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Abstract

In this paper we study a nonlocal boundary value problem for Gellerstedt equation with singular coefficient in an unbounded

domain. With the help of the method of integral equations and the principle of extremum we prove the unique solvability of

the considered problem.
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1 INTRODUCTION AND FORMULATION OF A PROBLEM

The theory of non-local boundary value problems for equations of mixed typeis of great importance, it has its application in
technology and nature sciences, including gas dynamics in studying the state of gas and oil basins, in aerodynamics in studying
heat and mass transfer in objects with a complex structure, in hydrodynamics in groundwater filtration, in the study of fluid
flow in channels surrounded by a porous medium, in electrodynamics in the construction of mathematical models of electrical
oscillations in conductors, and other phenomena, as well as in a number of other areas.
The first fundamental research for a model equation of mixed type was the study conducted by F. Tricomi1. In the Tricomi

problem, at all points of the boundary characteristic, the value of the desired function is given. L. Wolfersdorf2 considered the
Tricomi problem for the generalized Tricomi equation in an unbounded domain, the elliptic part of which is the upper half-plane,
and the hyperbolic part is the characteristic triangle. For the generalized Tricomi equation, S. Gellerstedt3 studied boundary
value problems, in the formulation of which, in the hyperbolic part of the considered domain the values of the desired solution
were given on two internal characteristics of the equation. The Gellerstedt problem has important applications in transonic gas
dynamics. In4, the problem with the Bitsadze–Samarskii conditions on the ellipticity boundary and on the degeneration line
was studied for the Gellerstedt equation with a singular coefficient in a mixed domain, when the ellipticity boundary conditions
with the segment of the y-axis and the normal curve of the equation. The study in5 is devoted to the study of a problem with the
Frankl condition type on a segment of the line of degeneracy for a mixed-type equation with a singular coefficient. In6, for the
Gellerstedt equation with a singular coefficient, we prove uniqueness and existence theorems for a solution to a problem with
nonlocal conditions on parts of the boundary characteristics and the Frankl condition type on a segment of the line of degeneracy.
A problem with a shift for a mixed-type equation in an unbounded domain, the elliptic part of which is the upper half-plane,

was studied in7. In8 in an unbounded domain, the problem with the Bitsadze–Samarskii condition on parallel characteristics
for the Gellerstedt equation with singular coefficients in an unbounded domain was studied. A nonlocal problem with integral
gluing condition for a third-order loaded equation was studied in9. Boundary value problems for the third-order loaded equation
were investigated in10. A nonlocal boundary value problems for a mixed type equation with singular coefficients was solved
in11,12. The studies in13,14 are devoted to study the nonlocal problems for mixed-type equation with partial Riemann-Liouville
fractional derivative. In15, the fundamental solution for the Tricomi type equation in the hyperbolic domain was found. Tricomi
type equations with terms of lower order in the plane was studied in16. Solutions are required to satisfy conditions on one part
of a characteristic in the hyperbolic region of the considered domain and on some parts of the line of parabolic degeneracy.
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We consider the following equation

signy|y|muxx + uyy +
�0
y
uy = 0, (1)

in domainD = D+∪D− ∪ I of complex plane z = x+ iy, whereD+ is the first quadrant of the plane,D− is the finite domain in
the fourth quadrant of the plane bounded by characteristics OC and BC of equation (1) going out from points O(0, 0), B(1, 0)

and intersecting at point C( 1
2
,−

(

m+2
4

)
2

m+2 ) and by the segment OB of the straight line y = 0, I = {(x, y) ∶ 0 < x < 1, y = 0}.
In (1) m, �0 are some real numbers satisfying conditions m > 0, −m

2
< �0 < 1.

We introduce the following notation: I0 = {(x, y) ∶ 0 < y < ∞, x = 0}, I1 = {(x, y) ∶ 1 < x < ∞, y = 0}, C0 and C1
are correspondingly, points of intersection of characteristics OC and BC with the characteristics going out from point E(c, 0),
where c ∈ I is an arbitrary fixed number.
Let q(x) ∈ C1[c, 1] be a diffeomorphism from the set of points of segment [c, 1] to the segment of points of segment [0, c],

such that q′(x) < 0, q(c) = c, q(1) = 0. As an example of such a function consider the linear function q(x) = k(1 − x), where
k = c

1−c
.

