
P
os
te
d
on

31
O
ct

20
22

—
T
h
e
co
p
y
ri
gh

t
h
ol
d
er

is
th
e
au

th
or
/f
u
n
d
er
.
A
ll
ri
gh

ts
re
se
rv
ed
.
N
o
re
u
se

w
it
h
ou

t
p
er
m
is
si
on

.
—

h
tt
p
s:
//
d
oi
.o
rg
/1
0.
22
54
1/
au

.1
66
72
30
35
.5
78
11
04
2/
v
1
—

T
h
is

a
p
re
p
ri
n
t
an

d
h
a
s
n
o
t
b
ee
n
p
ee
r
re
v
ie
w
ed
.
D
a
ta

m
ay

b
e
p
re
li
m
in
a
ry
.

Intelligent System to Detect Software Defects in Autonomous Cars

Sudeep Tanwar1, Smit N. Patel2, Jil R. Patel3, Nisarg P. Patel1, Rajesh Gupta1, and
Sherali Zeadally4

1Nirma University
2Government Engineering College Gandhinagar
3Hasmukh Goswami College of Engineering
4University of Kentucky

October 31, 2022

Abstract

Autonomous cars have become increasingly popular in the last decade because of their numerous benefits, such as lower travel

time, increased safety, and improved fuel economy. Many car manufacturing companies and tech giants are working on this

technology to make fully autonomous automobiles or strengthen their existing driver-less cars. These cars use very complex,

advanced, and sophisticated hardware technologies. However, the software is an equally important feature because it must

operate all functions seamlessly while working in sync with other vehicle components. The software must analyze a large

amount of data to make quick real-time decisions, so any vulnerabilities or bugs can be a severe problem to the vehicle and the

passengers riding in it. Many researchers have proposed various software defect prediction schemes for different projects and

applications, but most of them have focused on specific software issues and excluded others. Thus, their methods cannot be

applied to the software of autonomous cars. In this paper, we propose an improved Artificial Neural Network (ANN) model,

called Dropout-Artificial Neural Network (D-ANN), to solve this problem of defect prediction in autonomous cars. This inclusive

model can consider all the parameters simultaneously for effective bugs prediction. The proposed model can be used for the

software of any autonomous cars, and it is trained and evaluated using standard methods. The results obtained show that the

proposed model predicts software defects with higher accuracy than other models.

1



2

Intelligent System to Detect Software Defects
in Autonomous Cars

Sudeep Tanwar, Senior Member, IEEE, Smit N. Patel, Jil R. Patel, Nisarg P. Patel, Rajesh Gupta, Student Member,
IEEE, Sherali Zeadally, Senior Member, IEEE

Abstract

Autonomous cars have become increasingly popular in the last decade because of their numerous benefits, such as lower
travel time, increased safety, and improved fuel economy. Many car manufacturing companies and tech giants are working on
this technology to make fully autonomous automobiles or strengthen their existing driver-less cars. These cars use very complex,
advanced, and sophisticated hardware technologies. However, the software is an equally important feature because it must operate
all functions seamlessly while working in sync with other vehicle components. The software must analyze a large amount of data
to make quick real-time decisions, so any vulnerabilities or bugs can be a severe problem to the vehicle and the passengers riding
in it. Many researchers have proposed various software defect prediction schemes for different projects and applications, but most
of them have focused on specific software issues and excluded others. Thus, their methods cannot be applied to the software
of autonomous cars. In this paper, we propose an improved Artificial Neural Network (ANN) model, called Dropout-Artificial
Neural Network (D-ANN), to solve this problem of defect prediction in autonomous cars. This inclusive model can consider all
the parameters simultaneously for effective bugs prediction. The proposed model can be used for the software of any autonomous
cars, and it is trained and evaluated using standard methods. The results obtained show that the proposed model predicts software
defects with higher accuracy than other models.

Index Terms

Artificial Neural Network, Autonomous cars, Bug prediction, Driver-less cars, Modified ANN, Self-driving vehicles, Software
defects.

I. INTRODUCTION

An autonomous car can be defined as a vehicle that is capable of driving itself to its intended destination without the human
interaction [1]. It can sense the real-time traffic, pedestrians’ movements, and signboards using different technologies, such as
sensors, actuators, and complex algorithms, making an autonomous car reliable, mature, and intelligent. Many researchers from
industries, academia, and start-ups are working extensively to make the transport system smart and driverless. For example,
Tesla, Uber, Volvo, and Google have advanced and popular autonomous cars, such as Waymo, Tesla model-3, and Volvo XC90
[2]. More than 80 companies, including General Motors, Ford, Mercedes Benz, Volkswagen, Audi, Nissan, Toyota, and BMW,
are testing their partially or fully autonomous cars for reliability, efficiency, and accuracy. Around 1400 autonomous cars are
running on the roads of the United States, with California being the first state to allow autonomous cars. It is projected that
this number will increase to 3 million by 2040 [3]. The total market capitalization of the autonomous car industry is around
27.6 billion dollars in 2021 and is estimated to reach 54 billion dollars in the next five years. These recent trends demonstrate
that autonomous cars hold a promising future.

There are several issues associated with autonomous cars because of their complex designs and computations, such as
hardware fault tolerance, cooperating with human driven vehicles, and so on. [4] [5]. The components of autonomous cars,
such as the Global Positioning System (GPS), Light Detection and Ranging (Lidar), and cameras and many more components,
are connected to a centralized system such as the cloud that works in harmony with each other [6]. The centralized system
consists of software (a set of instructions), a driving force for autonomous cars that manages operations, hardware interactions,
and information processing. A threat to the software components can cause a threat to the entire autonomous car system,
which is quite severe and can put public property and many lives in danger. Although the software is designed very precisely
and tested many times before publishing its final version, many software defects can occur in software, which can cause
severe technical issues if they are not identified early. For example, in 2016, Tesla’s autopilot software failed to recognize a
white tractor-trailer, which was crossing the highway, because of miscommunication with sensors, and the software ran the
car into the trailer, which resulted in the death of the driver [3]. Another accident occurred in Florida in 2018, where the
autonomous cars software lost control over the battery and the autonomous car eventually caught fire, which led to the death

S. Tanwar, N. P. Patel, and R. Gupta are with the Department of Computer Science and Engineering, Institute of Technology, Nirma University, Ahmedabad,
Gujarat, India 382481 e-mails: (18bce136@nirmauni.ac.in, 18FTVPHDE31@nirmauni.ac.in, sudeep.tanwar@nirmauni.ac.in).

