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Abstract

Dynamic channel pruning is widely used in model compression to improve the efficiency of neural networks. Although dynamic

pruning can remove redundant channels dynamically, the parameters still remain unchanged, which can limit the performance as

the response of each neuron changes with different inputs. In this paper, we propose a novel dynamic channel pruning method

with adaptive weight learning, which can adaptively adjust both the parameters and widths of the filters simultaneously.

Specifically, we design an adaptive-weight convolution module, which can be customized for different inputs under the guidance

of global context information to capture representative local patterns and synthesize interested features. At the same time,

we utilize a channel importance prediction module to predict the saliency of each channel. Based on the channel saliency,

unimportant channels can be removed dynamically to speed up the convolution. These two modules work jointly to achieve

a good trade-off between model performance and computational complexity. Experiments on image classification and object

detection tasks demonstrate that our method can greatly reduce the computational burden while maintaining the performance,

which outperforms state-of-the-art methods.
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Dynamic channel pruning is widely used in model compression to
improve the efficiency of neural networks. Although dynamic prun-
ing can remove redundant channels dynamically, the parameters still
remain unchanged, which can limit the performance as the response of
each neuron changes with different inputs. In this paper, we propose
a novel dynamic channel pruning method with adaptive weight learn-
ing, which can adaptively adjust both the parameters and widths of the
filters simultaneously. Specifically, we design an adaptive-weight con-
volution module, which can be customized for different inputs under the
guidance of global context information to capture representative local
patterns and synthesize interested features. At the same time, we utilize
a channel importance prediction module to predict the saliency of each
channel. Based on the channel saliency, unimportant channels can be
removed dynamically to speed up the convolution. These two modules
work jointly to achieve a good trade-off between model performance
and computational complexity. Experiments on image classification and
object detection tasks demonstrate that our method can greatly reduce
the computational burden while maintaining the performance, which
outperforms state-of-the-art methods.

Introduction: Deep convolutional neural networks (CNNs) have
achieved excellent performance in various computer vision tasks, e.g.,
image classification [5], object detection [18] and object tracking [1].
However, the great performance usually comes from larger and deeper
networks with the requirement of more memory and computation
resources, which brings significant challenges for deployment on lim-
ited hardware devices and low-power edge computing applications.

In recent years, model compression techniques have been widely
explored to reduce the computational budget of CNNs, including weight
quantization [2], low-rank decomposition [13], network pruning [16]
and knowledge distillation [9]. Among them, channel pruning have been
widely studied for its effectiveness to improve model efficiency and
compatibility with other compression methods, which can be divided
into static [7, 11]and dynamic pruning methods [4, 6]. Static prun-
ing methods usually follows a three-stage pruning paradigm( as shown
in Fig. 1(a)): training network from scratch firstly, then removing the
"unimportant" filters by measure the importance based on a specific cri-
terion, and finally fine-tuning the model to recover the performance. To
avoid a sharp decline of performance, pruning and fine-tuning are usu-
ally performed iteratively, which makes static pruning a cumbersome
process. Moreover, after static pruning, model parameters and structures
are changed and shared for different inputs, which brings several draw-
backs. Firstly, since parameters and structures treat all inputs equally, the
inputs with different features can not be discriminated accurately. Sec-
ondly, due to the permanent removal of some channels, model capacity
will be lost. In contrast, dynamic channel pruning methods (as shown in
Fig. 1(b)) learn the importance of each channel and skip the "unimpor-

Fig 1 Different pruning paradigms.

Fig 2 Response in the last channel of each activation layer of the pre-trained
VGG-16 for different input images.

tant" ones adaptively, which can remedy the aforementioned deficien-
cies of static pruning. Although existing dynamic pruning methods can
adjust the channels adaptively for different inputs, the model parameters
are still shared for different inputs, which tends to limit the performance.

Figure 2 shows the response values in the last channel of each acti-
vation layer of the pre-trained VGG-16 for different inputs. It can be
observed that the responses of each neuron changes with different inputs,
i.e., different structures are activated for different inputs. Based on
this motivation, we design a novel dynamic channel pruning method
which can dynamically remove redundant channels for higher efficiency
and adaptively adjust parameters for better performance. Our proposed
method consists of an adaptive-weight convolution module for adaptive
parameter learning and a channel importance prediction module for the
removal of unimportant channels. Combining these two modules organ-
ically, our pruning method can significantly reduce the computational
complexity as well as maintain the performance. The contribution of our
method is as follows:

• We propose a novel dynamic channel pruning method, which can
adaptively adjust the model parameters and structures for different
inputs to reduce the computational burden and alleviate performance
degradation.

• We design an adaptive-weight convolution module and a channel
importance prediction module. These two modules work jointly to
achieve dynamic channel pruning with a good trade-off between per-
formance and computational complexity.

• Extensive experiments on two tasks (i.e., image classification and
object detection) demonstrate both the effectiveness and efficiency
of our proposed dynamic pruning method.