Problem. In domain D find a function u(x, y) with the following properties:
1)u(x, y) ∈ C(D̄) where D̄ = D̄− ∪D+ ∪ Ī0 ∪ Ī1;
2) u(x, y) ∈ C2(D+) and satisfies equation (1) in this domain;
3) u(x, y) is a generalized solution from class R1 17 in domain D−;
4) the following relations hold

lim
R→∞

u(x, y) = 0, R2 = x2 + 4
(m + 2)2

ym+2, x > 0, y > 0; (2)

5) u(x, y) satisfies the boundary conditions
u(0, y) = '(y), y ≥ 0, (3)

u(x, 0) = �1(x), x ∈ Ī1, (4)

x�D1−�
0,x u[�(x)] = �(x)(x − c)

�D1−�
c,x u[�

⋆(x)] +  (x), c < x < 1, (5)

u(q(x), 0) = �u(x, 0) + f (x), c ≤ x ≤ 1, (6)

and the transmission condition
lim
y→+0

y�0 )u
)y

= lim
y→−0

(−y)�0 )u
)y
, x ∈ I ⧵ {c}, (7)

moreover these limits at x = 0, x = 1, x = c can have singularities of order less than 1 − 2�, where � = m+2�0
2(m+2)

, f (x) ∈
C[c, 1] ∩ C1,�1(c, 1), f (1) = 0, f (c) = 0,� = const, �(x),  (x) ∈ C[c, 1] ∩ C1,�2(c, 1), �1(x) ∈ C(Ī1), moreover the function
�1(x) near point x = 1 is representable in the form �1(x) = (1 − x)�̃1(x), �̃1(x) ∈ C(Ī1) and for sufficiently large x satisfies the
equality |�1(x)| ≤

M
x"
, ",M are positive constants, �1(x) is satisfies the Hölder condition on arbitrary segment [1, N], N > 1,

'(y) ∈ C(Ī0), y
3m+2�0

4 '(y) ∈ L(0,∞), '(y) is satisfies Hölder condition on arbitrary segment [0, N], N > 0, '(∞) = 0,
'(0) = 0, D1−�

0,x , D1−�
c,x are fractional differentiation operators in the sense of Riemann–Liouville17, points of intersection of

characteristics C0C(EC1) with the characteristics from the point (x0, 0), x0 ∈ (c, 1), are

�(x0) =
(

x0
2
,−

(m + 2
4

x0
)2∕(m+2))

,

�⋆(x0) =
(

c + x0
2

,−
(m + 2

4
(x0 − c)

)2∕(m+2))

.

In4, the problem was investigated in a bounded domain where characteristic OC was arbitrarily divided into two parts
(OC0, C0C), and on the first part the Tricomi condition was imposed, and on the second part of the characteristic parallel to it,
the Bitsadze-Samarskii condition was imposed.
This paper, devoted to the study of the problem in an unbounded domain, differs from18 in that here the characteristic OC0 is

freed from the boundary condition (Tricomi’s condition1), which is equivalently replaced by the non-local Frankl condition19

on the segment of the degeneracy line.
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2 UNIQUENESS OF SOLUTION TO THE PROBLEM

Theorem 1. Let the following conditions be fulfilled '(y) ≡ 0,  (x) ≡ 0, f (x) ≡ 0, �1(x) ≡ 0, 0 < � < 1, �(x) ≤ 0. Then the
problem has only a trivial solution.

Proof of Theorem 1. It is known that the solution of the modified Cauchy problem u(x, 0) = �(x), x ∈ Ī ,
lim
y→−0

(−y)�0uy = �(x), x ∈ I , has the following form

u(x, y) = 
1

1

∫
0

�
(

x + 2
m + 2

(−y)
m+2
2 (2t − 1)

)

t�−1(1 − t)�−1dt

−
2(−y)1−�0
1

∫
0

�
(

x + 2
m + 2

(−y)
m+2
2 (2t − 1)

)

t−�(1 − t)−�dt, (8)

where 
1 =
Γ(2�)
Γ2(�)

and 
2 =
2

(m+2)
Γ(1−2�)
Γ2(1−�)

, Γ(z) is gamma function17.
From the formula (8) we have

u[�(x)] = 
1

1

∫
0

�
(x
2
+ 2
m + 2

m + 2
4

x(2t − 1)
)

t�−1(1 − t)�−1dt−

−
2
(m + 2

4
x
)

2(1−�0)
m+2

1

∫
0

�
(x
2
+ 2
m + 2

m + 2
4

x(2t − 1)
)

t−�(1 − t)−�dt =

= 
1

1

∫
0

�(xt)t�−1(1 − t)�−1dt − 
2
(m + 2

4
x
)1−2�

1

∫
0

�(xt)t−�(1 − t)−�dt.

Let’s replace the variable integration z = xt. Then we obtain

u[�(x)] = 
1

x

∫
0

�(z)
(z
x

)�−1 (x − z
x

)�−1 dz
x
−

−
2
(m + 2

4

)1−2�
x1−2�

x

∫
0

�(z)
(z
x

)−� (x − z
x

)−� dz
x
=

= 
1x1−2�
x

∫
0

�(z)z�−1dz
(x − z)1−�

− 
2
(m + 2

4

)1−2�
x

∫
0

�(z)z−�dz
(x − z)�

.