S. N. Patel is with the Department of Information and Technology, Government Engineering College, Gandhinagar, Gujarat, India (email:
smitpatel7815@gecg28.ac.in)

J. R. Patel is with the Department of Information and Technology, Hasmukh Goswami College of Engineering, Vehlal, Gujarat, India (email:
jilpatel2812@gmail.com)

S. Zeadally is with the College of Communication and Information, University of Kentucky, Lexington, KY 40506 USA (email: szeadally@uky.edu).
.



3

of passengers and one injury [7]. Researchers are aware of the high importance of autonomous car software, so they explored
various vulnerabilities, faults, and defects that can occur in autonomous cars software. In [8], the authors described some
common defects that can arise in software and their possible solutions.

• Performance defects: These defects are related to parameters such as speed, responsiveness, and stability. They generally
slow down the processing speed and increase the response time. These scenarios can be fatal for autonomous car software
and can be resolved by conducting various quantitative tests such as robustness and performance reviews under a specific
workload.

• Functional defects: These defects are related to the behavior of the software which does not function appropriately for
given inputs or may generate wrong outputs. They can be identified by testing software on multiple test cases in real-world
scenarios.

• Security defects: These are the vulnerabilities in a software system that an unauthorized person can exploit to get control
of the entire system. Some of the attacks include Structure Query Language (SQL) injections and cross-site scripting.
Various resilient solutions and Blockchain-based security schemes [9] can be used to mitigate potential threats.

• Compatibility defects: These defects are related to the consistent performance of software and occur with specific types
of systems, hardware components, and older versions of particular equipment. It can be identified by testing the software
on various platforms under a controlled environment [10].

• Logical defects: These are the defects, which generally occur due to poorly written and less optimized code. It can cause
hanging problems, unnatural halts or crashes, and infinite loops. They are relatively easy to counter and can be fixed by
software updates.

In a nutshell, these software defects can be addressed based on their priority and severity of the autonomous car system.
Researchers worldwide presented their works on the prioritization of different bugs based on their impact and timing. For

example, Tahir et al. [11] proposed an automated model to prioritize the bugs in software components and assign bug reports to
the specialized developer. It is based on previous knowledge and past experiences. They preferred the LSTM model to prioritize
defect reports and then used a content-based filtering technique for assignment purposes. This model has been pre-processed
with the help of the Natural Language Processing (NLP) method and uses Senti4SD [11] for classifying bug reports based on
different emotions.

Sometimes the software design can also cause blob, data class, lazy class, feature envy defect, and anti-patterns. Madden et
al. [12] proposed an Iterative Dichotomiser three decision tree model to detect software design defects. They have considered
Unified Modeling Language (UML) diagrams instead of text codes and assigned one decision tree for each design defect.
This model can detect many designing defects, as mentioned above. They have applied their proposed model on five different
software projects and evaluated their performance using a performance metric such as recall.

All these approaches would be very effective for software defect prediction. However, they focus on a few parameters at
a particular instance, appropriate for small or simple software. In contrast, autonomous cars’ software is complex and has
to deal with many real-time attributes for their proper functioning. Consequently, the existing models are unreliable for such
complex software that detects only certain software defects and malfunctioning (faulty design or the flaws in updates). Omitting
certain features and only focusing on few parameters can lead to disastrous results in the case of autonomous cars. Therefore,
autonomous cars needs a practical, reliable, and effective software defect prediction system that can focus on all real-time data
points, attributes, and parameters.

Motivated from the aforementioned discussions, this paper proposes a model that can effectively predict autonomous car
software defects. It is based on DL algorithms and can use all the features mentioned in a dataset. It is an enhanced ANN model
with dropout layers, called D-ANN. We discussed possible software defects and their solutions and we present a comprehensive
study of existing approaches and compared it with our proposed model. We compared the performance of the proposed model
with different classical ML models, such as decision tree, Gaussian Naive Bayes, SVM, and random forest. The proposed
model outperforms all ML models, and we used binary graphs to evaluate the performance of various models. The proposed
model can be directly applicable to autonomous cars because it considers all aspects of software and effectively detects faults
or bugs.

A. Research contributions of this work

We summarize the research contributions of this work as follows:
The primary contribution of this research article is to identify software defects in the early development stages of an

autonomous car and not normal car (as they are not entirely configured with software). Currently, automobile manufacturing
companies and research institutions are highly focused on two main challenges when it comes to autonomous cars. The first
one is to increase and optimize the car’s battery capacity, and the second is to improve the car’s communication with other
vehicles on the road. There have been very few attempts made to address the problem of software defects for the autonomous
car which have resulted in fatal crashes and loss of lives.

The ultimate goal of an autonomous car is to make every ride in it safe and reliable. The results of this paper will be



4

useful to many communities and sectors. For instance, the research community can use this as a foundation and expand its
functionalities by adding new features, such as an enhanced software debugging system.

The main scientific contribution of the paper is that we have proposed a DL-based D-ANN model that is used to process
the feature space of a standard software defect dataset of an autonomous car. We described the model in this paper with more
than 20 mathematical equations and their detailed explanations. Thus, this model can be used not only for software defects but
also for any prediction problem in the domain of DL. Moreover, the proposed D-ANN model can be enhanced according to
the problem by changing the number of neurons, changing the order of the different dense and dropout layers, and integrating
more advanced neural network-based algorithms and activation functions.

