
P
os
te
d
on

27
O
ct

20
22

—
T
h
e
co
p
y
ri
gh

t
h
ol
d
er

is
th
e
au

th
or
/f
u
n
d
er
.
A
ll
ri
gh

ts
re
se
rv
ed
.
N
o
re
u
se

w
it
h
ou

t
p
er
m
is
si
on

.
—

h
tt
p
s:
//
d
oi
.o
rg
/1
0.
22
54
1/
au

.1
66
68
79
85
.5
17
90
22
1/
v
1
—

T
h
is

a
p
re
p
ri
n
t
an

d
h
a
s
n
o
t
b
ee
n
p
ee
r
re
v
ie
w
ed
.
D
a
ta

m
ay

b
e
p
re
li
m
in
a
ry
.

Specifying Features in Terms of Domain Models: MuDForM

Method Definition and Case Study

Robert Deckers1 and Patricia Lago1

1Vrije Universiteit Amsterdam

October 27, 2022

Abstract

To enable the people involved in a software development process to communicate and reason close to their

area of knowledge, we are investigating a method to formalize and integrate knowledge of multiple domains

into domain models and into specifications in terms of those domain models. For this purpose, we have

previously defined a set of method objectives, and an initial version of the method –called MuDForM. This

paper reports on the methodical support for using a domain model as terminology to define other specifications,

and feature specifications in particular. We performed a case study to validate how well the method helps

in the specification of processes and to realize the case-specific objectives of the customer. The case study

pertains to the formalization of the ISO26262 standard for functional safety in the automotive domain. We

found that our method is suitable to systematically formalize a process that is described in natural language,

such that there is a clear separation of domain-specific concepts, unambiguous process specifications, and

concepts from outside the domain and process of interest. We have extended our method with concepts,

steps, and guidelines for grammatical analysis, for the formalization of constraints, and for the specification of

processes. The case-specific results are the unambiguous specification of a part of the ISO26262 processes.

1



Received: Added at production Revised: Added at production Accepted: Added at production

DOI: xxx/xxxx

METHODOLOGICAL

Specifying Features in Terms of Domain Models: MuDForM Method
Definition and Case Study

Robert Deckers1,2 | Patricia Lago1,3

1Vrije Universiteit Amsterdam, The
Netherlands

2Atom Free IT, Heeswijk-Dinther, The
Netherlands

3Chalmers University of Technology,
Sweden

To enable the people involved in a software development process to communicate and

reason close to their area of knowledge, we are investigating a method to formalize and in-

tegrate knowledge of multiple domains into domain models and into specifications in terms

of those domain models. For this purpose, we have previously defined a set of method ob-

jectives, and an initial version of the method –called MuDForM. This paper reports on

the methodical support for using a domain model as terminology to define other speci-

fications, and feature specifications in particular. We performed a case study to validate

how well the method helps in the specification of processes and to realize the case-specific

objectives of the customer. The case study pertains to the formalization of the ISO26262

standard for functional safety in the automotive domain. We found that our method is

suitable to systematically formalize a process that is described in natural language, such

that there is a clear separation of domain-specific concepts, unambiguous process specifi-

cations, and concepts from outside the domain and process of interest. We have extended

our method with concepts, steps, and guidelines for grammatical analysis, for the formal-

ization of constraints, and for the specification of processes. The case-specific results are

the unambiguous specification of a part of the ISO26262 processes.

KEYWORDS:

Method engineering, Language engineering, Domain modeling, Feature modeling, Process

modeling, Model based engineering, ISO26262

1 INTRODUCTION

Since the 1980s, several methods for domain modeling have been proposed 1,2,3. Domain models can be used in the development of a system
in various ways, e.g., as a basis to derive a software design 4, or as the terminology for other specifications, like a requirements specification 5 or
functional specification 3.

This work introduces an integral domain-oriented modeling method, called Multi-Domain Formalization Method (MuDForM), which provides
support for the creation of domain models, and for the creation of models that are defined in terms of a domain model, called domain-based models
(see Figure 1). MuDForM provides analysis and modeling concepts, analysis and modeling steps, and guidelines to guide the modeling process,
which starts with a knowledge source, like a (domain) text or (domain) expert. Deckers and Lago 6 observed that the existing literature on domain
modeling approaches does not offer methodical support for using a domain model as the terminology for defining other types of specifications.
This paper explains the part of MuDForM for domain-based feature modeling, and its application in a case study.

The rest of this section describes the problem, our contribution, and target audience. Section 2 explains in more detail what we try to achieve
with our research, and how this paper fits. Section 2 also clarifies what wemean with the terms domain and feature. Section 3 explains the research



2 DECKERS and LAGO

Domain model

Knowledge source

Domain-based
model

MuDForM Feature
model

(Domain) text

(Domain) expert

Domain-oriented
model

based on
defined in
terms of

Figure 1 Context of a domain-based model (UML class diagram)

methodology. Section 4 describes the foundation of MuDForM, which is required to understand the support for specifying features in terms of
a doman model, defined in Section 5. Section 6 reports on a case study in which MuDForM is applied to formalize process specifications of the
ISO26262 standard 7. Section 7 reflects on MuDForM’s feature modeling support via the results from the case study. Section 8 discusses the
threats to validity of this work. Section 9 discusses related work, and Section 10 concludes the paper and presents suggestions for future work.

1.1 Problem Statement

Deckers and Lago report in a systematic literature review (SLR) 6 that methods for domain-oriented specifications are mostly limited to creating
a domain specification (DS), like a domain-specific language (DSL) or domain model (DM). These methods do not incorporate steps and guidance
for applying a created DS. There are many publications about the usage of a specific DS as well, e.g., the security domain model from Firesmith 5,
and the many examples from van Deursen et al. 8. However, they only offer support for the DS at hand, in the form of an underlying model and a
notation. But they do mostly not provide detailed steps and guidelines. The KISS method for Object Orientation 3 appears to be the only approach
that has an explicit modeling phase and concepts for applying a domain model in functional specifications. But the KISS method does not provide a
metamodel, and fine-grained method steps and guidelines.WithMuDForM, we aim to fill this gap by offering methodical support, including steps
and guidelines, for the creation of DMs, as well as for the creation of models in terms of DMs, called domain-based models. Section 2.1 explains
in more details our motivation for the work presented in this paper.

Although we do not know of literature that explicitly states the need for methodical support for applying a DS in making other specifications, we
found several papers related to this topic. There is literature about evaluating the usability of created DSLs, e.g., Barivšić et al. 9,10,11. They state that
the evaluation of DSLs does not happen often. Furthermore, Gabriel et al. 12 state that the community in software language engineering does not
systematically report on the experimental validation of the languages it builds. So, it is not recorded if a created DSL is usable in practice. Gray et
al. 13 write that “poor documentation and training [of a DSL]” is one of the 10 reasons why DSLs are not used more frequently in industry. Völter 14
states that it is important to communicate to users how a specific DSL works, and that documentation should be example-driven or task-based.
Völter also observes, that in non-scientific domains, domain experts, although they are the targeted modelers, are often not the ones that make
models with the DSL. Instead, the domain expert pairs up with the DSL developer to apply the DSL, or the DSL developer does all the specification
based on discussions with the domain expert. We see this as a symptom of that it is not straightforward for a domain expert to make models with
a DSL that is created by someone else.

We have observed the same phenomenon regarding DS developers and domain experts in many industry projects. A DS is defined, but only the
DS developers know its exact semantics and know how to use it as a language for other specifications. The targeted users lack this knowledge,
and hence, will not apply the DS correctly, i.e., they do not know what steps to take, how to make good modeling decisions, and what information
to retrieve from domain experts or from the input text, or how to organize the specification process. Even if support in the form of examples is
present, then these examples might not exploit all the features of the DS, and the DS developers might not be available for guidance, or the DS
users assign different semantics to the DS. The lack of methodical support, and clear steps and guidelines in particular leads to an unpredictable and
difficult to organize specification process, which results in specifications of which the quality is only controllable by validation, and not by design.