By virtue of the fractional integration operator in the sense of Riemann-Liouville17

D�
0,xf (x) =

1
Γ(−�)

x

∫
0

f (t)dt
(x − t)1+�

, � < 0,

we obtain

u[�(x)] = 
1x1−2�Γ(�)D
−�
0,x�(x)x

�−1 − 
2
(m + 2

4

)1−2�
Γ(1 − �)D�−1

0,x �(x)x
−� .

Similarly, it is easy to show that

u⋆[�(x)] = 
1(x − c)1−2�Γ(�)D−�
c,x�(x)(x − c)

�−1 − 
2
(m + 2

4

)1−2�
Γ(1 − �)D�−1

c,x �(x)(x − c)
−� .

Given these relations, from the boundary condition (5), after simple calculations, we obtain

�(x) = 
!(x)
[

D1−2�
0,x �(x) − �(x)D1−2�

c,x �(x)
]

+ Ψ1(x), x ∈ (c, 1), (9)
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where Ψ1(x) = −
 (x)


2
(

m+2
4

)1−2�
Γ(1−�)(1−�(x))

,


 = 2Γ(1−�)Γ(2�)
Γ(�)Γ(1−2�)

(

m+2
4

)2�
, !(x) = 1

1−�(x)
.

The equality (9) is the first functional relation between the unknown functions �(x) and �(x), brought to the interval (c, 1) of
the axis y = 0 from the hyperbolic part D− of mixed domain D.
Now let us prove that if '(y) ≡ 0,  (x) ≡ 0, f (x) ≡ 0, �1(x) ≡ 0, 0 < � < 1, �(x) ≤ 0 then the solution of the problem in

domain of D+∪Ī0 ∪ Ī∪Ī1 by virtue of (2), is identically equal to zero.
Let D+

R be a finite domain cut out of domain D+ by the arc ARBR of the circle: x2 + 4ym+2

(m+2)2
= R2, 0 ≤ x ≤ R, 0 ≤ y ≤

((m + 2)R∕2)2∕(m+2) , AR

(

0,
(

m+2
2
R
)

2
m+2

)

, BR(R, 0).

Let (x0, y0) be a point of positive maximum of the function u(x, y) in domain D̄+
R. In view of formula (2) for any " > 0 there

exists R0 = R0("), such that for R > R0(") the inequality

|u(x, y)| < ", (x, y) ∈ ARBR. (10)

By virtue of notation u(x, 0) = �(x), x ∈ Ī the condition (6) is rewritten in the form

�(q(x)) = ��(x) + f (x), x ∈ [c, 1]. (11)

According to the Hopf principle20 the function u(x, y) does not attain its positive maximum and negative minimum at the
inner points of domain D̄+

R ( Hereinafter, these points will be called extremum points functions u(x, y)). Let us assume that the
function u(x, y) reaches its positive maximum and negative minimum in domain D̄+

R at the point (x0, 0) of the intervals (0, c)
and (c, 1) of the axis y = 0.
Let us consider two cases separately: x0 ∈ (0, c) and x0 ∈ (c, 1). Let us assume that x0 ∈ (c, 1), then at this point in the case

of a positive maximum (negative minimum)

�(x0) < 0(�(x0) > 0). (12)

It is well known that at the point of the positivemaximum (negativeminimum) of the function �(x) the fractional differentiation
operators satisfy the inequality
D1−2�
c,x �(x)|x=x0 > 0 (D

1−2�
c,x �(x)|x=x0 < 0). Then by virtue of (9) (where Ψ(x) ≡ 0), we have

�(x0) = 
!(x0)
[

D1−2�
0,x �(x) − �(x)D1−2�

c,x �(x)
]

x=x0
> 0

(�(x0) = 
!(x0)
[

D1−2�
0,x �(x) − �(x)D1−2�

c,x �(x)
]

x=x0
< 0). (13)

Inequalities (12) and (13) contradict the conjugation (7), whence we deduce that x0 ∉ (c, 1).
Now let us assume that x0 ∈ (0, c). Let x1 ∈ (c, 1) be the solution to the equation q(x1) = x0. In this case from (11) (where

f (x) ≡ 0) we have
�(x0) = �(q(x1)) = ��(x1). (14)

Equality (14) shows, that the point x1 is the extremum point of the function �(x) in the interval (c, 1), which contradicts the
previous case. Hence x0 ∉ (0, c).
We show that the point E(c, 0) is also not the extremum point of the function u(x, y). Indeed, from equality (11), where

f (x) ≡ 0, we have �(q(c)) = ��(c). Then, by virtue of the equality q(c) = c, it follows that �(c)(1 − �) = 0, i.e. �(c) = 0.
Consequently, there are no points of positive maximum (negative minimum) of the function u(x, y) on the interval OB. Let

R > R0. From the Hopf principle and the previous reasoning, if (x0, y0) ∈ ARBR, then by virtue of (10) we have |u(x0, y0)| <
".Therefore, |u(x, y)| < " for any (x, y) ∈ D̄+

