𝜅𝑣𝑇 − 𝜏𝑣𝐵),
𝜉3 = 𝜕𝑡𝑣𝐵 + 𝑣𝑁𝜅

−1(𝜕2𝑠𝑣𝐵 + 2𝜏𝜕𝑠𝑣𝑁 + 𝑣𝑁𝜕𝑠𝜏 + 𝜏𝜅𝑣𝑇 − 𝜏2𝑣𝐵) + 𝑣𝑇 (𝜕𝑠𝑣𝐵 + 𝜏𝑣𝑁 ),
𝑛1 = 𝜌[𝑣𝐵(𝜕𝑠𝑣𝑁 + 𝜅𝑣𝑇 − 𝜏𝑣𝐵) − 𝑣𝑁 (𝜕𝑠𝑣𝐵 + 𝜏𝑣𝑁 )],
𝑛2 = −𝜌𝜕𝑡𝑣𝐵 − 𝜅−1𝜌𝑣𝑁 (𝜕2𝑠𝑣𝐵 + 2𝜏𝜕𝑠𝑣𝑁 + 𝑣𝑁𝜕𝑠𝜏 + 𝜏𝜅𝑣𝑇 − 𝜏2𝑣𝐵) − 𝑣𝐵𝜕𝑡𝜌,
𝑛3 = 𝜌𝜕𝑡𝑣𝑁 − 𝜅−1𝜌𝑣𝐵(𝜕2𝑠𝑣𝐵 + 2𝜏𝜕𝑠𝑣𝑁 + 𝑣𝑁𝜕𝑠𝜏 + 𝜏𝜅𝑣𝑇 − 𝜏2𝑣𝐵) + 𝑣𝑁𝜕𝑡𝜌,

𝐗̇ = 𝜕𝐗
𝜕𝑡

, 𝐗̈ = 𝜕2𝐗
𝜕𝑡2

, 𝑛̇ = 𝜕𝑛
𝜕𝑡

, 𝜌 = 1√
𝑣2𝐵 + 𝑣2𝑁

.

Similarly, the geodesic torsion 𝑢𝑔 , geodesic curvature 𝑢𝑔 , normal curvature 𝑢𝑛 of the 𝑢 parameter curves 𝐗(𝑢, 𝑡) on
trajectory surface

∑
𝑡𝑚𝑎𝑥

as

𝑢𝑔 =
⟨𝐗𝑢, 𝑛 × 𝑛𝑢⟩||𝐗𝑢||2 =

𝜌(𝑣𝐵(𝜌𝜏𝑣𝐵 − (𝜌𝑣𝑁 )𝑠) + 𝑣𝑁 ((𝜌𝑣𝐵)𝑠 + 𝜌𝑣𝑁𝜏))
𝑔

, (14)

𝑢𝑔 =
⟨𝐗𝑢𝑢, 𝑛 × 𝐗𝑢⟩||𝐗𝑢||2 = 𝜅𝑔𝜌𝑣𝑁 ,

𝑢𝑛 =
⟨𝐗𝑢𝑢, 𝑛⟩||𝐗𝑢||2 = −𝜅𝜌𝑣𝐵 , (15)

respectively, where

𝐗𝑢 =
𝜕𝐗
𝜕𝑢

(𝑢, 𝑡),𝐗𝑢𝑢 =
𝜕2𝐗
𝜕𝑢2

(𝑢, 𝑡), 𝑛𝑢 =
𝜕𝑛
𝜕𝑢

(𝑢, 𝑡), 𝜌 = 1√
𝑣2𝐵 + 𝑣2𝑁

.

For the sake of simplicity, we denote

Ω𝑡𝑔 = {𝐗 = 𝐗(𝑢, 𝑡) ∈ Ω𝑡 ∶ 𝑡𝑔 = 0}, Λ𝑢𝑔 = {𝐗 = 𝐗(𝑢, 𝑡) ∈ Λ𝑢 ∶ 𝑢𝑔 = 0},
Ω𝑡𝑔

= {𝐗 = 𝐗(𝑢, 𝑡) ∈ Ω𝑡 ∶ 𝑡𝑔 = 0}, Λ𝑢𝑔
= {𝐗 = 𝐗(𝑢, 𝑡) ∈ Λ𝑢 ∶ 𝑢𝑔 = 0},

Ω𝑡𝑛
= {𝐗 = 𝐗(𝑢, 𝑡) ∈ Ω𝑡 ∶ 𝑡𝑛 = 0}, Λ𝑢𝑛

= {𝐗 = 𝐗(𝑢, 𝑡) ∈ Λ𝑢 ∶ 𝑢𝑛 = 0}.