DECKERS and LAGO 3

The result is that the DS is not used optimally, which often leads to the (incorrect) conclusion, that domain modeling is not worth the investment.
We think this lack of methodical guidance is one of the most important shortcomings in the literature on domain-oriented methods, which is
subscribed by Gray et al. 13 and Barivšić et al. 11.

The SLR 6 also concluded that none of the found methods on domain-oriented modeling has a complete method definition (i.e., covering under-
lying model, notation, steps, and guidance). Some approaches provide a metamodel and a notation, and others provide high level steps, sometimes
guidance, and sometimes the use of an existing language like UML. The lack of an underlying model makes it hard to have an unambiguous well-
defined interpretation of models, and difficult to separate the semantics from the syntax. If there is a language defined, but no steps and guidance,
then modelers must be very experienced in the language. Otherwise, the specification process becomes unpredictable.

To clarify how a domain-independent method could support the creation of a specification in terms of a created DS, we describe three example
guidelines that address this. First, if the domain elements that describe the behavior in a domain are used to specify function steps, i.e., they are
the types of function steps, then it is possible to detect overlap between functions regarding sequences of steps that occur in multiple processes.
In such case, a method guideline can be given to identify sub functions in a set of function models, e.g., “Define a separate function for function
steps sequences that occur more than once”. This guideline helps to reduce redundancy, leading to a more manageable set of function models.
Second, if constraints are specified in terms of a DS, then method guidelines can be given to detect overlap between constraints, e.g., “Check
the consistency between constraints that involve the same domain class”. Such a guideline helps to avoid contradictions between domain-based
constraints. Third, if domain classes are used to specify the object structures in a system, then guidelines can be given for how to do this top-
down, e.g., “Start specifying functions for domain classes that are not a part of a composition or aggregation”. Such guideline helps to bootstrap
the modeling activity of the domain-based function specifications. All three example guidelines help in organizing the modeling process, as they
are possible work items for the modeler.

MuDForM is a domain-oriented method that supports the formalization of a piece of (prescriptive) text into unambiguous models. It supports
both domain modeling and domain-based modeling. The domain-modeling part is about describing what can happen and what can exist, and the
domain-based part is about prescribing what shall happen and what shall exist. This paper focuses on the support for the latter part, domain-based
modeling, and how it is integrated in MuDForM.

1.2 Contribution and Audience

This paper has two main contributions. First, it presents methodical support for using domain models as a coherent vocabulary to make spec-
ifications, such that that support is an intrinsic part of our domain-oriented modeling method that also covers the creation of domain models.
Practitioners may use the support as guidance for applying a domain model in their work. The benefits of the support are the predictability and the
manageability of the specification process, because the method steps (see Figure 5 and 6) form the basis for planing the specification activities.
Furthermore, the provided guidelines (see Appendix A) help in achieving a complete and consistent domain-based specification. The latest version
of the complete MuDForM definition is available via the MuDForM Github repository 15.

Method developers may use the description of the support as an example of how to extend a domain modeling method with a part for us-
ing a domain model to create other specifications. This facilitates bridging the gap between the literature that considers a domain model as a
decomposition of a product line, like in FODA 16, and the literature that considers a domain model as a structured vocabulary to define other spec-
ifications, like the security domain model from Firesmith 5 and the many examples from van Deursen et al. 8. As such, this contribution might also
help researchers and method developers to understand the mentioned literature gap. It must be clear that the methodical support in this paper is
an integral part of MuDForM, and hence, is most suited when the domain specification that is used to create the domain-based specification, is
also created with MuDForM. For instance, the three examples given in Section 1.1 only make sense if a domain class concept is used in domain
specifications, and if functions and constraints are concepts used in domain-based specifications.

As a second contribution, the paper presents the validation of the methodical support in an industrial case study, which covers both the creation
of a domain model (published by Khabbaz Saberi 17), and the creation of a (domain-based) feature model (the latter being the focus of this paper).
Researchers may use the case study to understand the methodical support. Practitioners may use it as an example of how to create feature
specifications in terms of a domain model, or, as in the case study in Section 6, process models .

Overall, this paper gives guidance to people developing (domain-oriented) specification- and modeling methods. It shows how to define and
present a method, in particular the modeling process and the guidance for modeling decisions. It supports practitioners applying domain models
and DSLs in order to formalize prescriptive behavior specifications, like process specifications, and scenarios of use cases or user stories.



4 DECKERS and LAGO

2 BACKGROUND: MuDForM VISION AND TERMINOLOGY

To understand the reason behind the work that is reported here, we explain what we aim to achieve with MuDForM (Section 2.1), and what we
mean with the concepts domain (Section 2.2) and feature (Section 2.3)

We envision software development as a process in which the involved people make decisions in their own area of knowledge, i.e., domain, and
those decisions must be integrated, and finally result in a machine-readable specification. That is why our research focuses on an integral method
for creating DMs, for using DMs as a language to create other (domain-based) specifications, and for integrating multiple DMs and domain-based
specifications. The ultimate goal is that a system is completely defined in domain-oriented specifications, and if other kinds of specifications are
used, that they are also explicitly integrated.

2.1 MuDForM objectives

Based on our vision and experience with domain modeling, architecture, andmodel driven development, we have defined a set of objectives for the
development of MuDForM. We introduce them shortly to justify some characteristics of the method definition in Sections 4 and 5. The objectives
are:

O1 In any system development process, there are people that have concerns about different aspects and that take decisions about different
aspects. A specification method should support the distinction of multiple domains, and their specification in DMs or DSLs, to deal with
the multitude of aspects in a development process. Moreover, a specification method should offer multiple mechanisms, e.g., composition,
consistency rules, transformation, or weaving, to integrate DSs, and domain-based specifications.

O2 There is no limitation to what kind of aspects can be relevant in system development. A specification method should therefore be indepen-
dent from any domain or system, and a method user (modeler) should not need any prior knowledge about the domain or system that is
being specified. In practice, domain modeling is mostly used for the application domains of targeted systems, or for design aspects of soft-
ware. We think domain modeling should also be applicable to quality domains, such as reliability, security, usability, or functional safety, like
in the case study of Section 6.

O3 The knowledge of people about particular aspects can be seen independently from any specific (software) system, and is potentially usable
in multiple systems. A specification method should reflect this and support self-contained specifications that are independent from their
application in a specific system specification. To use specifications in different contexts, i.e., to build other specifications, they should be
composable, interpretable, and translatable.

O4 In our notion of domain, a DM captures what can happen andwhat can exist in a domain, and a system specification or a feature specification
are about what shall happen and what shall exist in a system and its context. A specification method should support the separation of what
can happen from what shall happen, i.e., distinguish descriptive domain specifications from prescriptive domain-based specifications. The
latter is the main topic of this paper.

O5 Most domains and systems are not only about entities with a state, but also about change. A method should therefor support both the the
specification of state of a domain at a certain moment and the specification of change of state over time. In other words, specifications
should address things that exist, things that happen, and how these things are related. This perspective is similar to the notion of structural
(static) properties and behavioral (dynamic) properties in UML 18.

O6 Almost all people, including domain experts, use natural language to convey their knowledge and decisions. It is used in many documents
that are relevant in a system development process. A specificationmethod should support the transformation of knowledge stated in natural
language into specifications in an unambiguous specification language. Preferably, such specifications should themselves be translatable
into natural language. The purpose of this support is to minimize loss of semantics and better mutual understanding in the communication
between modelers and domain experts. The MuDForM vision is to have method concepts that are close to human cognition. Natural
language is a starting point for the method concepts, because it has evolved over thousands of years to support communication between
people.