The proposed D-ANN model is also compatible with industry applications with little modifications. For instance, any
autonomous car manufacturer can integrate our D-ANN model (as a pre-trained model) in their cars by modifying certain
parameters according to the system and functionalities of the car.

Some other research contributions of this work include:
• We present a comprehensive review of existing software defect forecasting techniques, covering different types of defects,

such as design, functional, and logical defects, along with their results, merits, and shortcomings. Although there is very
limited material available publicly on this relatively new topic, several research articles have been published from 2004
to 2022 as we discuss in the related research work section and Table I.

• We propose a novel DL approach, i.e., D-ANN model to predict defects in autonomous cars. It predicts the possible
present software defects based on different 21 software features for the autonomous car. Further, it forecasts the possible
current software defects based on 21 software features of self-driving car software. Here, we choose the D-ANN model
because of its efficiency in predicting the software defects in autonomous cars. We have also evaluated ML models such
as KNN, Decision Tree, and SVM, and then we considered the auto ML model and simple ANN model. However, out
of all these models, we selected D-ANN because it achieved the highest accuracy metrics.

• We have conducted a performance evaluation of the proposed D-ANN model and compared it with the classical ML and
the auto-ML models using performance metrics, such as precision, recall, and F1-score performance metrics.

B. Organization

We organize the rest of the paper as follows. In Section II, we survey existing methodologies that predict possible software
defects present in autonomous cars. Section III describes the system architecture and formulates the problem. Section IV
describes our proposed solution. In Section V, we evaluate the performance of our proposed model. Finally, Section VI
concludes the paper.

II. RELATED RESEARCH WORK

Over the last few years, researchers have been exploring various approaches that can predict software defects accurately using
different AI models, such as Artificial Neural Networks (ANN) and Long Short-Term Memory (LSTM). For example, Anam
et al. [19] surveyed Fault Detection and Diagnosis (FDD) techniques, such as signal processing-based FDD and artificial
intelligence-based FDD. Zhang et al. [20] proposed a deep learning-based fault diagnosis technique and reviewed all the
traditional fault diagnosis methods such as model-based, signal-based, and knowledge-based. WonHaeng et al. [21] propose a
C-ITS security structure for autonomous vehicle security in a 5G environment, and also analyzed the latest security technologies
for autonomous cars. Prabha et al. [16] used several information-mining techniques with classical Machine Learning (ML)
models such as Naive Bayes, random forest, Support Vector Machine (SVM), and ANN to predict various types of bugs,
defects, and malfunctions in a software system. They have proposed a novel Principal Component Analysis (PCA) scheme for
feature reduction. They combined the current PCA method with the ANN algorithm to get better results and achieve 98.70%
prediction accuracy. Iago et al. [22] developed a system using the Dynamic Bayesian Network use for health monitoring
and fault detection, diagnosis, and prognosis in autonomous vehicles. The proposed Dynamic Bayesian Network gives good
performance results with different ML metrics.

Hammouri et al. [14] used supervised ML algorithms such as Naive Bayes, decision tree, and ANN to forecast the faults in
software using historical data. They evaluated the performance of their model and compared it with other prediction models
such as the power model and Linear Autoregressive model. Deep Learning (DL) algorithms can be used to identify bugs in
software. Later, Wang et al. [18] proposed a software defect prediction model using Gated Hierarchical LSTMs (GH-LSTM).
It combines semantic features, which are extracted using Abstract Syntax Trees, and traditional features, which are described in
the PROMISE repository [23]. They applied their model on ten different software projects and evaluated their accuracy using
three different techniques using metrics for non-effort-aware evaluation, win/tie/loss indicator, and effort-aware assessment.

Some defects can appear while updating the older versions of software. Sikic et al. [17] used aggregated change metrics to
store changes and updates between two versions, the latest version and older versions, of software in a chronological order.
This model is helpful in the software development cycle and can detect any bugs during the updating process. It can be applied
to Java programs, and the authors have evaluated its accuracy using Area Under the Curve (AUC), Matthews Correlation
Coefficient (MCC), and F1-Score.



5

Fig. 1: Heatmap of the 21 features of the software in an autonomous car.

Table I presents a comparative analysis of existing software defect prediction approaches along with the proposed scheme.
From Table I, we note that the DL-based model performs better than the classical ML-based models. Another finding from
the literature survey is that no previous works have considered all the software features while training their proposed model.

III. SYSTEM MODEL AND PROBLEM FORMULATION

This section describes the dataset used, system model and problem formulation for the proposed system that considers all
features in predicting the software defect in autonomous cars to improve prediction accuracy.

A. Dataset Description

The work to detect software defects for an autonomous vehicle is based on the Kaggle dataset [24]. The dataset consists
of 21 features such as a line count of code, cyclomatic complexity, essential complexity, design complexity, total operators
and operands, volume, program length, difficulty, intelligence, time estimator, total operand, total operator, unique operand,
unique operator, line count of blank lines, line count of comments, and flow graph of essential features. The target attributes
consist of binary values True and False, which have an approximate ratio of 80:20 in 10885 samples out of which 5 samples
were removed. These samples have some missing values. The NASA Metrics Data Program made this data publicly for further
work.

B. System Model

The dataset is taken from Kaggle [24] to identify the defects present in the autonomous cars’ software components as we
have discussed earlier. Next, the normalization technique (i.e., standard-scalar normalization) has been applied to the dataset
to normalize the data to zero using the equation below.

𝑛 𝑓 =
1
𝜎
( 𝑓 − `) (1)

where, 𝑓 is a feature, ` is the mean value of that feature for the entire dataset, 𝜎 is the standard deviation of that feature, and
𝑛 𝑓 is the normalized feature value. This normalization is applied to all the twenty-one features present in the dataset.

Fig. 1 shows the heat map of all twenty-one features. The normalized data is divided into testing (25%) and training data



6

TABLE I: Comparative analysis of different existing techniques for software defect prediction.

Ref. Year Contribution Results obtained Strengths Weaknesses
[13] 2014 Proposed a DL-based

architecture, which uses
autoencoder as a building
block to forecast the
information about traffic
flow.