3 SOME GEOMETRIC PROPERTIES OF SOLUTIONS OF THE GEOMETRIC CURVE
FLOWS IN SPACE

In this section, we obtain the Gaussian curvature, mean curvature, and principal curvatures of some trajectory surfaces including
the Hasimoto surface, shortening trajectory surface, minimal trajectory surface,

√
𝜏-normal trajectory surface in ℝ3 and give a

necessary and sufficient conditions for 𝑡-parameter and 𝑢-parameter curves of some trajectory surfaces in ℝ3 to be geodesics,
asymptotic lines, and principal lines.

Some geometric properties and some characterizations of parameter curves of Hasimoto surfaces in ℝ3 is given1 and is briefly
presented here for completeness.

Theorem 1. (see1) Let 𝐗 = 𝐗(𝑢, 𝑡) be a Hasimoto surface
∑

1 in ℝ3.

(1) Then the Gaussian curvature 𝐾 , mean curvature 𝐻 , principal curvatures 𝑃𝑖 (i=1,2) of the Hasimoto surface
∑

1 are

𝐾 = −
𝜅𝑠𝑠
𝜅

, 𝐻 = 1
2𝜅

(
𝜅𝑠𝑠
𝜅

− 𝜅2 − 𝜏2),

𝑃1 =
1
2𝜅

(
𝜅𝑠𝑠
𝜅

− 𝜅2 − 𝜏2) +
√
(𝜅−1𝜅𝑠𝑠 − 𝜅2 − 𝜏2)2 + 4𝜅𝜅𝑠𝑠

2𝜅
,

𝑃2 =
1
2𝜅

(
𝜅𝑠𝑠
𝜅

− 𝜅2 − 𝜏2) −
√
(𝜅−1𝜅𝑠𝑠 − 𝜅2 − 𝜏2)2 + 4𝜅𝜅𝑠𝑠

2𝜅
.

respectively;
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(2) We give necessary and sufficient conditions for parameter curves 𝐗(𝑢, 𝑡) of a Hasimoto surface
∑

1 in ℝ3 to be principal
lines, geodesics, and asymptotic lines, i.e.,

Ω𝑡𝑔 = {𝐗 ∈ Ω𝑡 ∶ 𝜏 = 0}, Λ𝑢𝑔 = {𝐗 ∈ Λ𝑢 ∶ 𝜏 = 0},
Ω𝑡𝑔

= {𝐗 ∈ Ω𝑡 ∶ 𝜅𝑠 = 0}, Λ𝑢𝑔
= Λ𝑢,

Ω𝑡𝑛
= {𝐗 ∈ Ω𝑡 ∶ 𝜅𝑠𝑠 − 𝜅𝜏2 = 0}, Λ𝑢𝑛

= {𝐗 ∈ Λ𝑢 ∶ 𝜅 = 0}.

(3) The binormal flow (5) is inextensible flows (i.e., geometric flows with 𝜕𝑔
𝜕𝑡

= 0).

Proof. By using Eqs. (9), Eqs. (10) and Eqs. (11)-(15), we have

𝐼 =
(
𝑔2 0
0 𝜅2

)
, 𝐼𝐼 =

(
−𝑔2𝜅 𝑔𝜏𝜅
𝑔𝜏𝜅 𝜅𝑠𝑠 − 𝜅𝜏2

)
,

𝑡𝑔 = −𝜏, 𝑡𝑔 = 𝜅𝑠
𝑡𝑛 =

𝜅𝑠𝑠 − 𝜅𝜏2

𝜅2
,

𝑢𝑔 = 𝜏
𝑔
, 𝑢𝑔 = 0, 𝑢𝑛 = −𝜅, 𝜕𝑡𝑔 = (−𝜅𝑣𝑁 + 𝜕𝑠𝑣𝑇 )𝑔 = 0.

This completes the proof.

Theorem 2. Let 𝐗 = 𝐗(𝑢, 𝑡) be a shortening trajectory surface
∑

2 in ℝ3.

(1) Then the Gaussian curvature 𝐾 , mean curvature 𝐻 , principal curvatures 𝑃𝑖 (i=1,2) of the shortening trajectory surface
∑

2
are

𝐾 = −𝜏2, 𝐻 =
2𝜏𝜅𝑠 + 𝜏𝑠𝜅

2𝜅2
,

𝑃1 =
2𝜏𝜅𝑠 + 𝜏𝑠𝜅

2𝜅2
+ 1

2𝜅2

√
(2𝜏𝜅𝑠 + 𝜏𝑠𝜅)2 + 4𝜅4𝜏2,

𝑃2 =
2𝜏𝜅𝑠 + 𝜏𝑠𝜅

2𝜅2
− 1

2𝜅2

√
(2𝜏𝜅𝑠 + 𝜏𝑠𝜅)2 + 4𝜅4𝜏2,

respectively;