O7 A specification method should be engineered, which means it should support specification consistency and completeness, elicitation of
knowledge, and traceability of modeling decision, and have a comprehensive definition. According to Kronlöf 19 a method definition should
provide:

– An underlying model, e.g.,metamodel, core model, or abstract syntax, which forms the foundation for the semantics of a specification.



DECKERS and LAGO 5

– An explicit notation, possibly used in different viewpoints. All the viewpoints of themethod should be defined in terms of the concepts
of the underlying model.

– Explicit method steps that guide the modeler through the viewpoints.
– Guidance for taking steps and making specification decisions.

O8 The purpose of a specification is mostly to (partially) realize (part of) a system. Hence, the transition from a set of created (domain-oriented)
specifications into a working system should be feasible. In other words, there should be a clear relation between specification method and
architecture.

We will refer to these objectives in the explanation of MuDForM in Sections 4 and 5 when applicable. Though, not all objectives are addressed,
because this paper only covers a part of MuDForM, i.e., the making of prescriptive domain-based models (as stated in objective O4).

2.2 Domain

In the literature, we found two different notions of domain model. The notion that we use is that of a specification space, analogous to a domain
in the mathematical sense. The term “domain” refers to an area of knowledge or activity and a DM describes what can happen (behavior) and
what can exist (state and structure) in a domain, or in other words, what can be controlled and managed in a domain. A DM is the foundation for a
shared lexicon in communication between stakeholders, and can serve directly as a structured vocabulary for making other specifications, or form
the underlying model of a DSL. For example, a model of the banking domain expressed in a UML class diagram, can be used directly in other UML
diagrams, or can serve as the abstract syntax of a DSL. A DM is not intended to express what should happen, does happen, is likely to happen,
or has always happened in the domain, because we assign those aspects to different types of specifications, like a system, application, or feature
specification. The knowledge captured in a DM is not limited to a specific way of working in the domain nor to a specific system that operates in
the domain. In general, approaches for DSLs like 20,21,22, comply with this notion of DM.

The other notion in the literature is that a domain is a collection of related systems, often forming a product line or family. Accordingly, a DM
defines a set of (system) features that are common in the domain of interest. This notion is used for example by FODA 16. According to this notion,
a DM can only be made with a set of systems or features in mind, because its scope is a whole product line. In the notion that we adhere to, one can
talk about the concepts in a domain independently from any feature or product. ODM 2,23 follows this definition too, but distinguishes between
descriptive and prescriptive aspects of a domain. We go a step further, and state that the descriptive aspect is covered by the domain concept, and
the prescriptive aspect is covered by the feature concept.

2.3 Feature

Lee et al. 24 identified in 2002 different meanings in literature of the term feature. ODM 23 defines it as a distinguishable characteristic of a “con-
cept” (e.g., artifact, area of knowledge, etc.) that is relevant to some stakeholders (e.g., analysts, designers, and developers). MuDForM follows this
definition, and covers the internal specification of features. Accordingly, a MuDForM feature model specifies the desired characteristic, i.e., de-
scribes what must happen (behavior) and what must exist (state). A MuDForM feature model is defined in terms of domain models. Namely, the
concepts captured in a domain model can be used as types of elements in a feature model. For example, a specific feature model describes how
the traffic lights at a crossing must be positioned above driving lanes, and how they must behave, which could be used as a requirements specifi-
cation of a traffic light control system. In this case, the domain model describes that you can turn the lamps in a traffic light on and off, that you
can hang lights above driving lanes, and that a crossing can have several driving lanes. As such, the domain model serves as a specification space
for the feature model.

As a result, our notion of featuremodel differs from the definition in some other literature 2,16, where a featuremodel shows the relation between
several features of a product line. Often features correspond with high-level functions of a system, and as such a feature model can be seen as
a functional decomposition of the product line. In MuDForM, we use the feature structure viewpoint as explained in Section 5.2.1 to show the
decomposition of a feature in sub functions, or sub features. Just as a MuDForM domain model is described in multiple views, a MuDForM feature
model is also described in multiple views. The feature structure viewpoint is similar to what some other methods call a feature model.

3 RESEARCH METHODOLOGY

This section describes the research methodology we have applied to gather the results presented in this paper. Given the problem statement and
the above definitions of domain and feature, we aim to address the following research questions:



6 DECKERS and LAGO

(RQ1) How should methodical support for making feature specifications be integrated in a method that also supports the creation of domain
models? The answer is provided in Section 4, in terms of how the modeling concepts and method steps fit with MuDForM’s other modeling
concepts and method steps.

(RQ2)What methodical support can be given for the specification of a feature, such that it is defined in terms of domain models? The answer is
provided in Section 5, in terms of modeling concepts, method steps, and guidelines for the steps.

The development of MuDForM started as a project in which experience from industry practice is captured and made tangible in a method vision
and definition, followed by a phase in which the method is applied to cases and adjusted based on case findings. The approach can be categorized
as action research according to the description by Petersen et al. 25, which we use as the basis for explaining our study, resulting in the phases
of Diagnosis, Action planning, Action taking, Evaluation, and Specifying Learning. The following explains it to the extent that is relevant for the
MuDForM part presented in this paper.

Diagnosis.

Based on our experience with modeling, architecture, and model driven development, we have defined a vision on software development, which
is shortly mentioned in the introduction of Section 2. The vision is further refined in the form of the method objectives, defined in Section 2.1.
Whenwe started to work onMuDForM, we already knew of specification approaches from several books on domain modeling and domain-specific
languages 4,3,22,26,27,21. We observed that those books did clearly not address all the MuDForM objectives. So, we performed a systematic literature
review 6, which had the same objectives as starting point. We identified some clear gaps in the existing literature, which should be bridged to
achieve the objectives. Especially, the use of natural language processing, dealing with multiple domain models, and the use of DMs and DSLs to
make other specifications are topics that are hardly addressed in existing literature. The latter corresponds with objective O4 and is the main topic
of this paper.

Action planning.

As concluded in the mentioned SLR, the only method that comes close to serving the MuDForM objectives is the KISS method for Object-
orientation 3. That’s why we used it as the starting point for the definition of MuDForM. For the definition of the metamodel and method flow, we
have chosen UML. We also considered other metamodels like Ecore 28, MOF 29, and GOPPR 30. Though, the advantage that these are more strictly
and precisely defined than UML, did not outweigh the familiarity of UML and the availability of good tooling. Moreover, we only use a small subset
of UML’s modeling concepts in the MuDForM metamodel and method flow. For the sake of readability, we have chosen to use natural language
for the specification of the guidelines. Though, we have expressed the guidelines in terms of the MuDForM metamodel as much as possible.

The first step is to consolidate our experience in an initial method definition. After that, we foresee three tracks: 1) incorporating method
ingredients from other methods, especially the ones found in the SLR, 2) let peers review the method definition, to comment on the metamodel
and suggest method steps and guidelines, and 3) apply the method in practice via case studies to improve the metamodel and method steps, and
identify new guidelines.

Action taking.

We started to define the initial versions of metamodel, method flow, and guidelines. The metamodel and method flow are the result of our 25 years
of experience in creating, using, and managing domain models, mainly with UML 18. We have created and used domain models in the context of
domain analysis, requirements engineering, functional design, software architecture, process modeling, and test specification, in various business
domains. We have started to record and generalize our experiences, and work them out in detail since we started the MuDForM research program
in 2015. We actively manage the metamodel1 and the method flow in an UML model with the tool Enterprise Architect 31.

Meanwhile, we looked for possibilities in industry to apply MuDForM. We contacted industry partners and explained the MuDForM vision, the
MuDForMmodeling process, and what a case study could do for them.We defined the case-specific objectives together with the industry partner,
and agreed on the timeline, and availability of people and documentation. We explicitly chose not prescribe a notation for MuDForM, because we
would try to stay close to notations that are familiar to the industry partner.