Dynamic Channel Pruning with Adaptive Weight Learning: We propose
a novel dynamic channel pruning method with adaptive weight learning.
The overall architecture is shown in Fig. 3. In this section, we will intro-
duce our method in detail.

Notation and Preliminaries: For a !-layer convolutional neural net-
work, we denote the 8-th convolution layer as 58 : G8−1 ∈
R�8−1×�8−1×,8−1 → G8 ∈ R�8×�8×,8 , where G8−1, G8 denote the input
feature map and the output feature map, respectively. �, � and ,
represents channel number, height and width of the feature map. \ 80 ∈
R�8×�8−1×:×: represents the convolution kernel, and : is the size of the
convolution kernel. Then, we define 8-th convolutional layer as follows:

58 (G8−1) = 2>=E8 (G8−1, \
8
0) (1)

Further, convolutional layer with batch normalization is defined as fol-
lows:

G8 = W8 · =>A<(conv8 (G8−1, \
8
0)) + V8 (2)

where =>A< is the standardized normalization. The trainable parameter
W8 and V8 represent the scaling factor and bias, respectively.

Adaptive-weight Convolution Module: To learn more prominent fea-
tures for different inputs, we design an adaptive-weight convolution
module, which redistributes convolution weight based on different fea-
tures. The adaptive weight module consists of three parts, including con-
text fusion submodule, channel interaction submodule and coefficient
generation submodule, which are shown successively in the three dashed
box of adaptive weight convolution module in Fig. 3.

To extract the context information of the input feature map, we
first employ a average pooling layer to reduce its spatial resolution
to �8−1 × : × :. Then we feed it to context fusion submodule to
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Fig 3 The framework of dynamic channel pruning with adaptive weight learning. The colored blocks indicate the importance of the corresponding channels,
and the white ones indicate all-zero channels.

extract context information by projecting the adjusted feature map to
% ∈ R�8−1×3 , and the default size of 3 is set to :2/2. After that, the
channel interaction submodule utilizes a group linear layer to project the
input channel �8−1 into the output dimension of �8 . The input feature
% is transformed into feature & ∈ R�8×3 . Next, the coefficient genera-
tion submodule takes % and & as inputs, and decodes them from one-
dimension vector 3 to : × :. Then we use these two groups features
to obtain feature " ∈ R�8×�8−1×:×: . Finally, the weight adjusted con-
volution \ 8 can be obtained by mutiplying \ 80 with " element-wise,
which is equivalent to assigning weight to the convolution kernel in a
pixel-wise manner. We replace \ 80 with \ 8 in the convolution layer to
obtain the adaptive convolution. In this way, we can adjust parameters
for different inputs utilizing the adaptive weight convolution module.

Channel Importance Prediction Module : We design a channel impor-
tance prediction module to evaluate the importance of each channel. We
first compress the input feature map by Global Average Pooling (GAP),
which projects each channel of input feature map into a scalar, i.e., the
input feature map is projected to a column vector B8 ∈ R�8−1 .

Then, we use a fully connected layer to project B8 into 68 ∈ R�8 ,
which represents the importance of each channel. Without elaborately
designing parameter evaluation criteria, our channel importance module
can learn important channels adaptively based on the input features, and
can be optimized with the network to improve the accuracy of prediction.

Dynamic Channel Pruning : We use wta (winner-take-all) function
FC0d:e [17] to sort the channel importance of the feature map. FC0d:e
preserves only top : values, and sets all the rest to zero, which can be
described as

c8 (G8−1) = FC0dU�8e (68) (3)

We set pruning rate to U. FC0d:e function sorts the importance of
68 to c8 ∈ R�8 , in which �8 − dU�8 e values are set to zero. c8 guides
the network to skip the unimportant convolution channels and makes
network sparse. Finally, we replace the W8 of BN layer with c8 , which
can filter out the unimportant channels to reduce the computational cost.
Combining the adaptive-weight convolution module and channel impor-
tance prediction module, the proposed dynamic pruning method with
adaptive weight can be formulated as follows. :

58 (G8−1) = c8 · =>A<(conv8 (G8−1, \
8)) + V8 (4)

Using the proposed dynamic pruning method, we can dynamically
adjust the parameters and channels of the convolution, which can not
only reduce the computational burden but also maintain the perfor-
mance.

Experiments: We conduct experiments on two representative tasks to
verify the proposed method, i.e., image classification and object detec-
tion. For image classification, we conduct experiment on ResNet-20 and
ResNet-56 for CIFAR-10 dataset [10]. For object detection, we evaluate
our method on Centernet [21] with Resnet-50 as backbone for PASCAL
VOC dataset [3].

Image Classification: CIFAR-10 contains 50000 training images and
10000 test images of 10 categories, in which the size of a single image is
32× 32. We use ResNet-20, ResNet-56 as baseline networks. We utilize
the SGD optimizer with momentum at 0.9 and weigtht dacay at 5×10−4.
The initial learning rate is set to 0.1, and dropped by 10× at epoch 120,
180, and 220. The total training epochs are set to 300. The batch-size is
set to 128.