R. Hence, by virtue of the arbitrariness of ", with R → +∞ we conclude that
u(x, y) ≡ 0 in domain D+∪Ī0 ∪ Ī∪Ī1. Then

lim
y→+0

u(x, y) = 0, x ∈ Ī ; lim
y→+0

y�0uy = 0, x ∈ I. (15)

Taking into account (15), due to the continuity of the solution in domain D̄+
R and the conjugation condition (7), restoring

the sought function u(x, y) in domain D− as a solution of the modified Cauchy problem with homogeneous data, we obtain
u(x, y) ≡ 0 in domain D̄−. Theorem 1 is proved.
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3 EXISTENCE OF THE SOLUTION TO THE PROBLEM

Theorem 2. Let the conditions q(x) = k(1 − x), 0 < � < 1, �(x) ≤ 0, �k
1
2
−3�(1 + 2sin(��)!(c)) < 1, �0 > −m−1

3
, where

� = (1 − 2�)∕4, k = c∕(1 − c), !(c) = 1∕(1 − �(c)) be fulfilled. Then the solution to the problem exists.

Proof of Theorem 2. The solution of the Dirichlet problem in domain D+ satisfying the conditions (2)-(4) and the condition
u(x, 0) = �(x), x ∈ Ī , can be represented in the following form

u(x, y) = k2y1−�0
1

∫
0

�(t)×

×

(

(

(t − x)2 + 4
(m + 2)2

ym+2
)�−1

−
(

(t + x)2 + 4
(m + 2)2

ym+2
)�−1

)

dt+

+k2y1−�0
∞

∫
1

�1(t)×

×

(

(

(t − x)2 + 4
(m + 2)2

ym+2
)�−1

−
(

(t + x)2 + 4
(m + 2)2

ym+2
)�−1

)

dt+

+ 2
m + 2

y
1−�0
2

∞

∫
0

t
2m+1+�0

2 '(t)dt×

×

∞

∫
0

se−sxJ 1−2�
2

(

2st
m+2
2

m + 2

)

J 1−2�
2

(

2sy
m+2
2

m + 2

)

ds, (16)

where k2 =
1
4�

(

4
m+2

)2−2� Γ2(1−�)(1−�0)
Γ(2−2�)

, � = 2�0+m
2(m+2)

, J�(z) is the Bessel function of the first kind. Differentiating equality (16) in
y we get

)u
)y

= k2

1

∫
0

�(t) )
)y
y1−�0×

×

(

(

(t − x)2 + 4
(m + 2)2

ym+2
)�−1

−
(

(t + x)2 + 4
(m + 2)2

ym+2
)�−1

)

dt + )
)y
F1(x, y) +

)
)y
F2(x, y), (17)

where

F1(x, y) = k2

∞

∫
1

�1(t)y1−�0×

×

(

(

(t − x)2 + 4
(m + 2)2

ym+2
)�−1

−
(

(t + x)2 + 4
(m + 2)2

ym+2
)�−1

)

dt,

F2(x, y) =
2

m + 2
y
1−�0
2

∞

∫
0

t
2m+1+�0

2 '(t)dt

∞

∫
0

se−sxJ 1−2�
2

(

2st
m+2
2

m + 2

)

J 1−2�
2

(

2sy
m+2
2

m + 2

)

ds.

By virtue of equality

)
)y
y1−�0

(

[

(x − t)2 + 4
(m + 2)2

ym+2
]�−1

−
[

(x + t)2 + 4
(m + 2)2

ym+2
]�−1

)

=

= m + 2
2

y−�0 )
)t
×

×

(

(x − t)
[

(x − t)2 + 4
(m + 2)2

ym+2
]�−1

+ (x + t)
[

(x + t)2 + 4
(m + 2)2

ym+2
]�−1

)
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from (17) we have

)u
)y

= k2
m + 2
2

y−�0
1

∫
0

�(t)×

× )
)t

(

(x − t)
[

(x − t)2 + 4
(m + 2)2

ym+2
]�−1

+ (x + t)
[

(x + t)2 + 4
(m + 2)2

ym+2
]�−1

)

dt+

+ )
)y
F1(x, y) +

)
)y
F2(x, y). (18)

In the integral of the right side of equality (18), having performed the integration operation in parts, taking into account �(0) = 0,
�(1) = 0, after simple calculations we have

)u
)y

= −k2
m + 2
2

y−�0
1

∫
0

�′(t)×

×

(

(x − t)
[

(x − t)2 + 4
(m + 2)2

ym+2
]�−1

+ (x + t)
[

(x + t)2 + 4
(m + 2)2

ym+2
]�−1

)

dt+

+ )
)y
F1(x, y) +

)
)y
F2(x, y). (19)

Multiplying both parts of the equality (19) by y�0 , then moving to the limit at y→ +0, we get