1How the metamodel is constructed is a research in itself. For the sake of space and clarity, the creation of the metamodel is outside the scope of thispaper.



DECKERS and LAGO 7

Evaluation.

The method definition is reviewed by peers, and some of the peers have identified metamodel issues and new guidelines, based on their own
experiences. They have also helped to increase the understandability of the guidelines.

We applied MuDForM as defined in Section 5, which led to the results described in Section 6. During the process we followed the method steps
and recorded examples of major analysis and modeling decisions. For each decision, we logged which guidelines are involved, or identified a new
guideline. We did not record all decisions for the sake of manageability and project speed. Namely, the industrial partner had constraints regarding
the duration and involvement of personnel. Logging all decisions would have decreased the process pace too much. During the case study, we also
refined the method steps and their descriptions, and came up with new viewpoints and guidelines. Moreover, the recorded analysis and modeling
decisions were regularly discussed and (re)specified.

After the modeling process, the recorded model was presented and explained to the employees of the industrial partner. We were not actively
involved in the usage of the model at the industrial partner’s site. However, we received feedback on the usage of the model, which is discussed in
Section 7.5 and verified by the industrial partner. We reflected on the case study from the perspective of the research questions and related work
on feature modeling, which is addressed in Sections 7.1 through 7.4.

Specifying Learning.

We have received suggestions for guidelines from peers and, after acknowledging their validity and usefulness, fit them into the method flow and
other guidelines.

After completing the case study, we first consolidated the method changes, i.e.,made adjustments to the metamodel, method steps, and guide-
lines. During the writing of this paper, we also refined the definitions of method steps and guidelines, which we manage in a UML model as
mentioned in the description of the Action taking phase above.

4 MUDFORM FOUNDATION

This section describes the foundation of MuDForM, which forms the framework for the feature modeling part described in Section 5. To enable the
people involved in a system development process to communicate and reason close to their area of knowledge, we are investigating a method to
formalize and integrate knowledge of multiple domains into domain models and into specifications in terms of those domain models. This method
is called MuDForM (Multi-Domain Formalization Method).

MuDForM is based on the KISS method for Object Orientation 3. The major extensions that this paper covers are the guidance for grammatical
analysis for features, the guidance for identification and specification of elements in feature models, the method steps for feature modeling, and
extra viewpoints for feature models.

MuDForM is defined according to the guidelines of Kronlöf as explained under objective O7 in Section 2.1. This has resulted in a method
definition with the following ingredients: (i) a metamodel containing classes, attributes, associations, specializations, and constraints, which define
the modeling concepts and their relations, and (ii) a method flow containing steps, guidelines, and viewpoints, which guide the modeling process.
Furthermore, the case study (Section 6) uses UML 18 syntax and semantics to the extent that it fits with the MuDForM metamodel, in order to
benefit from its familiar notation and available tool support. An explanation of the diagrams’ syntax is given in cases that deviate from standard
UML notation.

Section 4.1 explains the overall MuDForMmodeling process. Section 4.2 explains how features models relate to other parts of aMuDForM com-
pliant model. Section 4.3 concludes the MuDForM foundation with an introduction to the different types of specification elements that MuDForM
offers for the specification of features.

4.1 MuDForM Modeling Process

Figure 2a shows the high-level steps of the MuDForM modeling process2. Feature modeling is present in all four steps, and is explained in detail
in Section 5. The steps to create a MuDForM model are:

1. Scoping: the scope of the targeted model is specified by defining the purpose, the boundaries, and the input text that is selected from
the knowledge source. The knowledge source is often an existing document, or a document that is created from interviews with (domain)

2For readability, the begin- and end-nodes are omitted from the activity diagrams that depict the method flow in Sections 4 and 5. The begin step is thestep without incoming control flow. The end step has no outgoing control flow.



8 DECKERS and LAGO

experts. For each piece of text, a domain expert is appointed to provide missing information and assist with inconsistencies. The goal of
scoping is to have relevant input for the modeling process, in order to (i) prevent unnecessary modeling work, (ii) detect other relevant input,
and (iii) keep the model and the modeling process manageable.

2. Grammatical analysis: the input text is analyzed and transformed into a set of phrases with terms that are candidate elements for the model.
The goal of this step is to maximize the knowledge elicitation from the source, and to make the resulting model traceable to the input, which
supports objective O7. This method step itself supports the realization of objective O6.

3. Text-to-model transformation: the specification spaces, which form the top-level structure of a model (see Section 4.2), are identified, and
the phrases are transformed into pieces of model, which each are allocated to one of the identified specification spaces. This transformation
is the transition from working with text to working with models.

4. Model engineering: the model is completed and inconsistencies are solved by following the method steps and guidelines, and iterating
over the different views. Domain experts are involved to answer questions and decide about missing concepts and model conflicts. The
goal is to acquire an unambiguous specification that meets the MuDForM objectives. Model engineering consists of a step to manage the
dependencies between the specification spaces, and three steps for engineering the different types of specification spaces, i.e., contexts,
domains, and features (see Figure 2b). Section 5.2 explains the feature engineering part of model engineering.

Scoping

Grammatical analysis

Text-to-model
transformation

Model engineering

(a)MuDForM outline

Model engineering

Engineer context

Engineer domain

Engineer feature

Manage specification
space dependencies

(b)Model engineering
Figure 2 Generic steps of MuDForM modeling process (UML activity diagram)

Though conceptually the method outline is depicted as a sequence of steps, in practice they are carried out in iterations. For instance, often the
grammatical analysis starts with a subset of the targeted input text, and then incrementally more text is analysed. Moreover, when a modeling
decision requires more information, it is possible to go back to a previous step to check if the required information was already present, yet
overlooked.

4.2 MuDForM model structure

The top-level structure of a MuDForM model consists of a composition structure of specification spaces as depicted by the MuDForM metamodel
fragment in Figure 3. A specification space contains specification elements, which can be a specification space of the same type. Each type of space
has its own types of elements. MuDForM uses specification spaces (similar to UML packages) as containers for the specification elements that
make up domains, features, or contexts. The separation of models in separate specification spaces supports objective O1. A specification space
may depend on other specification spaces with the following constraints:



DECKERS and LAGO 9

• Features may depend on features, domains, and contexts.
• Domains may depend on domains, and contexts.
• Context are always independent; they form the relation of a MuDForM model with the world outside the model. As such they enable the

definition of self-contained domain models and feature models, i.e, support objective O3

Specification
space

Domain model Feature model Context Model

Specification
element

+child

depends on

+parent

Figure 3 Specification spaces (UML class diagram)

In our notion of domain, a domain model describes what can happen and what can exist in a domain. A feature model prescribes what shall
happen and what shall exist. Context models are used to capture assumptions and knowledge about elements that are needed to specify domains
and features, but that exist outside those domains and features. A context model explicitly declares those elements and the properties that are
needed to understand them. By defining the dependencies between specification spaces, specifications have no implicit semantics. So, when one
wants to use a specification space, it is clear what other elements have to be incorporated, which supports the realization of objective O4.

MuDForM uses feature as the root concept for prescriptive models, and domain as the root concept for descriptive models. Context models
have no root element, because their content is derived from what is needed for the other specification spaces. Domain models, feature models,
context models, and the relations between them, make up a MuDForM model.

For example, for a toll-road payment system, the domain model describes: vehicles can arrive and leave at a toll booth, someone can open and
close the gate, and someone can pay a fee for a passing vehicle. The feature model prescribes: when a vehicle arrives at a toll booth, someone pays
for that vehicle, someone opens the gate, and the vehicle leaves the toll booth. This assures that there will be no open payments, at the expense of
blocking gates when someone cannot pay. The domain model is relatively stable because it describes all the possibilities. Feature models change
over time because desired behavior changes over time and system environments evolve. For example, one could prescribe that someone pays after
the vehicle leaves the toll booth, in favor of traffic flow, but with the risk of unpaid fees. In this case, the domain model stays the same, but the
feature model is adapted. The context model defines the external aspects of the concepts like the payment service, fee, and license plate, to the
extent needed to specify the elements of the feature and domain model.