MAE, MRE, and RMSE. Latent traffic flow feature
representation is discovered using
the DL architecture model.

In the prediction layer, only
logistic regression is used.

[14] 2018 Software bug prediction using
different ML algorithms such
as ANN, Naive Bayes,and
decision tree.

RSME for decision tree is
approximately 0.0826.

Multiple datasets are used to
achieve better accuracy.

Limited software attributes are
considered.

[15] 2019 Developed a centralized
root server to reduce traffic
congestion in metropolitan
cities.

Automatic Balancing
of Traffic through
the Integration of
Smartphones with
vehicles (ABATIS route
server).

Reduces traffic congestion as well
as traffic fluidity.

Data from only one city is used
for the experiment.

[16] 2020 Software defect prediction
using a hybrid approach of
different ML algorithms.

AUC = 98.70 for neural
network.

Multiple parameters are used for
a better result, such as precision,
recall, recognition accuracy.

The failure rate parameter is
not considered to determine
accurate outcomes.

[17] 2021 Aggregated Change Metrics
are used to predict software
bugs.

AUC, MCC and F1 score
is improved.

Changes made between the
software’s two versions are
considered in chronological order.

Different programming
languages are not explored,
such as Java.

[11] 2021 Bug prediction and assignment
using LSTM and Content-
based filtering, respectively.

F1 score is increased by
21% compared to the
state-of-the-art technique.

The proposed model is compared
with the state-of-the-art bug
prioritization techniques to
determine the performance.

Other DL approaches such as
ANN are not used.

[18] 2021 Software defect prediction
using the GH-LSTM approach.

F-measure Semantic features are used in this
proposed model.

Programming languages such
as C and C++ are not explored.

[12] 2021 Detection of defects in design
using decision tree approach.

F1 score Multiple defects along with 15
object-oriented features are used.

The correct approach is not
included.

Proposed
model

2021 Software defect prediction in
autonomous cars using DL-
based D-ANN model, which
can focus on multiple different
software parameters at the
same time.

Precision, Recall, F1-
Score

The main advantage of the D-ANN
model is it can predict Software
defects in autonomous cars better
than Classical ML models, such
as naive bayes, random forest, and
SVM, and the auto ML model.

(75%), where the testing data validates the performance of training data. Next, the D-ANN takes this normalized train input
data twice, i.e., one for the first ANN and the second for another ANN with False or True target binary values, which shows
whether the defect is present or not. Further, the label encoder is used to process the target column of the dataset, i.e., provide
appropriate labels to each values of the target column. It convert the values (True/False) into absolute values of 0’s and 1’s.
The objective of this work is to improve the accuracy of the model for better prediction results.

C. Problem Formulation

The proposed model is a hybrid model of two ANN with additional dropout layers. Both ANN will be fed with the same
input values separately. After the pre-processing steps, trained data is passed to both the ANNs with the same target values
that were previously encoded.

𝑓 = [ 𝑓1, 𝑓2, 𝑓3, ..., 𝑓21] (2)
𝑛 𝑓 = [𝑛 𝑓1, 𝑛 𝑓2, 𝑛 𝑓3, ..., 𝑛 𝑓21] (3)

𝑓 𝑖𝑛𝑎𝑙 𝑖𝑝 = [𝑛 𝑓 , 𝑛 𝑓 ] (4)
𝑓 𝑖𝑛𝑎𝑙 𝑜𝑝 = [𝑝0, 𝑝1] (5)

where, 𝑓 is a feature list that contains all twenty-one features of the software of autonomous cars. 𝑛 𝑓 is a normalized feature.
𝑓 𝑖𝑛𝑎𝑙 𝑖𝑝 consists of 𝑛 𝑓 twice. 𝑓 𝑖𝑛𝑎𝑙 𝑜𝑝 is the list that has the values of probability of not having a defect (𝑝0) and having a
defect (𝑝1) in the software. In this context, the objective function is accuracy. The main goal is to maximize the accuracy and
improves the model’s performance to better predict the defects with the input’s value of Eq. (4) and output of the category
Eq. (5). The D-ANN predicts the probability of the autonomous car’s software being faulty or not at the output stage. Next,
the probability value of each class is compared with the baseline using the function named argmax, which is provided in the
library NumPy and the highest category will be the final prediction.

𝑓 𝑖𝑛𝑎𝑙 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛 = 𝑚𝑎𝑥(𝑝0, 𝑝1) (6)



7

Fig. 2: The proposed autonomous cars software defect prediction model.

where, the 𝑓 𝑖𝑛𝑎𝑙 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛 has binary values in it based on the higher probability of not having or having a defect in the
software. The objective function of the D-ANN:

𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦𝑚𝑎𝑥 =
𝐶𝑃

𝑇𝐷𝐿
(7)

where, 𝐶𝑃 is the total number of correct predictions for both categories, and 𝑇𝐷𝐿 is the data length of the test set.

IV. OUR PROPOSED SOLUTION

In this section, we describe the proposed D-ANN model, which can predict the software defects in autonomous cars using
the software features dataset. Fig. 2 shows the flowchart that depicts the entire prediction process. It uses the combination of
multiple dense layers and dropout layers to generate output from the given input features of the software. The reason for using
D-ANN over the classical ANN is that simple ANN cannot find the complex pattern of software defects present in autonomous
cars. The prediction accuracy that we got using the traditional ANN was around 81.46%, whereas the D-ANN yielded an
accuracy of 82.61%.

In the proposed D-ANN model, the input data has twenty-one software features fed into the proposed model, and it gives
the output as a probability for each class being defected or not. The first step is to split the input data into two parts. One
part is given to the dense layer, which is on the left-hand side. The main function of the dense layer is to establish a deep
connection with the input data. Every neuron in this layer receives input data and performs a matrix-vector multiplication to
generate the output, which is then passed to the next connected layer in the model.

The first dense layer has 128 neurons, and there are 21 different inputs in terms of software features.