�(x) = −k2
m + 2
2

1

∫
0

�′(t)
[

(x − t)|x − t|2�−2 + (t + x)2�−1
]

dt + Φ0(x), x ∈ (0, 1), (20)

where

Φ0(x) = lim
y→+0

y�0 )
)y
(F1(x, y) + F2(x, y)) = k2(1 − �0)

∞

∫
0

�1(t)
[

(t − x)2�−2 − (t + x)2�−2
]

dt+

+ 2

(m + 2)
1−2�
2 Γ( 1

2
− �)

∞

∫
0

'(t)t
2m+1+�0

2 dt

∞

∫
0

s
3−2�
2 e−sxJ 1−2�

2

(

2s
m+2
2

m + 2

)

ds.

Equality (20) is a functional relation between the unknown functions �(x) and �(x), brought to I from the elliptic part D+ of
themixed domainD. Note that the relation (20) is valid for the entire interval I . Next, the integration interval (0, 1) is divided into
the intervals (0, c) and (c, 1), and then in integrals with the limit (0, c) by replacing the variable integration t = q(s) = k(1 − s),
given the equality (10), the relation (20) is reduced to the form

�(x) = −k2
m + 2
2

⎛

⎜

⎜

⎝

x

∫
c

�′(t)(x − t)2�−1dt −

c

∫
x

�′(t)(t − x)2�−1dt
⎞

⎟

⎟

⎠

−

−k2
m + 2
2

⎛

⎜

⎜

⎝

1

∫
c

�′(t)(t + x)2�−1dt − �

1

∫
c

�′(s)
[

(x − q(s))2�−1 + (x + q(s))2�−1
]

ds
⎞

⎟

⎟

⎠

+ Φ1(x), x ∈ (c, 1), (21)

where

Φ1(x) = k2
m + 2
2

1

∫
c

f ′(s)
[

(x − q(s))2�−1(x + q(s))2�−1
]

ds + Φ0(x).

By virtue of (7), excluding the function �(x) from (9) and (21) we get

−
2
!(x)
(m + 2)k2

[

D1−2�
0,x �(x) − �(x)D1−2�

c,x �(x)
]

+ Ψ2(x) =

x

∫
c

�′(t)(x − t)2�−1dt −

1

∫
x

�′(t)(t − x)2�−1dt+

+

1

∫
c

�′(t)(t + x)2�−1dt − �

1

∫
c

�′(s)
[

(x − q(s))2�−1 + (x + q(s))2�−1
]

ds, x ∈ (c, 1), (22)
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where Ψ2(x) = −
2

(m+2)k2

(

Ψ1(x) − Φ1(x)
)

. By applying the operator Γ(1 − 2�)D2�−1
c,x to both parts of equality (22) we have

−
2


(m + 2)k2
Γ(1 − 2�)D2�−1

c,x !(x)
[

D1−2�
0,x �(x) − �(x)D1−2�

c,x �(x)
]

+ Γ(1 − 2�)D2�−1
c,x Ψ2(x) =

= Γ(1 − 2�)D2�−1
c,x

⎛

⎜

⎜

⎝

x

∫
c

�′(t)(x − t)2�−1dt −

1

∫
x

�′(t)(t − x)2�−1dt
⎞

⎟

⎟

⎠

+

+Γ(1 − 2�)D2�−1
c,x

⎛

⎜

⎜

⎝

1

∫
c

�′(t)(t + x)2�−1dt − �

1

∫
c

�′(s)
[

(x − q(s))2�−1 + (x + q(s))2�−1
]

ds
⎞

⎟

⎟

⎠

, x ∈ (c, 1), (23)

It is not difficult to make sure that

Γ(1 − 2�)D2�−1
c,x

x

∫
c

�′(t)(x − t)2�−1dt = Γ(2�)Γ(1 − 2�)�(x), (24)

Γ(1 − 2�)D2�−1
c,x

1

∫
x

�′(t)(t − x)2�−1dt = �ctg(2��)�(x) +

1

∫
c

(x − c
t − c

)1−2� �(t)dt
t − x

, (25)

Γ(1 − 2�)D2�−1
c,x

1

∫
c

�′(t)(t + x)2�−1dt =

1

∫
c

(x − c
c + t

)1−2� �(t)dt
t + x

, (26)

Γ(1 − 2�)D2�−1
c,x

1

∫
c

�′(s)(x − q(s))2�−1ds = −

1

∫
c

(

x − c
c − q(s)

)1−2� �(s)q′(s)ds
x − q(s)

, (27)

Γ(1 − 2�)D2�−1
c,x

1

∫
c

�′(s)(x + q(s))2�−1ds =

1

∫
c

(

x − c
c + q(s)

)1−2� �(s)q′(s)ds
x + q(s)

. (28)

Γ(1 − 2�)D2�−1
c,x !(x)