4.3 MuDForM Specification Elements

MuDForM offers different types of specification elements. The type of specification space, i.e., domain, feature, or context, determines which
types of specification elements are allowed, and what is their semantics. The three different specification spaces all have concepts to specify
state, concepts to specify change, and concepts to specify the relation between state and change, which supports the realization of objective O5.
Besides the concepts that are specific for a type of specification space, almost all specification elements can have attributes and specializations,
and constraints attached to them.

Domain models describe what can happen and what can exist in a domain. Domain models contain the following types of concepts:
• Domain activities define what can happen in a domain. They are elements for the creation of composite behavioral specifications, e.g.,

processes, scenarios, and system functions. Instances of domain activities are actions, which represent atomic (state) changes in the domain.
• Domain classes define what objects can exist in the domain. They are elements for the creation of compositions and serves as the types of

function attributes. Instances of domain classes are objects with a state.



10 DECKERS and LAGO

• Interactions define which objects can participate in which actions. Objects change state when participating in an action. All domain classes
have an object lifecycle that expresses the order in which its objects may participate in specific actions.

Feature models define what instances shall exist and what changes shall take place in the domains the feature operates on. Feature models can
contain the following concepts (see Figure 4):

• Functions are behavior elements. They specify what must happen when the function is active. A feature is also a function, i.e., the top-level
function of a feature model.

• A function can use other behavioral elements, which can be other functions, domain activities, and operations. The usage of a behavioral
element in a function structure is called a function sub-behavior. Some sub-behaviors are a function event, i.e., it is generated by the function
or the function can react to it. Typically, one tree view is created with all the sub-behaviors of all functions of the feature. It has the feature
as the root and is called the feature structure (see Section 5.2.1).

• Function lifecycles describe the control flow of the function’s behavior in a process algebra style 32, i.e., in terms of sequence, selection,
concurrency, and iterations of function steps. Function steps are typed by a function sub-behavior. For each function step is specified which
function attributes are participating in it.

• Functions can have attributes, which have a (context or domain) class as a type. Typically, one view is created with all the function attributes
and all the function events, which is called the function signature because it depicts how the function is seen from outside.

Function sub-
behavior

Function lifecycle

Function step

Domain activityOperation

Behavior elementFunction

Function attribute

Class

Domain class

Function event

Feature

+type+type
participating in

1

+type

Figure 4 Feature modeling concepts (thick edge) related to other modeling concepts (thin edge) (UML class diagram)

Context models contain specification elements that do not belong to the scopes of the targeted domains and features, but that are needed
to specify the elements in those domains and features. The correctness of a context model is often not the responsibility of the experts that are
responsible for the domains and features. There are typically two kinds of context elements:

• Physical quantities like length, time, power, speed, and their operators and relations.
• Concepts whose definition is not determined by the owners the domains and features of interest. Think of classes like Name, Address, Phone

number, and an operation to determine the postal code of an address. These concepts might be needed to specify elements in domains
and features, but their life (state changes) is not interesting. For example, a person may have an address, and a person can move to another
address. But how the address of a location can change over time is typically not interesting. So, Person, Person address, and to Move are
elements in the domain model. But Address is defined in a context model, meaning that an address is considered to be immutable and has
its definition outside the domain.

Context models have the following types of modeling concepts: classes, and operations. Classes are types that define possible values (without a
changing state). Operations are types that define possible manipulations of values or comparisons between values. By explicitly defining needed
concepts in a context model, the specifications of domains and features have no implicit semantics, which supports the realization of objective O3.

This section has presented an overview of the definition of MuDForM, the main structure of a MuDForM model, and what the main method
ingredients are. It forms the context for the definition of the method part for feature modeling, which is explained in the next section. The modeling
concepts, the method flow of this section and of Section 5, together with the guidelines of Appendix A, support the realization of objective O7.



DECKERS and LAGO 11

5 FEATURE MODELING

This section presents the parts of MuDForM that pertain to feature modeling. Following the outline from Section 4.1, Section 5.1 explains the
method steps scoping, grammatical analysis, and the transformation from text to the initial model. Section 5.2 explains the method steps of feature
engineering, which is part of themodel engineering step depicted in Figure 2b. Each feature engineering step correspondswith a specific viewpoint.

As explained in Section 2.1, guidelines are defined to help making analysis decisions and modeling decisions during the steps. Appendix A
presents the guidelines that are relevant for making feature models. Each guideline has a name, a description, and the reference to the method
steps in which it is applicable. The guidelines are ordered by the method steps.

Figure 5 details the method steps for each of the major steps presented in Figure 2a. For the sake of clarity, we annotated the steps in the
figure with notes containing references to the section in this paper. The numbers after MD indicate the section in which the step is explained. (The
numbers after CS indicate the corresponding sections of the case study.)

5.1 From Modeling Initiation to Initial Model

This section explains the method steps from the initiation of a modeling process, which starts with scoping, followed by the grammatical analysis,
and then the transformation from text to model. These steps are generic for all models, and not specific to feature modeling. That is why they are
only explained shortly and to the extent that is relevant for feature modeling.

5.1.1 Scoping

The steps of scoping are:
1. Define purpose: specify who the user/customer of the resulting specification is, and what they want to do with it.
2. Demarcate area: Name concepts that are in scope, and concepts that are out of scope.
3. Select input text: explicitly state which pieces of text (from a document) are the starting point for the specification process. A text can be

the result of an interview with a (domain) expert. Typically, an expert is involved for each selected piece of text, to answer questions that
arise during analysis and modeling.

5.1.2 Grammatical analysis

The steps of grammatical analysis are:
1. Extract phrases from the selected input text and format them according to one of the phrase types: interaction structure phrase, static

structure phrase, state structure phrase, and conditional phrase. (The explanation of these terms is out of scope for this paper. Table 1 in
Section 6.3.2 shows some examples.) Typically, each sentence from the input text leads to one or more extracted phrases. The extracted
phrases form a decomposition of the original sentence, and are processed in the next method steps, in which they can change in terminology
or structure due tomodeling decisions. Based on those decision, it is possible to rewrite the original sentence at any time during themodeling
process, in order to check if the model still expresses the initially intended meaning. When no explicit input text is used, then sentences
can be elicited directly from domain experts. In that case, the stated sentences are logged for traceability.

2. Determine the relevance of each extracted phrase from the perspective of the defined scope. Ignore phrases that do not fit the scope
definition, or that are duplicates.

3. All the phrases are checked for homonyms and synonyms. These are then eliminated in consultation with the domain experts to assure
that all terms (words) have exactly one meaning, and that all relevant meanings are covered by exactly one term.

4. This results in a list of final phrases which is used as input for the model. Form the list of phrases for the initial model via these criteria:
• All extracted phrases that are marked as relevant and not discarded.
• All newly added and rewritten phrases.
• Replacement of the possible homonyms and synonyms with the chosen term.

TheKISSmethod forObjectOrientation 3, which is the starting point for the grammatical analysis inMuDForM, provides amore detailed description
of this phase in the modeling process.



12 DECKERS and LAGO

Scoping Grammatical analysis Text-to-model transformation

Demarcate area

Define purpose

Select input text

Extract phrases

Determine relevance

Eliminate homonyms
and synonyms

List the final phrases Create initial
specification spaces

view

Declare and allocate
model elements

Classify candidates

Identify specification
spaces

Identify candidates

Create initial models

MD: Section 5.1.1 
CS: Section 6.3.1

MD: Section 5.1.2
CS: Section 6.3.2

MD: Section 5.1.3
CS: Section 6.3.3

MD: Section 5.2
CS: Section 6.4, 6.5 & 6.6

Model engineering

Engineer context

Engineer domain

Engineer feature

Manage specification
space dependencies

Figure 5MuDForM method flow (UML activity diagram, MD: method definition, CS: case study)

5.1.3 Text-to-model transformation

The transformation from text to an initial model consists of the following steps:
1. Identify candidates: Determine the terms in the phrases, i.e., nouns, verbs, adjectives, and adverbs, that are a potential specification element

for the model engineering step.
2. Classify candidates: Select which type of element each identified noun (phrase), adjective, verb (phrase), and adverb is. The possible types

are: domain class, domain activity, context class, function, attribute, domain, feature, context, operation, condition, function event, function
step, activity operation, class relation, or specialization.