𝐻1 = 𝐴 [𝑒𝑥𝑝1] (8)

𝑒𝑥𝑝1 =
(
𝐼1𝑊𝐼1𝐻1

)
+

(
𝐼2𝑊𝐼2𝐻1

)
+

(
𝐼3𝑊𝐼3𝐻1

)
+

· · · +
(
𝐼𝑛𝑊𝐼𝑛𝐻1

)
+ 𝑏𝐼

𝐻2 = 𝐴 [𝑒𝑥𝑝2] (9)



8

𝑒𝑥𝑝2 =
(
𝐼1𝑊𝐼1𝐻2

)
+

(
𝐼2𝑊𝐼2𝐻2

)
+

(
𝐼3𝑊𝐼3𝐻2

)
+

· · · +
(
𝐼𝑛𝑊𝐼𝑛𝐻2

)
+ 𝑏𝐼

𝐻3 = 𝐴 [𝑒𝑥𝑝3] (10)

𝑒𝑥𝑝3 =
(
𝐼1𝑊𝐼1𝐻3

)
+

(
𝐼2𝑊𝐼2𝐻3

)
+

(
𝐼3𝑊𝐼3𝐻3

)
+

· · · +
(
𝐼𝑛𝑊𝐼𝑛𝐻3

)
+ 𝑏𝐼

𝐻128 = 𝐴 [𝑒𝑥𝑝4] (11)

𝑒𝑥𝑝4 =
(
𝐼1𝑊𝐼1𝐻128

)
+

(
𝐼2𝑊𝐼2𝐻128

)
+

(
𝐼3𝑊𝐼3𝐻128

)
+

· · · +
(
𝐼𝑛𝑊𝐼𝑛𝐻128

)
+ 𝑏𝐼

Equation (8), (9), (10), and (11) describe the basic formulas of ANNs. W is the weight associated with the edge joining two
consequent nodes, b is the bias, and A is the activation function [25] where, 𝑊𝐼^𝐻𝛾

is the weight of the edge running from 𝐼^
to 𝐻𝛾 . We can write all these equations as follows:

𝐻𝛾 = 𝐴

(( 21∑̂︁
=1

(
𝐼^𝑊𝐼^𝐻𝛾

))
+ 𝑏𝐼

)
(12)

^ → 1 − 21,
𝛾 → 1 − 128

where, ^ represents the range of inputs, i.e., from 1→21, and 𝛾 represents the number of neurons in the first dense layer,
ranging from 1 → 128. 𝑏𝐼 is the bias associated with the input layer. This output is then passed to the next dense layer that
has 64 neurons. This means that these 128 output points will be associated with 64 neurons of the second dense layer. This
step is described in mathematical form as:

𝐾𝛽 = 𝐴
©«©«

128∑︁
𝛾=1

(𝐻𝛾𝑊𝐻𝛾𝐾𝛽
)ª®¬ + 𝑏𝐻ª®¬ (13)

𝛾 → 1 − 128,
𝛽 → 1 − 64

where, 𝛾 represents the range of inputs, i.e., 1→128, and 𝛽 represents the number of neurons in the second dense layer, which
ranges from 1 to 64. 𝑏𝐻 is the bias associated with the first dense layer, and A is the activation function. This output is passed
to the next layer, which is the dropout layer. The dropout layer has a 25% dropout rate. The main function of this layer is to
drop some random samples to prevent the over-fitting problem.

The dropout layer is followed by the third dense layer, which has 32 neurons. The output from the dropout layer is associated
with these 32 neurons. The mathematical representation of this step is as follows:

𝐿𝛼 = 𝐴
©«©«

64∑︁
𝛽=1

(𝐾𝛽𝑊𝐾𝛽𝐿𝛼
)ª®¬ + 𝑏𝐾ª®¬ (14)

𝛽 → 1 − 64,
𝛼 → 1 − 32,

where, 𝛽 represents the range of inputs, i.e., 1→64, and 𝛼 represents the number of neurons in the third dense layer, which
ranges from 1 to 32. 𝑏𝐾 is the bias associated with the previous dense layer, and A is the activation function. Meanwhile, the
first dense layer on the right-hand side also gets the software features as its inputs in the parallel process. It has 32 neurons,
which are connected with every data point to generate the next output. The mathematical representation of this step is as
follows:

𝐻′
𝛾′ = 𝐴

(( 21∑̂︁
=1
(𝐼^𝑊𝐼^𝐻

′
𝛾′
)
)
+ 𝑏𝐼

)
(15)

^ → 1 − 21,
𝛾′ → 1 − 32

where, ^ represents the range of inputs, i.e., 1→21, and 𝛾′ represents the number of neurons in the first dense layer, ranging
from 1 to 32. 𝑏𝐼 is the bias associated with the input layer.



9

This output is passed to the following dense layer, which has 64 neurons. This step is described in mathematical form as:

𝐾 ′
𝛽′ = 𝐴

©«©«
32∑︁
𝛾′=1

(𝐻′
𝛾′𝑊𝐻′

𝛾′𝐾
′
𝛽′
)ª®¬ + 𝑏𝐻′

ª®¬ (16)

𝛾′ → 1 − 32,
𝛽′ → 1 − 64

where, 𝛾′ represents the range of inputs, i.e., 1→32, and 𝛽′ represents the number of neurons in the second dense layer, which
ranges from 1 to 64. 𝑏𝐻′ is the bias associated with the previous dense layer, and A is the activation function. This output is
passed to the next layer, which is the dropout layer that has 25% dropout rate. The dropout layer is followed by the third dense
layer, which has 128 neurons. The output from the dropout layer will be associated with these 128 neurons. The mathematical
representation of this step is as follows:

𝐿′𝛼′ = 𝐴
©«©«

64∑︁
𝛽′=1

(𝐾 ′
𝛽′𝑊𝐾 ′

𝛽′ 𝐿
′
𝛼′
)ª®¬ + 𝑏𝐾 ′

ª®¬ (17)

𝛽′ → 1 − 64,
𝛼′ → 1 − 128

where, 𝛽′ represents the range of inputs, i.e., 1→64, and 𝛼′ represents the number of neurons in the third dense layer ranges
from 1 to 128. 𝑏𝐾 ′ is the bias associated with the previous dense layer, and A is the activation function. The output generated
by the left-hand side layers (𝐿𝛼), and the output of right-hand side layers (𝐿′

𝛼′ ), are both concatenated into a single data unit.
This unit has 160 neurons, including 32 from the left and 128 from the right.