Comparison to the State-of-the-arts: We compare the proposed method
with both static (e.g., FPGM [7], DHP [11], HRank [12], AdaPruner
[15]) and dynamic channel pruning methods (e.g., SFP [6], FBS [4] ) on
CIFAR-10. The quantitative results is shown in Table. 1.

It can be observed that, for ResNet-20, after pruning 60.3% FLOPs,
the sparse network achieves 91.17% Top-1 accuracy, which is slightly
lower than DHP (91.17% v.s. 91.54%). But our method reduces more
FLOPs (51.8% v.s. 60.3%), which demonstrates the effectiveness of our
method. For ResNet-56, our method suffers only a slight performance
degradation (93.59% v.s. 93.7%) while pruning 60.8% FLOPs, which
demonstrates that our method can achieve a good trade-off between
model efficiency and performance. We attribute the reason to the adap-
tive adjustment of both parameters and structures of convolution layers.
More importantly, our method requires no fine-tuning to recover perfor-
mance and can prune redundant channels by directly training the net-
work.

Table 1. Comparison of the pruned ResNet with different methods on
CIFAR-10.

Model Method Dynamic Top-1 Acc.(%) FLOPs↓(%)

ResNet-20

Baseline - 91.53 -
FPGM [7] × 90.44 54.0
DHP [11] × 91.54 51.8
SFP [6] X 90.83 42.2
FBS [4] X 90.97 53.1

Ours X 91.17 60.3

ResNet-56

Baseline - 93.7 -
FPGM [7] × 93.49 52.6

HRank [12] × 93.17 50.0
AdaPruner [15] × 93.49 50.0

SFP [6] X 92.26 52.6
FBS [4] X 93.52 53.6

Ours X 93.59 60.8
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In addition, we visualizes channel numbers of pruned ResNet-20. The
comparion of each layer between our method and baseline is shown in
Fig. 4. It can be observed that our method can remove lots of redundant
channels at each layer to reduce the computational complexity.

Fig 4 Comparion of layer-wise channel numbers between baseline and our
method.

Ablation Study: We conduct ablation study to evaluate the effectiveness
of the adaptive-weight convolution module and channel importance pre-
diction module on CIFAR-10. The quantitive results are shown in Table
2. It can be observed that, with adaptive weight convolution module
only, the FLOPs only increses 0.04%, while the Top-1 accuracy can be
improved by 1.67%, which demonstrates the effectiveness of our pro-
posed module in improving the performance. With channel importance
prediction module only, the Top-1 accuracy declines 0.38% with a reduc-
tion of 60.35% FLOPs. Combining these two modules, we can achieve
91.17% Top-1 accuracy with a reduction of 60.32% FLOPs. The results
demonstrate the effectiveness our proposed method.

Table 2. Ablation study on CIFAR-10 for ResNet-20, and pruning
ratio U = 0.6.

Adaptive Conv Dynamic Channel Top-1 Acc(%) FLOPs(%)

× × 91.53 -
X × 93.26 0.04↑
× X 91.01 60.35 ↓
X X 91.17 60.32 ↓

Object Detection: We apply the proposed method to object detec-
tion to analyze the generalization of our method. We use CenterNet
with ResNet-50 as the baseline and evaluate the performance on PAS-
CAL VOC dataset. The PASCAL VOC dataset contains 16551 training
images and 4962 testing images of 20 categories. Mean average pre-
cision (mAP) at IoU threshold 0.5 is utilized as the evaluation metric.
Following the training settings of CenterNet, we employ SGD with the
momentum 0.9 and the weight decay 5 × 10−4 as the optimizer. The ini-
tial learning rate is set to 1.25× 10−4 and multiplied by a factor of 0.1 at
epoch 45 and 60. The batch size is set to 32 and the training is stopped
after 70 epochs.

Table 3. Results on the PASCAL VOC. CenterNet with ResNet-50 is
utilized as baseline.

Method mAP(%) FLOPs↓(%) Δ(<�%)(%)

Baseline 76.46 - -
Ours 75.29 63.70 -1.17

The quantitative results are shown in Table. 3. Compared to the base-
line, after pruning 63.70% FLOPs, the mAP only decreases by 1.17%,
which shows that the proposed method has a good generalization abil-
ity and can also achieve good performance in the downstream tasks of
computer vision.

Conclusion: In this paper, we propose a novel dynamic channel prun-
ing method which learns sample-dependent convolution weight and cus-
tomizes convolution channels for different inputs, and provides more
elaborate decisions for dynamic channel pruning. Specifically, based on
different input features, the filter parameters and widths are customized
for each sample to obtain a high-performance sparse network. Extensive

experiments on different computer vision tasks shows that our method is
competitive with state-of-the-art methods.
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