[

D1−2�
0,x �(x) − �(x)D1−2�

c,x �(x)
]

=

=
�!(x)
Γ(2�)

1

∫
c

(

x − c
c − q(z)

)1−�−� �(z)q′(z)dz
x − q(z)

+
!(x)
Γ(2�)

1

∫
c

(

x − c
c − q(z)

)1−�−� f (z)q′(z)dz
x − q(z)

+

+
�(!(c) − !(x))
Γ(2�)(x − c)2�

1

∫
c

�(z)q′(z)dz
(c − q(z))1−2�

+
!(c) − !(x)
Γ(2�)(x − c)2�

1

∫
c

f (z)q′(z)dz
(c − q(z))1−2�

+

+
�

Γ(2�)

1

∫
c

�(z)q′(z)dz

x

∫
c

[

!′(s)
(x − s)2�

+
2�(!(s) − !(x))
(x − s)1+2�

]

ds
(s − q(z))1−2�

+

+
�

Γ(2�)

1

∫
c

f (z)q′(z)dz

x

∫
c

[

!′(s)
(x − s)2�

+
2�(!(s) − !(x))
(x − s)1+2�

]

ds
(s − q(z))1−2�

+ Γ(1 − 2�)�(x). (29)

Substituting (24)-(29) in (23),after some calculations we have

[

2
Γ(1 − 2�)
(m + 2)k2

+ Γ(2�)Γ(1 − 2�) − �ctg(2��)
]

�(x) −

1

∫
c

(x − c
t − c

)1−2� �(t)dt
t − x

=

= −�

1

∫
c

(

x − c
c − q(t)

)1−2� �(t)q′(t)dt
x − q(t)

−
2


(m + 2)k2
�!(x)
Γ(2�)

1

∫
c

(

x − c
c − q(t)

)1−2� �(t)q′(t)dt
x − q(t)

+ R[�] + F1(x), (30)
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where

R[�] = −

1

∫
c

(x − c
c + t

)1−2� �(t)dt
t + x

+ �

1

∫
c

(

x − c
c + q(t)

)1−2� �(t)q′(t)dt
x + q(t)

+

+
�

Γ(2�)
!(c) − !(x)
(x − c)1−2�

1

∫
c

�(t)q′(t)dt
(c − q(t))1−2�

+
�

Γ(2�)

1

∫
c

�(t)q′(t)dt

x

∫
c

[

!′(s)
(x − s)2�

+
2�(!(s) − !(x))
(x − s)1+2�

]

×

× ds
(s − q(t))1−2�

is the regular operator,

F1(x) = −
2


(m + 2)k2

⎡

⎢

⎢

⎣

!(x)
Γ(2�)

1

∫
0

(

x − c
c − q(t)

)1−2� f (t)q′(t)dt
x − q(t)

+ 1
Γ(2�)

!(c) − !(x)
(x − c)2�

1

∫
c

f (t)q′(t)dt
(c − q(t))1−2�

⎤

⎥

⎥

⎦

−

−
2


(m + 2)k2
1

Γ(2�)

1

∫
c

f (t)q′(t)dt

x

∫
c

[

!′(s)
(x − s)2�

+
2�(!(s) − !(x))
(x − s)1+2�

]

×

× ds
(s − q(t))1−2�

+ Γ(1 − 2�)D2�−1
c,x Ψ2(x).

Equality (30) is written in the following form

�(x) − �

1

∫
c

(x − c
t − c

)1−2� �(t)dt
t − x

= g(x), x ∈ (c, 1), (31)

where

g(x) = �k�(1 + 2sin(��)!(x))

1

∫
c

(

x − c
c − q(t)

)1−2� �(t)dt
x − q(t)

+ R[�] + F1(x), (32)

R[�] = −�

1

∫
c

(x − c
c + t

)1−2� �(t)dt
x + t

− �k�

1

∫
c

(

x − c
c + q(t)

)1−2� �(t)dt
x + q(t)

is the regular operator, F1(x) = �Γ(1 − 2�)D
2�−1
c,x Ψ2(x), � =

cos(��)
�(1+sin(��))

.
The first integral operator in g(x) is not regular, since the integrand for x = c, t = c has an isolated first-order singularity.