𝐿𝛼 + 𝐿′𝛼′ =𝐴 ©«©«
64∑︁
𝛽=1

(𝐾𝛽𝑊𝐾𝛽𝐿𝛼
)ª®¬ + 𝑏𝐾ª®¬ + 𝐴 ©«©«

64∑︁
𝛽′=1

(𝐾 ′
𝛽′𝑊𝐾 ′

𝛽′ 𝐿
′
𝛼′
)ª®¬ + 𝑏𝐾 ′

ª®¬
 (18)

𝛽 → 1 − 64,
𝛼 → 1 − 32,
𝛽′ → 1 − 64,
𝛼′ → 1 − 128

Next, this data unit is passed to the next dense layer, which has eight neurons. The 160 neurons from the data unit are associated
with these eight neurons. The mathematical representation of this step is as follows:

𝑚 𝑗 =[
𝐴

((( 32∑︁
𝛼=1

(𝐿𝛼𝑊𝑙𝛼𝑚 𝑗
)
)
+ 𝑏𝐿

)
+

(( 128∑︁
𝛼′=1

(𝐿′𝛼′𝑊𝐿′
𝛼′𝑚 𝑗

)
)
+ 𝑏𝐿′

))]
(19)

𝛼 → 1 − 32,
𝛼′ → 1 − 128,
𝑗 → 1 − 8

where, 𝛼 and 𝛼′ represents the ranges of inputs that are 1→32 and 1→128, respectively. j represents the number of neurons
in the current dense layer, which ranges from 1 to 8. 𝑏𝐿 and 𝑏𝐿′ are the biases associated with the previous dense layers,
and A is the activation function. This output is passed to the final dense layer, which has two neurons. This step is described
mathematically as:

𝑛𝑖 = 𝜎
©«©«

8∑︁
𝑗=1

(𝑚 𝑗𝑊𝑚 𝑗𝑛𝑖 )
ª®¬ + 𝑏𝑚ª®¬ (20)

𝑗 → 1 − 8,
𝑖 → 1 − 2

where, j represents the range of inputs, i.e., 1→8, and i represents the number of neurons in the second dense layer ranges
from 1 to 2. 𝑏𝑚 is the bias associated with the previous dense layer, and A is the activation function. The output is calculated
using Eq. (20) and the activation function, which is the softmax function (21). Both these outputs are passed to the argmax
function, which determines which value is the largest among 0s and 1s. After determining this, the model gives its final output



10

as equation (6) describes. From the generated output, the model can predict any defects in the software. This model is trained
over 40 epochs. After the training, the values are predicted.

𝜎(−→𝑄 )𝑖 =
𝑒𝑄𝑖∑𝑀
𝑗=1 𝑒

𝑄 𝑗

(21)

where, 𝜎 is a softmax function.
−→
𝑄 is an input vector. 𝑒𝑄𝑖 and 𝑒𝑄 𝑗 represent the standard exponential functions for both input

and output vectors, respectively. 𝑀 is the number of classes in a multi-class classifier.

V. PERFORMANCE EVALUATION

In this section, we evaluate the performance of our proposed model. We have compared results obtained using the proposed
model with the classical ML models and Auto-ML models in the following section. We have used the following performance
metrics: precision, recall, and F1-score. Here, precision is a performance indicator that shows the number of true positive
predictions divided by the total number of positive predictions. Precision is the number of true positives divided by the number
of true positives and false positives. The recall is a metric that quantifies the number of correct positive predictions made out
of all positive predictions that could have been made. The recall is the number of true positives divided by the number of true
positives and false negatives. Here, F1-score is the harmonic mean of the precision and recall. F1-score is the total number
of true positives divided by true positives plus 0.5*(false positives + false negatives). The support value (the quantity that
shows the number of samples of the true responses belonging to a specific class) is also calculated for the proposed Auto-ML
models. Moreover, confusion metrics include each quantity’s macro average and weighted average. The Receiver Operating
Characteristic (ROC) (a graph that shows the performance of a classification model at all classification thresholds in terms of
two parameters - true positive rate and false positive rate) is also plotted.

TABLE II: Performance parameters.

Parameter Values

Programming language Python 3.8.0
Platform Google colab
Framework TensorFlow
Total data points 10880
Train data points 8160
Test data points 2720
Batch size 64
Epochs 40
Optimizer Adam
Loss function Binary cross-entropy
Metrics Accuracy
Supporting metrics precision, recall, F1-score

We have taken a standard Kaggle dataset and pre-processed the data using a standard scalar method. The D-ANN was
trained on the pre-processed data using the parameters and values shown in Table II. These parameter include the programming
language, the amount of training and testing data points, the framework used, loss function, optimization function, metrics,
and other parameters.

A. Classical ML Models

Firstly, the input data consists of twenty-one different features of the autonomous car software is pre-processed and passed
to five different ML models: KNN, decision tree, Gaussian Naive Bayes, SVM, and random forest. The input data is divided
into training (75%, i.e., 8160 data points) and testing datasets. Then, we optimized the hyperparameters of the autonomous
car software data using the GridSearchCV function to choose the best parameter combination for the learning model. This
step increases the accuracy of the prediction model. For KNN, the value of cross-validator (CV) is 10, which means that the
cross-validation will be performed ten times for each selected set of hyperparameters. In the end, the model selects a pair that
generates the best output in terms of accuracy of defects prediction in autonomous car software. The KNN algorithm achieved
a software defect prediction accuracy of 81.17%, the highest among all five ML algorithms. The decision tree algorithm also
generates reliable results with an accuracy of ≈ 80%. For the decision tree, the hyperparameters are optimized in the same way
as we did in the KNN algorithm by considering the value of CV as 10. Then, Gaussian Naive Bayes achieved a comparatively
lower software defect prediction accuracy, i.e., 79.59%. For SVM, a GridSearchCV uses different pairs of gamma and C to
produce the best results. A total of four pairs are generated for different values of gamma and C, which are (0.1,1), (0.1,0.1),
(1,1), and (1,0.1). SVM achieves the software defect prediction accuracy of 80.03%. The random forest algorithm manages
to achieve the prediction accuracy of 80.44% using the same dataset. Fig. 3 shows the comparative analysis of the accuracies
achieved by all five algorithms.