(2) we give necessary and sufficient conditions for parameter curves 𝐗(𝑢, 𝑡) of a shortening trajectory surface
∑

2 in ℝ3 to be
principal lines, geodesics, and asymptotic lines, i.e.,

Ω𝑡𝑔 = {𝐗 ∈ Ω𝑡 ∶ 𝜏 = 0}, Λ𝑢𝑔 = {𝐗 ∈ Λ𝑢 ∶ 𝜏 = 0},
Ω𝑡𝑔

= {𝐗 ∈ Ω𝑡 ∶ 𝜅𝑠 = 0}, Λ𝑢𝑔
= {𝐗 ∈ Λ𝑢 ∶ 𝜅 = 0},

Ω𝑡𝑛
= {𝐗 ∈ Ω𝑡 ∶ 2𝜏𝜅𝑠 + 𝜅𝜏𝑠 = 0}, Λ𝑢𝑛

= Λ𝑢.

Proof. By using Eqs. (9), Eqs. (10) and Eqs. (11)-(15), we have

𝐼 =
(
𝑔2 0
0 𝜅2

)
, 𝐼𝐼 =

(
0 𝑔𝜏𝜅

𝑔𝜏𝜅 𝜅𝜏𝑠 + 2𝜏𝜅𝑠

)
,

𝑡𝑔 = −𝜏, 𝑡𝑔 = 𝜅𝑠
𝑡𝑛 =

2𝜏𝜅𝑠 + 𝜅𝜏𝑠
𝜅2

,

𝑢𝑔 = 𝜏
𝑔
, 𝑢𝑔 = 𝜅𝑔, 𝑢𝑛 = 0, 𝜕𝑡𝑔 = (−𝜅𝑣𝑁 + 𝜕𝑠𝑣𝑇 )𝑔 = −𝜅2𝑔.

This finishes the proof of Theorem 2.

Theorem 3. Let 𝐗 = 𝐗(𝑢, 𝑡) be a minimal trajectory surface
∑

3 in ℝ3.

(1) Then the Gaussian curvature 𝐾 , mean curvature 𝐻 , principal curvatures 𝑃𝑖 (i=1,2) of the minimal trajectory surface
∑

3 are

𝐾 = −𝜏2, 𝐻 = 0, 𝑃1 = 𝜏, 𝑃2 = −𝜏,

respectively;
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(2) we give necessary and sufficient conditions for parameter curves 𝐗(𝑢, 𝑡) of a minimal trajectory surface
∑

3 in ℝ3 to be
principal lines, geodesics, and asymptotic lines, i.e.,

Ω𝑡𝑔 = ∅, Λ𝑢𝑔 = ∅,
Ω𝑡𝑔

= {𝐗 ∈ Ω𝑡 ∶ 𝜏𝑠 = 0}, Λ𝑢𝑔
= ∅,

Ω𝑡𝑛
= Ω𝑡, Λ𝑢𝑛

= Λ𝑢.

Proof. By using Eqs. (9), Eqs. (10) and Eqs. (11)-(15), we have

𝐼 =

(
𝑔2 0
0 1

𝜏

)
, 𝐼𝐼 =

(
0 𝑔

√
𝜏

𝑔
√
𝜏 0

)
,

𝑡𝑔 = −𝜏, 𝑡𝑔 = −
𝜏𝑠
2𝜏

3
2

𝑡𝑛 = 0,

𝑢𝑔 = 𝜏
𝑔
, 𝑢𝑔 = 𝜅𝑔, 𝑢𝑛 = 0, 𝜕𝑡𝑔 = 𝜅√

𝜏
.

Note that 𝜅 ≠ 0, 𝜏 > 0, hence this completes the proof.

Theorem 4. Let 𝐗 = 𝐗(𝑢, 𝑡) be a
√
𝜏-normal trajectory surface

∑
4 in ℝ3.

(1) Then the Gaussian curvature 𝐾 , mean curvature 𝐻 , principal curvatures 𝑃𝑖 (i=1,2) of
√
𝜏-normal trajectory surface

∑
4 are

𝐾 = −𝜏2, 𝐻 =
𝜏𝑠
𝜅
, 𝑃1 =

𝜏𝑠 +
√

𝜏2𝑠 + 𝜅2𝜏2

𝜅
, 𝑃2 =

𝜏𝑠 −
√

𝜏2𝑠 + 𝜅2𝜏2

𝜅
,

respectively;

(2) we give necessary and sufficient conditions for parameter curves 𝐗(𝑢, 𝑡) of a
√
𝜏-normal trajectory surface

∑
4 in ℝ3 to be

principal lines, geodesics, and asymptotic lines, i.e.,

Ω𝑡𝑔 = {𝐗 ∈ Ω𝑡 ∶ 𝜏 = 0}, Λ𝑢𝑔 = {𝐗 ∈ Λ𝑢 ∶ 𝜏 = 0},
Ω𝑡𝑔

= {𝐗 ∈ Ω𝑡 ∶ 𝜏𝑠 = 0}, Λ𝑢𝑔
= ∅,

Ω𝑡𝑛
= {𝐗 ∈ Ω𝑡 ∶ 𝜏𝑠 = 0}, Λ𝑢𝑛

= Λ𝑢.