Therefore, this term in (31) is highlighted separately.
In (31) assuming (x − c)2�−1�(x) = �(x), (x − c)2�−1g(x) = g1(x) we obtain

�(x) − �

1

∫
c

�(t)dt
t − x

= g1(x), x ∈ (c, 1). (33)

We will seek the solution to the equation (33) in the class of functions satisfying the Hölder condition on (c, 1) and bounded
at x = 1, and with x = c, which can turn to infinity of the order of less than 1 − 2�. In this class, the index of the equation (33)
is zero. Applying the Carleman-Vecua17 method to the equation (33), we obtain its solution

�(x) =
1 + sin(��)

2
g1(x) +

cos(��)
2�

(1 − x
x − c

)

1
4
(1−2�)

×

×
1
∫
c

g1(t)dt
(

1−t
t−c

)
1
4 (1−2�)(t−x)

.
(34)

In (34) returning to the previous functions we get

�(x) = cos2(��)g(x) +
sin(2��)
2�

1

∫
c

(

(1 − x)(x − c)3

(1 − t)(t − c)3

)� g(t)dt
t − x

, (35)

where � = (1 − 2�)∕4.
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Now, taking into account the expression for g(x) from (32), we convert the solution (35) to the form

�(x) = ��k(1 + 2sin(��!(x))cos2(��)

1

∫
c

(

x − c
c − q(t)

)4� �(t)dt
x − q(t)

+

+��k
sin(2��)
2�

(1 − x)�(x − c)3�
1

∫
c

�(s)ds
(c − q(s))4�

×

×

1

∫
c

( t − c
1 − t

)� (1 + 2sin(��)!(t))dt
(t − q(s))(t − x)

+ R1[�] + F2(x).

(36)

where

R1[�] = cos2(��)R[�] +
sin(2��)
2�

1

∫
c

(

(1 − x)(x − c)3

(1 − t)(t − c)3

)� R[�]dt
t − x

is the regular operator,

F2[x] = cos2(��)F1(x) +
sin(2��)
2�

1

∫
c

(

(1 − x)(x − c)3

(1 − t)(t − c)3

)� F1(t)dt
t − x

.

Equation (36) is transformed to the form

�(x) = ��k(1 + 2sin(��!(x))cos2(��)

1

∫
c

(

x − c
c − q(t)

)4� �(t)dt
x − q(t)

+

+��k
sin(2��)
2�

(1 + 2sin(��)!(x))(1 − x)�(x − c)3�
1

∫
c

�(s)ds
(c − q(s))4�

×

×

1

∫
c

( t − c
1 − t

)� dt
(t − q(s))(t − x)

+ R2[�] + F2(x),

(37)

where

R2[�] = R1[�] −
��ksin(2��)sin(��)(1 − x)�(x − c)3�

�

1

∫
c

�(s)ds
(c − q(s))4�

1

∫
c

( t − c
1 − t

)� (!(t) − !(x))dt
(t − x)(t − q(s))

is the regular operator.
By virtue of q(x) = k(1 − x),k = c

1−c
, the equation (37) is written as

�(x) = ��k1−4�(1 + 2sin(��)!(x))cos2(��)

1

∫
c

(x − c
t − c

)4� �(t)dt
x − k(1 − t)

+

+��k1−4�
sin(2��)
2�

(1 + 2sin(��)!(x))(1 − x)�(x − c)3�
1

∫
c

�(s)ds
(s − c)4�

×

×

1

∫
c

( t − c
1 − t

)� dt
(t + ks − k)(t − x)

+ R2[�] + F2(x).

(38)

Further, it is not difficult to make sure that the value of the internal integral in (38) has the form

A(x, s) =

1

∫
c

( t − c
1 − t

)� dt
(t − x)(t − k + ks)

= 1
x + ks − k

×

×
(

−�ctg(��)
(x − c)�

(1 − x)�
− Γ(−�)Γ(1 + �) − 1 − c

1 + ks − k
Γ(1 + �)Γ(1 − �)F (1 − �, 1, 2; 1 − c

1 + ks − k
)
)

.

(39)
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Now, substituting (39) into (38), we get

�(x) = ��k1−4�(1 + 2sin(��)!(x))cos2(��)

1

∫
c

(x − c
t − c

)4� �(t)dt
x − k(1 − t)

+

+��k1−4�
sin(2��)
2�

(1 + 2sin(��)!(x))(1 − x)�(x − c)3�
1

∫
c

�(s)ds
(s − c)4�

1
x + ks − k

×

×
(

−�ctg(��)
(x − c)�

(1 − x)�
− Γ(−�)Γ(1 + �) − 1 − c

1 + ks − k
Γ(1 + �)Γ(1 − �)F (1 − �, 1, 2; 1 − c

1 + ks − k
)
)

+

+R2[�] + F2(x).

(40)

After simple calculations, the equation (40) is written as

�(x) = �

1

∫
c

K(x, s)�(s)ds
x + ks − k

+ R2[�] + F2(x), x ∈ (c, 1), (41)

where
K(x, s) = −�k1−4�(1 + 2sin(��)!(x))

sin(2��)
2�

(1 − x)�(x − c)3�

(s − c)4�
×

×
(

Γ(−�)Γ(1 + �) + 1 − c
1 + ks − k

Γ(1 + �)Γ(1 − �)F (1 − �, 1, 2; 1 − c
1 + ks − k

)
)

.

Applying the Boltz formula for the hypergeometric function, after some calculations, the kernel K(x, s) takes the following
form

K(x, s) = �k1−3�(1 + 2sin(��)!(x))cos(��)
(

1 − x
1 − q(s)

)�
(x − c
s − c

)3�
.