11

81.1765 80.0735 79.5956 80.0368 80.4412

KNN DT NB SVM RF

Algorithm

0

10

20

30

40

50

60

70

80

90

100

A
cc

ur
ac

y(
%

)

Fig. 3: Comparison of the accuracies of classical ML models.

Fig. 4: ROC curve for AutoML.

B. AutoML Model

The AutoML model contains five different classification models: decision tree, random forest, Xgboost, neural network, and
LightGBM. The AutoML model uses ensemble ML methods for binary classification and calculates the log loss value for all
the algorithms. These values consist of the actual values and their prediction probability. It took around 290 seconds to train
it, and it achieved an accuracy of 81.47%, and precision, recall, and f1-Score evaluated the accuracy of defect prediction in
autonomous car software. Table III describes the confusion metric for the prediction accuracy. Here, precision determines the
number of true positive class predictions, the software defects detected, and recall determines the number of positive class
predictions out of all data units in the given dataset, which means the total predicted defects out of all autonomous car software
features. F1-score is the harmonic mean of the precision and recall. Support is the quantity that shows the number of samples
that belong to a specific class. For 0, the value of support is 2197, and it is 523 for 1. The sum of these two quantities is 2720,
representing the total number of testing points taken from the dataset of autonomous car software. The Receiver Operating
Characteristic (ROC), described as Fig. 4, shows a visual representation of the evaluation. It shows the performance of our
model at various classification thresholds and uses two parameters namely, true-positive rate and false-positive rate.

C. D-ANN Model

The D-ANN model is different from the basic ANN model used to identify the defect from autonomous car’s software, as
it has around eight dense layers and two dropout layers. D-ANN is trained with 75% of the total dataset with 25% of data
points reserved for testing purposes. The D-ANN model is trained for 40 epochs and achieved 82.61% prediction accuracy,



12

TABLE III: Auto-ML model’s confusion metrics.

Precision Recall F1-Score Support

0 0.84 0.96 0.89 2197
1 0.55 0.21 0.31 523
Accuracy 0.81 2720
Macro average 0.69 0.59 0.60 2720
Weighted average 0.78 0.81 0.78 2720

Fig. 5: ROC curve for D-ANN.

outperforming other existing ML models. This means that the D-ANN model is more accurate than classical ML models and
the AutoML model in predicting the probable defect present in the software of autonomous cars. We evaluated D-ANN using
precision, recall, and F1-score methods with a total of 2720 testing data points. The data point for class 0 is 2232, and for class
1 is 488. Table IV shows the confusion metrics of these quantities. We plotted the ROC curve for these values for different
thresholds as Fig. 5 shows. Fig. 6 shows the comparison of precision, recall, and f1-score values for D-ANN and AutoML for
the autonomous cars software’s defect. Finally, Fig. 7 shows the comparison of accuracies of with existing AI models (i.e.,
classical ML models, AutoML, and D-ANN) in identifying defect present in the autonomous car software.

TABLE IV: D-ANN’s confusion metrics.

Precision Recall F1-Score Support

0 0.85 0.86 0.90 2232
1 0.54 0.19 0.29 488
Accuracy 0.83 2720
Macro average 0.69 0.58 0.59 2720
Weighted average 0.79 0.83 0.79 2720

VI. CONCLUSION AND FUTURE WORK

Software vulnerability detection in autonomous cars is a challenging task for researchers because of the complexity of the
software used in autonomous cars’. Various ML models, such as SVM, Naive Bayes, and random forest, are widely used to
detect faults in software. Moreover, LSTM-based models have also been used to prioritize defects and early warnings. Many
DL-based algorithms have shown promising results in predicting bugs or vulnerabilities, and neural networks have improved
the prediction results to some extent. However, most of the existing work focus only on limited aspects of software and cannot
respond to all real-time defects. This work addresses this problem by describing it, discussing recently proposed solutions
to address the problem, and proposing a viable solution that can be helpful to the industry, the research community, and the
scientific domain of deep learning. This paper proposes an improved ANN model called D-ANN, with additional dropout layers
for software defect prediction. Our proposed model can utilize all the features of the dataset. We evaluated the model using
well-known performance metrics such as precision and recall and f1-score. Our performance results show that our proposed
model outperforms existing AI models, such as the classical ML models and the AutoML model. The accuracy achieved using
the proposed model is 82.6103%.



13

0.85

0.96
0.9

0.54

0.19

0.29

0.84

0.96

0.89

0.55

0.21

0.31

Precision Recall F1-score

Metrics

0

0.2

0.4

0.6

0.8

1

V
al

ue
s

D-ANN-False(0)
D-ANN-True(1)
AutoML-False(0)
AutoML-True(1)

Fig. 6: Comparison of performance metrics for AutoML and D-ANN.

81.1765 81.4706 82.6103

KNN Auto-ML D-ANN

Algorithm

0

10

20

30

40

50

60

70

80

90

100

A
cc

ur
ac

y(
%

)

Fig. 7: Final comparison with D-ANN.