DECKERS and LAGO 13

3. Identify specification spaces: Identify contexts, domains, and features. Choose spaces for specification elements that are coherent. Each
specification space should have an owner who is responsible for its content.

4. Create initial specification spaces view: create a view (e.g., a diagram) with all the specification spaces. Create relations (dependencies or
compositions) between spaces if they are expected, or already known, according to the rules specified in Section 4.2.

5. Declare and allocate elements: place each specification element in the most logical specification space. An element can be reallocated
during model engineering.

6. Create initial models: create a first version of the models in the specification spaces from the list of final phrases. For a feature model, this
means creating the initial feature structure and initial function signatures. (The other specification spaces are not the topic of this paper.) In
the case that there is no input text, and hence no grammatical analysis, this is the starting point of the modeling process.

5.2 Engineer Feature

During model engineering, the initial models are iteratively transformed into engineered domain models, context models, and feature models, as
depicted in Figure 2b. The twomain modeling principles are 1) keeping the views consistent, and 2) acquire information from experts or documents
to achieve a complete specification. This section zooms in on the step Engineer feature. A feature is engineered by working in parallel on the
feature structure, function lifecycles, and function signatures, as depicted in Figure 6. The rest of this section explains those steps.

Engineer feature

MD: Section 5.2.4
CS: Section 6.5

MD: Section 5.2.1
CS: Section 6.6

MD: Section 5.2.2 & 5.2.3 
CS: Section 6.4

Specify function
signatures

Specify function lifecycle

Specify feature
structure

Specify function
step

Figure 6 The steps of Engineer feature (UML activity diagram, MD: method definition, CS: case study)

5.2.1 Specify feature structure

During this step, the behavioral composition of the feature is managed. This means specifying the decomposition of the feature into functions,
and possibly of each function into sub functions. Additionally, the use of behavioral elements (operations, activities, functions) from outside the
feature is specified. The feature is the root of the resulting tree structure.

5.2.2 Specify function lifecycle

During this step, the control flow of each function is specified. This means describing the order in which the function steps must be executed. The
function steps refer to sub-behaviors of the function (see Figure 4). All the sub-behaviors of the functions must occur at least once as a function
step. The sub-behaviors are references to domain activities, operations, or functions, which must be declared in one of specification spaces that
the containing feature depends on. MuDForM distinguishes different types of ordering: sequences, selections, concurrency, or iterations. There are
typically two ways to reason about the lifecycle. The first way is to start with the main input attributes of the function and decide which activities
should be performed on them going forwards in time. The second way is to start with the end of the function in mind, which is a postcondition or
a domain activity that has to be performed, and then reason backwards about the order of the steps.

5.2.3 Specify function step

During this modeling step, each function step is related to the context with respect to the objects (parameters) that play a role in the step. The
following aspects must be specified:



14 DECKERS and LAGO

• Function attributes are allocated to the (actual parameters of) the step. The function attributes must belong to the same function as the
step, or they belong to a function that contains that function. Typically, a feature, which is a function, has attributes which will be used in
many steps of sub functions of the feature.

• The preconditions for this step, i.e., the constraints on the step participants. A condition is typically expressed in a logic language and may
only use terms that are elements within the scope of the function. (Step preconditions are also called enter conditions.)

• The postconditions for this step, i.e., the conditions that have to be true for this step to end. (Step postconditions are also called exit
conditions.)

A specified function lifecycle must be consistent with the domains that the function uses, which means that for function steps that are an
instance of a domain activity, holds that:

• The objects allocated to the action, are an instance of a domain class that is involved in the domain activity.
• Function attributes are allocated to each input attribute of the action, and their types match.
• The function lifecycle does not violate the object lifecycle of an involved object.

5.2.4 Specify function signatures

A function signature describes the interface of each function in terms of attributes and events, and frames the behavior of the function. Attributes
are typed by a (domain) class, and events are typed by a behavioral element, as depicted in Figure 4.

All function signatures can be put in a single diagram (see for example Figure 17), or a separate diagram is created for important and complex
functions. Each attribute can be an input, output, or local attribute. Local attributes, which are used to pass on data between function steps,
could be omitted from the signatures, because they are not visible outside the function. But then, a different view would have be created for the
declaration of the local attributes. So normally, we put them in the same view.

The function signatures also specify the preconditions, and invariants that hold for the function attributes, i.e., things that must be true in order
to guarantee the proper outcome of the function. It is possible to specify postconditions, but this is superfluous because MuDForM follows a
whitebox perspective on function specifications. Though, a postcondition could help to guide the design of the function lifecycle.

6 A CASE STUDY: MODELING THE PROCESSES OF ISO26262

This section presents the results from a case study in which we applied MuDForM to model the ISO26262 standard for functional safety together
with automotive engineers from research and innovation institute TNO3. The ISO26262 standard was chosen as our case for the following reasons:

• It is mature and comes with an explicit glossary of definitions which are a good starting point for analysis.
• It is clearly structured according to a set of processes, which are described in several documents (called parts).
• It is large and covers many aspects, which makes it relevant as a case for validating MuDForM.
• TNO Automotive has a need for an unambiguous, comprehensible specification of the ISO26262, which will be explained in Section 6.1.
• Functional safety is an example of a quality domain, which is specifically the target of MuDForM, as stated in Objective O2 in Section 2.1.

The goal of the case study is to evaluate the MuDForM support for specifying features in terms of domain models. This means to use the
domain activities and domain classes of the domain model (published by Khabbaz Saberi 17), as the types of function steps and function attributes
respectively. The focus of the case study is not to validate how suited the resulting model is for a specific application.

Section 6.1 introduces the case. Section 6.2 gives an overview of the part of the case study that is the focus in this paper, and explains its
execution. Sections 6.3 through 6.6 present the resulting model and elaborate on the modeling decisions by explaining how the guidelines from
Appendix A are applied. The presented diagrams use a notation that is compliant with the UMLmetamodel 18, and aremadewith the tool Enterprise
Architect 31.

3https://www.tno.nl/en/



DECKERS and LAGO 15

6.1 Introduction to the Case

TNO Automotive is a research and innovation organization that develops new concepts and new approaches for the development of automotive
systems for industry partners. The ISO26262 standard for functional safety in automotive systems prescribes the processes that must be executed,
and the work products that must be produced to prove the absence of unreasonable risk in safety-critical systems in the automotive domain. The
specification of ISO26262 consists of 10 separate documents, called parts, which add up to 470 pages. Each part consists of several clauses. The
case study did not involve the entire standard, as it would require involvement of many experts over a wide range of the automotive supply chain.
Section 6.3.1 specifies which part of the standard’s text is selected for the case study.

In the automotive sector, there is an increase in the complexity of the systems, in the communication between these systems, and in the
amount of safety-critical functionalities. Accordingly, the work needed to achieve functional safety and its certification, is becoming increasingly
time consuming and prone to human error. TNO and some of their customers, based on their own experience, expressed the need for a more
predictable and uniform process. They find that a more objective certification process will help reducing the risk of human errors during the system
development process, decreasin the certification costs, and increasing the safety of automotive systems 17. Moreover, they find that the use of a
controlled language can help to achieve this 33.