Then we rewrite the equations (41) in the form

�(x) = ��k1−3�(1 + 2sin(��)!(x))cos(��)

1

∫
c

(

1 − x
1 − q(s)

)�
(x − c
s − c

)3� �(s)ds
x + ks − k

+ R2[�] + F2(x), x ∈ (c, 1), (42)

In (42), highlighting the characteristic part, we get

�(x) = ��k1−3�(1 + 2sin(��)!(c))cos(��)

1

∫
c

(x − c
s − c

)3� �(s)ds
x − k(1 − s)

+ R3[�] + F2(x), x ∈ (c, 1), (43)

where

R3[�] = ��k1−3�cos(��)

1

∫
c

(x − c
s − c

)3� �(s)ds
x − k(1 − s)

×

×
[(

1 − x
1 − q(s)

)�

(1 + 2sin(��)!(x)) − (1 + 2sin(��)!(c))
]

+ R2[�]

is the regular operator. The equation (43) is rewritten as

�(x) = ��k1−3�(1 + 2sin(��)!(c))cos(��)

1

∫
c

(x − c
s − c

)3� �(s)ds

(s − c)
(

k + x−c
s−c

) + R3[�] + F2(x), x ∈ (c, 1). (44)

In the equation (44), by replacing the variables x = c+(1−c)e−� , s = c+(1−c)e−t, and denoting �(�) = �(c+(1−c)e−�)e(3�−
1
2
)� ,

we get

�(�) = ��k1−3�(1 + 2sin(��)!(c))cos(��)

∞

∫
0

�(t)dt

ke
�−t
2 + e−

�−t
2

+ R4[�(�)] + F3(�), � ∈ (0,∞), (45)

where R4[�(�)] = R3[�(c + (1 − c)e−�)]e
(3�− 1

2
)� , F3(�) = F2[(c + (1 − c)e−�)]e

(3�− 1
2
)� . By virtue of the condition �0 > −

m−1
3
,

there is an inequality 3� − 1
2
< 0.
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Let us introduce the notation

N(�) =
��k1−3�(1 + 2sin(��)!(c))cos(��)

ke
�
2 + e−

�
2

.

Then the equation (45) is written as

�(�) =

∞

∫
0

N(� − t)�(t)dt + R4[�(�)] + F3(�), � ∈ (0,∞). (46)

The equation (46) is theWiener–Hopf integral equation21 and using the Fourier transform it is reduced to the Riemann boundary
value problem, i.e. solved in quadratures. Functions N(�), F3(�) have exponential decreasing order at infinity, with N(�) ∈
C(0,∞), F3(�) ∈ H�1(0,∞). Therefore,N(�), F3(�) ∈ L2∩H�1 . Fredholm’s theorems for integral equations of the convolution
type are valid only in one particular case when the index of these equations is zero. The index of the equation (46) is the index
of the expression 1 −N∧(�) with the opposite sign, where

N∧(�) =

∞

∫
−∞

ei�tN(t)dt = ��k1−3�(1 + 2sin(��)!(c))cos(��)

∞

∫
−∞

ei�tdt

ke
t
2 + e−

t
2

. (47)

Having calculated the Fourier integral, using the residue theory8 we find
∞

∫
−∞

ei�tdt

ke
t
2 + e−

t
2

= �e−i�lnk
√

kcℎ(��)
. (48)

Substituting (48) in (47), considering � = cos(��)
�(1+sin(��))

, � = (1 − 2�)∕4, we have

N∧(�) = �k
1
2
−3�(1 + 2sin(��)!(c))sin(��) e

−i�lnk

cℎ(��)
.

Since �k
1
2
−3�(1 + 2sin(��)!(c)) < 1 and since

Re(N∧(�)) = Re
(

�k
1
2
−3�(1 + 2sin(��)!(c))sin(��) e

−i�lnk

cℎ(��)

)

=

= �k
1
2
−3�sin(��)(1 + 2sin(��)!(c))

cos(�lnk)
cℎ(��)

< �k
1
2
−3�(1 + 2sin(��)!(c)) < 1

then Re(1 − N∧(�)) > 0. Hence, the index of the equation (46) � = −Jnd(1 − N∧(�) = 0, i.e. changing the argument of
the expression 1 −N∧(�)) on the real axis, expressed in full revolutions, is zero21. Consequently, the equation (46) is uniquely
reduced to the Fredholm integral equation of the second kind, the unambiguous solvability of which follows from the uniqueness
of the solution to the problem GF . Theorem 2 is proved.

4 CONCLUSION

In this work, we study a new nonlocal boundary value problem for an elliptic-hyperbolic equation. Main results are new. Using
these results, we can explore various boundary value problems for mixed-type equations of the second and higher orders.
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