Proof. By using Eqs. (9), Eqs. (10) and Eqs. (11)-(15), we have

𝐼 =
(
𝑔2 0
0 𝜏

)
, 𝐼𝐼 =

(
0 𝑔𝜏

3
2

𝑔𝜏
3
2

2𝜏𝜏𝑠
𝜅

)
,

𝑡𝑔 = −𝜏, 𝑡𝑔 =
𝜏𝑠

2
√
𝜏

𝑡𝑛 =
2𝜏𝑠
𝜅

,

𝑢𝑔 = 𝜏
𝑔
, 𝑢𝑔 = 𝜅𝑔, 𝑢𝑛 = 0, 𝜕𝑡𝑔 = −𝜅

√
𝜏𝑔.

Note that 𝜅 ≠ 0, 𝜏 ≥ 0, this finishes the proof of Theorem 4.

Remark 1. There the other types geometric curve flows (such as the geometric KdV curve flow or also called Fukumoto-Miyazaki
model, the generalized bi-Schrödinger flow or also called Fukumoto-Moffatt model) in29,30, as following

(i) A Fukumoto-Miyazaki surface is the surface traced out by a family of curves {Γ𝑡}𝑡∈[0,𝑡𝑚𝑎𝑥) in ℝ3 as it evolves over time
according to the geometric KdV curve flow:

𝜕𝑡𝐗 = 1
2
𝜅𝐓 + 𝜅𝑠𝐍 + 𝜅𝜏𝐁, in 𝕊1 × [0, 𝑡𝑚𝑎𝑥),

𝐗|𝑡=0 = 𝐗0 in 𝕊1,
(16)

where 𝐗0 is the parametrization for the initial curve Γ0 in ℝ3 (see e.g.29,3). Note that the geometric KdV curve flow (16)
is inextensible flows, in fact,

𝜕𝑡𝑔 = (−𝜅𝑣𝑁 + 𝜕𝑠𝑣𝑇 )𝑔 = (−𝜅𝜅𝑠 + (1
2
𝜅2))𝑔 = 0.
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(ii) A Fukumoto-Moffatt surface is the surface traced out by a family of curves {Γ𝑡}𝑡∈[0,𝑡𝑚𝑎𝑥) in ℝ3 as it evolves over time
according to the generalized bi-Schrödinger flow:

𝜕𝑡𝐗 = 𝜆
{
𝜅𝐁 + 𝜈[𝜅2𝜏𝐓 + (2𝜅𝑠𝜏 + 𝜅𝜏𝑠)𝐍 + (𝜅𝜏2 − 𝜅𝑠𝑠)𝐁] + 𝜇𝜅3𝐁

}
,

𝐗|𝑡=0 = 𝐗0,
(17)

where 𝐗0 is the parametrization for the initial curve Γ0 in ℝ3, 𝜆, 𝜇 and 𝜈 are three real parameters (see e.g.30,4). Notice
again that the generalized bi-Schrödinger flow (17) is inextensible flows, this is because

𝜕𝑡𝑔 = (−𝜅𝑣𝑁 + 𝜕𝑠𝑣𝑇 )𝑔 = (−𝜅𝜆𝜈(2𝜅𝑠𝜏 + 𝜅𝜏𝑠) + 𝜆𝜈(𝜅2𝜏)𝑠)𝑔 = 0.

Similarly, we also give some geometric properties and some characterizations of 𝑢−parameter curves and 𝑡−parameter curves
of Fukumoto-Miyazaki surface and Fukumoto-Moffatt surface.

4 CONCLUSION

In this paper we investigated the geometric properties of solutions of the geometric curve flows in Euclidean 3-space ℝ3 with
respect to the Frenet frame. This trajectory surfaces including the Hasimoto surface, shortening trajectory surface, minimal
trajectory surface,

√
𝜏-normal trajectory surface may be useful for some specific applications in theoretical physics and fluid

dynamics. It is of interest to analyze some properties (such as the long term behavior, upper bound for the area of the
√
𝜏-normal

trajectory surface and terminating time) of space curves evolved by the
√
𝜏-normal geometric flow (8). These topics are beyond

the scope of this paper, but may be considered in future work.
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