Sheltered or suppressed? Tree regeneration in unmanaged European forests

Yannek Käber¹, Christof Bigler², Janneke Hillerislambers¹, Martina Hobi³, Tom Nagel⁴, Tuomas Aakala⁵, Markus Blaschke⁶, Peter Brang³, Bogdan Brzeziecki⁷, Marco Carrer⁸, Eugenie Cateau⁹, Georg Frank¹⁰, Shawn Fraver¹¹, Jokin Idoate-Lacasia³, Jan Holik¹², Stanislav Kucbel¹³, Anja Leyman¹⁴, Peter Meyer¹⁵, Renzo Motta¹⁶, Pavel Šamonil¹², Lucia Seebach¹⁷, Jonas Stillhard³, Miroslav Svoboda¹⁸, Jerzy Szwagrzyk¹⁹, Kris Vandekerkhove¹⁴, Ondřej Vostarek¹⁸, Tzvetan Zlatanov²⁰, and Harald Bugmann²

¹ETH Zurich ²ETH Zürich ³Swiss Federal Institute for Forest Snow and Landscape Research WSL ⁴University of Ljubliana ⁵University of Eastern Finland ⁶Bavarian State Institute of Forestry ⁷Warsaw University of Life Sciences ⁸University of Padua ⁹Reserves Naturelles de France ¹⁰Austrian Research Centre for Forests ¹¹The University of Maine ¹²Silva Tarouca Research Institute for Landscape and Ornamental Gardening ¹³Technical University of Zvolen ¹⁴Research Institute for Nature and Forest ¹⁵Northwest German Forest Research Institute ¹⁶University of Turin ¹⁷Forest Research Institute Baden-Wuerttemberg ¹⁸Czech University of Life Sciences Prague ¹⁹University of Agriculture in Krakow ²⁰Bulgarian Academy of Sciences

November 3, 2022

Abstract

Tree regeneration is a key demographic process influencing long-term forest dynamics. It is driven by many biotic and abiotic factors. Thus, predictions of tree regeneration are challenging because of complex feedbacks along climatic gradients. The stress gradient hypothesis (SGH) and life-history strategies (LHS) provide a framework for assessing such feedbacks across different species ranges. To address these topics, we analyzed regeneration for 24 tree species in 6,540 plots from 299 unmanaged European forests. Negative interactions predominated, with their intensity decreasing under stressful conditions for most species, as predicted by the SGH. However, positive interactions were only evident for a few species. Our study indicates that SGH and LHS can be combined to partially explain within- and between-species differences in tree recruitment. Moreover, our

findings imply that projections of forest dynamics along wide climatic gradients must accommodate both negative and positive biotic interactions, as they strongly affect rates of community turnover.

Hosted file

main_kaeberetal_euforia_regeneration_final.docx available at https://authorea.com/users/
519850/articles/593404-sheltered-or-suppressed-tree-regeneration-in-unmanaged-europeanforests