In the future, we will include certain hardware features of autonomous cars along with enhanced software debugging
techniques. We will integrate this system with traffic regulation and inter-vehicle communication systems to improve it
further. This work will help make autonomous cars more reliable and improve decision-making, management operations,
and performance. Furthermore, as we are moving toward the 4th industrial revolution, the domain of autonomous vehicles is
growing bigger. There are plenty of scopes of this research, and we want to take it to the next level by building a similar
scheme for other autonomous vehicles such as trucks and buses.

REFERENCES

[1] T. Litman, Autonomous vehicle implementation predictions. Victoria Transport Policy Institute Victoria, Canada, 2017.
[2] S. Betz, “The top 25 self-driving car companies paving the way for an autonomous future.” https://builtin.com/transportation-tech/

self-driving-car-companies. Online; Accessed: 2021.
[3] A. Kopestinsky, “25 astonishing self-driving car statistics for 2021.” https://policyadvice.net/insurance/insights/self-driving-car-statistics/. Online;

Accessed: 2021.
[4] R. Hussain and S. Zeadally, “Autonomous cars: Research results, issues, and future challenges,” IEEE Communications Surveys Tutorials, vol. 21, no. 2,

pp. 1275–1313, 2019.
[5] P. Koopman and M. Wagner, “Autonomous vehicle safety: An interdisciplinary challenge,” IEEE Intelligent Transportation Systems Magazine, vol. 9,

no. 1, pp. 90–96, 2017.
[6] J. Guerrero-Ibáñez, S. Zeadally, and J. Contreras-Castillo, “Sensor technologies for intelligent transportation systems,” Sensors, vol. 18, no. 4, 2018.
[7] C. Law, “The dangers of driverless cars.” https://www.natlawreview.com/article/dangers-driverless-cars. Online; Accessed: 2021.
[8] A. D. Kumar, K. N. R. Chebrolu, S. KP, et al., “A brief survey on autonomous vehicle possible attacks, exploits and vulnerabilities,” arXiv preprint

arXiv:1810.04144, 2018.



14

[9] R. Gupta, S. Tanwar, N. Kumar, and S. Tyagi, “Blockchain-based security attack resilience schemes for autonomous vehicles in industry 4.0: A systematic
review,” Computers & Electrical Engineering, vol. 86, p. 106717, 2020.

[10] B. Kim, Y. Kashiba, S. Dai, and S. Shiraishi, “Testing autonomous vehicle software in the virtual prototyping environment,” IEEE Embedded Systems
Letters, vol. 9, no. 1, pp. 5–8, 2016.

[11] H. Tahir, S. U. R. Khan, and S. S. Ali, “Lcbpa: An enhanced deep neural network-oriented bug prioritization and assignment technique using content-based
filtering,” IEEE Access, vol. 9, pp. 92798–92814, 2021.

[12] M. Maddeh, S. Ayouni, S. Alyahya, and F. Hajjej, “Decision tree-based design defects detection,” IEEE Access, vol. 9, pp. 71606–71614, 2021.
[13] Y. Lv, Y. Duan, W. Kang, Z. Li, and F.-Y. Wang, “Traffic flow prediction with big data: a deep learning approach,” IEEE Transactions on Intelligent

Transportation Systems, vol. 16, no. 2, pp. 865–873, 2014.
[14] M. Alnabhan, A. Hammouri, M. Hammad, and F. Alsarayrah, “Software bug prediction using machine learning approach,” Int. J. Adv. Comput. Sci.

Appl, vol. 9, no. 2, 2018.
[15] J. L. Zambrano-Martinez, C. T. Calafate, D. Soler, L.-G. Lemus-Zúñiga, J.-C. Cano, P. Manzoni, and T. Gayraud, “A centralized route-management

solution for autonomous vehicles in urban areas,” Electronics, vol. 8, no. 7, 2019.
[16] C. L. Prabha and N. Shivakumar, “Software defect prediction using machine learning techniques,” in 2020 4th International Conference on Trends in

Electronics and Informatics (ICOEI)(48184), pp. 728–733, IEEE, 2020.
[17] L. Šikić, P. Afrić, A. S. Kurdija, and M. ŠIlić, “Improving software defect prediction by aggregated change metrics,” IEEE Access, vol. 9, pp. 19391–

19411, 2021.
[18] H. Wang, W. Zhuang, and X. Zhang, “Software defect prediction based on gated hierarchical lstms,” IEEE Transactions on Reliability, vol. 70, no. 2,

pp. 711–727, 2021.
[19] A. Abid, M. T. Khan, and J. Iqbal, “A review on fault detection and diagnosis techniques: basics and beyond,” Artificial Intelligence Review, vol. 54,

pp. 3639–3664, Jun 2021.
[20] J. Ren, M. Green, and X. Huang, “Chapter 8 - from traditional to deep learning: Fault diagnosis for autonomous vehicles,” in Learning Control (D. Zhang

and B. Wei, eds.), pp. 205–219, Elsevier, 2021.
[21] W. Lee, K. Yun, M. Chung, J. Oh, H. Shin, and K. Kwak, “Development of total security platform to protect autonomous car and intelligent traffic

system under 5g environment,” in Mobile Internet Security (I. You, H. Kim, T.-Y. Youn, F. Palmieri, and I. Kotenko, eds.), (Singapore), pp. 379–395,
Springer Nature Singapore, 2022.

[22] I. P. Gomes and D. F. Wolf, “Health monitoring system for autonomous vehicles using dynamic bayesian networks for diagnosis and prognosis,” Journal
of Intelligent & Robotic Systems, vol. 101, p. 19, Dec 2020.

[23] J. Sayyad Shirabad and T. Menzies, “The PROMISE Repository of Software Engineering Databases..” School of Information Technology and Engineering,
University of Ottawa, Canada, 2005.

[24] Kaggle, “Software defect prediction.” https://www.kaggle.com/semustafacevik/software-defect-prediction. Online; Accessed: 2017.
[25] S. Agatonovic-Kustrin and R. Beresford, “Basic concepts of artificial neural network (ann) modeling and its application in pharmaceutical research,”

Journal of pharmaceutical and biomedical analysis, vol. 22, no. 5, pp. 717–727, 2000.


