Field Infrastructure for Phenomics of High Night Air Temperature Stress Tolerance of Rice

Cherryl Quiñones¹, Kharla Mendez², Wenceslao Larazo², R Shea Harris², Shannon S Cunningham², Zachary C Campbell², Karina Medina-Jimenez², Arlene Adviento-Borbe³, Brian Ottis⁴, Harkamal Walia⁵, and Argelia Lorence^{2,6}

¹Affiliation not available
²Arkansas Biosciences Institute, Arkansas State University
³Delta Water Management Research Unit, USDA-ARS, State University
⁴Global Solutions, RiceTec, Inc
⁵Department of Agronomy & Horticulture, University of Nebraska
⁶Department of Chemistry and Physics, State University

November 1, 2022

Field Infrastructure for Phenomics of High Night Air Temperature Stress Tolerance of Rice

Cherryl Quiñones, Kharla Mendez¹, Wenceslao Larazo¹, R Shea Harris¹, Shannon S Cunningham¹, Zachary C Campbell¹, Karina Medina-Jimenez¹, Arlene Adviento-Borbe³, Brian Ottis⁴, Harkamal Walia⁵ and Argelia Lorence^{1,2},

¹Arkansas Biosciences Institute, Arkansas State University, Jonesboro, AR, USA; ²Department of Chemistry and Physics, P.O. Box 419, State University, AR, 72467, USA; ³Delta Water Management Research Unit, USDA-ARS, P.O. Box 2, State University, AR 72467, USA; ⁴Global Solutions, RiceTec, Inc, Alvin, TX 77511, USA; ⁵Department of Agronomy & Horticulture, University of Nebraska, Lincoln, NE 68583, USA.

High night air temperature stress (HNT) challenges rice production. Findings indicate 10% yield reduction for every 1°C of increase in night air temperature. The responses of rice to HNT stress have been analyzed in limited number of genotypes mostly under greenhouse conditions. One of the limits for these studies under field conditions is implementing HNT stress on critical rice growth stage. The physiological and metabolic responses of rice to HNT stress under field conditions are not fully understood, thus, field studies are needed. Field-based phenotyping infrastructure that can house rice germplasm and stress imposition using computer-based system basing on ambient temperature still do not exist. In this study, six high tunnel greenhouses were built in a field experimental station in Harrisburg, AR in a split-plot design. These movable infrastructures fitted 310 rice accessions from the Rice Diversity Panel 1 (RDP1) and 10 hybrids from RiceTec. Each high tunnel greenhouse had heating and a cyber-physical system that recorded ambient air temperature and increased night air temperature relative to ambient temperature at the flowering stage. The system successfully imposed HNT stress of 4.01°C and 3.94 °C as recorded by Raspberry Pi sensors for two weeks in the 2019 and 2020 cropping seasons, respectively. These greenhouses were able to endure constant flooding and resist heavy rain and 40-50 miles/h winds. Grain quality and other biochemical assays are still ongoing to fully assess the effects of HNT in the rice accessions and the hybrids.