In the development of automotive systems, people from different engineering disciplines and several companies cooperate very intensively. As
explained by Khabbaz Saberi 17, these people often have different interpretations of the standard’s text, because the terminology and phrasing are
not always consistent or completely unambiguous, and there are assumptions in the standard about the meaning of terms that are not an intrinsic
part of the standard, e.g., the terms pertaining system design like system, element, and function. A MuDForM model that covers the domain
concepts and the work processes of the standard, could be the basis for a shared understanding.

TNO has a research program in integrated vehicle safety 34, and offers services to automotive suppliers for acquiring the required ISO26262
certification for their products. Therefore, TNO embraces that the people involved in functional safety analysis and system design gain a consistent
and unambiguous understanding of the activities and artifacts prescribed by the ISO26262 standard. Parts of the domain model and the process
specifications resulting from this case study are explained in depth by Khabbaz Saberi 17. That manuscript explains the reasons why TNO needs a
domain model of the ISO26262 standard.

6.2 Case study overview and execution

The case study was executed as a collaboration between aMuDForM researcher, several TNOAutomotive engineers, and an ISO26262 committee
member supporting the unraveling of unclarities in the standard’s text. The case study was performed between January 2018 and January 2020.
The case study is following the MuDForMmethod flow depicted in Figure 5 (cf. page 12), and the feature engineering flow depicted in Figure 6 (cf.
page 13). During the modeling process, the most important decisions were recorded, and some of them are used in the explanation of the modeling
results throughout this section. The complete model is not publicly available due to intellectual property rights. This paper shows examples of the
resulting model to illustrate how the method is applied.

A challenge for this case study is how to model the explicitly stated requirements from the text in the standard. Section 6.3.2 and 6.4 showcase
how such a requirement is treated by MuDForM, and how it is captured in the model.

Section 6.3 presents the phase from modeling initiation to the initial model as described in Section 5.1. It is limited to feature modeling as much
as possible. We give some examples of how the grammatical analysis looks like and refer to the guidelines for some of the analysis decisions.

After that, we present the step Engineer feature by following the steps of Figure 6. Section 6.4 presents the modeling of function lifecycles for
some of the ISO26262 processes, including the details of specifying function steps inside a function. This section concludes with the final function
signatures and the final feature structure in Sections 6.5 and 6.6, respectively.

6.3 From Modeling Initiation to Initial Model

This section presents the steps and the results from the case initiation to the first version of the model: Scoping, Grammatical analysis, and
Transformation from text to model.

6.3.1 Scoping

The three steps of Scoping lead to the following results:
1. The purpose of the total model (including the part that is described by Khabbaz Saberi 17) is to have an unambiguous specification of the

artifacts and processes that the ISO26262 standard prescribes. Following the guideline Different specification spaces have a different



16 DECKERS and LAGO

purpose, we distinguish two specific purposes for the specification of the processes: provide safety engineers with work instructions,
and provide the requirements for a tool that supports the ISO26262 processes. These two purposes are both derived from the guideline
Common feature model purposes.

2. The demarcation of the area concerns the clauses for item definition and hazard analysis. Examples of concepts that are in scope are: item,
hazard, hazardous event, and malfunction. System design concepts like system, element, and function, are out of scope, but might be
needed as reference, and thus captured in a context model.

3. For this version of the model, we select as input text Part 3 of the ISO26262 (named the Conceptual phase) excluding the Functional Safety
Concept clause. The text of Parts 1 (Vocabulary), 8 (Supporting processes), and 10 (Guidelines to the ISO 26262) to which Part 3 refers, will
also be considered.

The demarcation and selected input text have been adjusted during the process. Initially, we wanted to cover a larger part of the standard. But
that appeared to be too much to start the modeling process with, and the available time of the domain experts was restricted. So, we had to narrow
the scope to Part 3. We applied the guideline Start with the foundation and the core to come to the selection of the Item definition clause of
Part 3, because that is the foundation. Then we selected the clauses Hazard Analysis and Risk Assessment (HARA) and Functional Safety Concept.
After applying the guideline Start small, and because the output of the HARA clause is needed for the clause Functional Safety Concept, we came
to the specified selection of the input text.

6.3.2 Grammatical analysis

In most cases, and in this case as well, the Grammatical analysis phase delivers content for all three types of specification spaces, i.e., for Domain
models, Context models, as well as Feature models. As an example, we take the following sentence from clause 5.2 in part 3 of the ISO26262
standard:

This definition serves to provide sufficient information about the item to the persons who conduct the subsequent sub-phases: “Hazard analysis and risk
assessment” and “Functional safety concept”.

In addition, this sentence from requirement 6.4.4.2 from the standard is analyzed:
If similar safety goals are combined into a single one, in accordance with 6.4.4.1, the highest ASIL4 shall be assigned to the combined safety goal.
Table 1 shows phrases that we extracted from the input sentences and that are relevant for Feature modeling. The first column contains the

input sentence. The second is the phrase type, as mentioned in the Extract phrases step of Section 5.1.2, followed by the extracted phrase. The
last column explains the made analysis decisions. The table is the result of all four steps of grammatical analysis, i.e., Extract phrases, Determine
relevance, Eliminate homonyms and synonyms, and List final phrases.

Table 1 Selection of the grammatical analysis
Input sentence Extracted phrase and Phrase type Decisions
This definition serves to provide sufficient information
about the item to the persons who conduct the
subsequent sub-phases: “Hazard analysis and risk
assessment” and “Functional safety concept"

State structure phrase: Item definition is a phase “This definition" refers to “Item definition" (confirmed by the domain expert). A phase
is considered to be a part the total safety lifecycle. It is not a safety concept itself, but
a concept to organize the process for functional safety.

State structure phrase:Hazard analysis and risk assessment
(HARA) is a phase

The same reasoning as for Item Definition.
State structure phrase: Functional safety concept is a phase Functional safety concept is out of scope as stated in section 4.2. “to conduct” is out

of scope, because it is about the how the document is structured.
Interaction structure phrase: Person conducts phase Apparently, different phases can be handled by different people. The verb “to conduct”

is about the process definition domain, which is considered irrelevant.
Interaction structure phrase: HARA follows Item definition This phrase says something about the order of behavior. The verb “to follow” is

not considered as a relevant specification element itself for the same reason as “to
conduct” is not.

If similar safety goals are combined into a single one, in
accordance with 6.4.4.1, the highest ASIL shall be
assigned to the combined safety goal.

Conditional phrase: If safety goals are combined into a sin-
gle safety goal, then the ASIL of the single safety goal shall
be equal to the highest ASIL of the combined safety goals

There are several decisions involved:
• To remove possible ambiguity the word ‘then’ is added after the first comma in
accordance with guideline Standardize logical constructs.

• The part “in accordance with 6.4.4.1” is removed according to guideline Ignore
phrases about the document itself.

• The word similar is considered irrelevant for the meaning. The domain expert
stated that determining similarity between goals is the responsibility of the
safety analyst. The requirement is not influenced by goals being more or less
similar.

• More phrases were extracted from the input sentence, like “To combine goals
into goal”. These are not analyzed and discussed here, because they were
phrases for the domain model.

4Automotive Safety Integrity Level



DECKERS and LAGO 17

6.3.3 Text-to-model transformation

This section discusses the creation of the initial models from the results of the grammatical analysis. Table 2 presents a subset of the candidate
elements and their classification. It is the result of the steps Identify candidates and Classify candidates described in Section 5.1.3.

Table 2 Classification of candidates
Candidate Classification
Safety Lifecycle Feature, because that is the name used in the header and the guideline Identify features and functions from text headers is applied.
Item Definition Function, because we applied the guideline Define a function for coherent behavior that will be assigned to one actor, and because Item Definition is a

phase that can be conducted by a person as stated in the input text. Furthermore, the guideline Identify features and functions from text headers is applicable.
HARA Function, for the same reason as Item Definition.
The Item Function attribute, because of the guideline Definite articles indicate a function attribute and throughout the selected input the text, “the Item” is used

repeatedly.
If safety goals are combined into a single
safety goal, then the single safety goal’s
ASIL shall be equal to the highest ASIL
of the combined safety goals

The whole phrase is a candidate condition, because it is a conditional phrase due to the if-then construct. Following the guideline Auxiliary verbs indicate
the specification space type and the use of “shall“, we allocate it to the feature model.

To understand the relation of the Safety Lifecycle feature to its context, Figure 7 presents the specification spaces (represented as UML
packages) and their relations. The Safety Lifecycle feature depends on the Design Specification context, which defines the concepts that are the
input of a safety analysis, and depends on theFunctional Safety domain, which defines all the concepts from the standard that are needed to define
the feature. The Functional Safety domain has two sub domains: the Item Definition domain, and the Hazard Analysis and Risk Assessment

domain. This view is the result of the steps Identify specification spaces and Create initial specification spaces view. In the step Declare and
allocate elements, the specification spaces are populated with the identified candidates and with the phrases that involve those candidates. There

«Context»
Design Specification

«Doma in»
Functional Safety

«Feature»
Safety Lifecycle

«Doma in»
Item Definition

«Doma in»
Hazard Analysis and Risk Assessment

Figure 7 Specification spaces of the ISO26262 (UML package diagram)

are two views related to feature modeling, which are created in the step Create initial models: 1) the initial feature structure, and 2) the initial
function signatures of the feature Safety Lifecycle.

From the output of the Grammatical analysis step, the initial feature structure of the feature Safety Lifecycle are created (see Figure 8). The
Feature Safety Lifecycle has two sub functions: 1) Item Definition, and 2) HARA, which correspond to clauses in the ISO26262 text.

As mentioned in the example sentences of Section 6.3.2, HARA consists of sub activities, which can be performed by a different person. That
is why we applied the guideline Define a function for coherent behavior that will be assigned to one actor. So, HARA has four sub functions: 1)
Hazard Analysis, 2) Hazardous Event Identification, 3) Risk Assessment, and 4) Safety Goal Determination. Those sub functions correspond
to sections in the HARA clause of the ISO26262 text. The relations have been described with a UML composition relation, because the instances
of the composed activities are fully executed within the instances of the composing activities, e.g., Risk Assessment happens within HARA, and
Item Definition happens within Safety Lifecycle.

Figure 9 presents the initial function signatures. For the feature Safety Lifecycle, which is a function itself, we have applied the guideline
Define attributes for sets of strong objects, which has led to the set attributes all systems, all design objects, and all items. For HARA, we
have applied the guidelineDefine function wide attributes for central objects, resulting in the function wide attribute the Item for HARA and for
Item Definition. The four sub functions of HARA are in the diagram too, because they are identified in the feature structure. However, there is
no information to identify their attributes yet. The UML aggregation relation is used to declare the function attributes. The role names on the side
of the classes indicate the names of the attributes, e.g., Item Definition.all design objects has the type Design Object (from the context model
Design Specification).



18 DECKERS and LAGO

Safety Lifecycle

Item Definition HARA

Hazard Analysis

Hazardous Event
Identification

Risk Assessment

Safety Goal
Determination

Figure 8 Initial feature structure of Safety Lifecycle (in UML notation)

Safety Lifecycle

Item Definition HARA

Hazard Analysis

Hazardous Event
Identification

Risk Assessment

Safety Goal
Determination

Design
Specification::

System

Item Definition::
Item

Design
Specification::
Design Object

Item Definition::
Safety Design

Object

+all systems

+all Safety Design Objects

+the Item

+all Items+the system

+all Safety Design Objects

+the Item

+all design objects

Figure 9 Initial function signatures (in UML notation)

6.4 Specify Function Lifecycles

This section describes the creation of a subset of the function lifecycles to demonstrate the steps and guidelines explained in Section 5.2.2.

Safety Lifecycle -

The function lifecycles of the function Safety Lifecycle contains two steps: 1) Item Definition and 2) HARA. These steps can be executed
iteratively in any order (see Figure 10) for as long the Safety Lifecycle function is active. We have identified two function attributes: all Items and
all Systems (as already modeled in Figure 9) . These are the result of the guideline Introduce feature attributes for sets of existing objects, and
the fact that Item Definition starts with a set of Systems that can be chosen for Safety Analysis, and HARA starts with a set of Items to choose
from. UML control flows are used to model the order of the steps, and are represented with thick arrows. UML object flows are used to specify
that a function attribute participates in a function step, and are represented with a thin arrow. The direction of the arrow indicates if the attribute
is input or output for the step.

«set»
all systems: System

HARAItem Definition

«set»
all Items: Item

Figure 10 Function lifecycle of the function Safety lifecycle (UML activity diagram)



DECKERS and LAGO 19

Item definition -

Figure 11 shows the function lifecycle of Item Definition. The diagram is defined by following the guidelineGowith the flow. The guideline Check
the domain models for unused activities is used to check whether all the referred activities from the Item Definition domain are defined. We will
not mention these two guidelines anymore, because they are used in the creation of every function lifecycle. After specifying the control flow of
the lifecycle, we specify the details of each function step. Figure 12 shows the preconditions for the steps, and shows which function attributes

To Analyze Safety

To Choose For Safety Analysis

To Declare Complete

Figure 11 Function lifecycle of Item Definition (UML activity diagram)

are participating in each step, as described in Section 5.2.3. The feature attribute all systems and the function attribute all design objects are
participating in the steps To Analyze Safety and To Choose for Safety Analysis respectively. All three function steps (represented as UML
actions) in the lifecycle are invocations of domain activities (defined in the domain Item Definition). We gave the actions the same name as the
corresponding domain activity. The attribute the Item is connected to all three steps. The attribute safety design objects of the Item is connected
to the step To Choose for Safety Analysis. The flow ends with the step To Declare Complete when the analyst determines that all needed
Design objects are chosen for safety analysis. After this, the Item is available for HARA, and the following steps of the Safety Lifecycle.

To Analyze Safety

the Item: ItemTo Choose For Safety Analysis

«set»
all Systems:

System

«set»
safety design objects

of the Item: Safety
Design Object

To Declare Complete

«set»
all design

objects: Design
Object

definition
complete?

d_o = direct object ìn the 
corresponding domain phrase

[yes]

in

[no]

[Design Object
used in definition
of the System]

d_o

d_o

which results in
of

w.r.i

Figure 12 Item Definition with specified function steps (UML activity diagram)



20 DECKERS and LAGO

HARA -

Figure 13 presents how the sub functions of HARA are ordered. The function lifecycle contains four steps, one for each sub function of HARA.
They can be executed iteratively in any order.

Hazard Analysis

Hazardous Event Identification

Risk Assessment

Safety Goal Determination

Figure 13 Function lifecycle of HARA (UML activity diagram)

The next step is to apply Specify function step toHARA. Figure 14 shows which function attributes ofHARA are participating in each function
step. HARA is centered around the function attribute the Item. Because all sub functions are contained in the definition of HARA, as modeled
in Figure 8, they can access the the Item and it does not have to be passed onto the sub functions via parameters. All the attributes in HARA

have as a type a class from the domain model, e.g., :Item intended Function has the type Item Intended Function. Each of those classes is a
subclass of the domain class Safety Design Object. All the attributes, i.e., all the involved Safety Design Objects must be part of the Item, which
is depicted in Figure 17. That a Safety Design Object is part of an Item is modeled in the domain model, of which the corresponding fragment is
presented in Figure 18.

Hazard Analysis

Hazardous Event Identification

Risk Assessment

Safety Goal Determination

«set»
:Item Intended

Function

«set»
:Hazard

«set»
:Operational

Situation

«set»
:Operating Mode

«set»
:Hazardous Event

«set»
:Safety Goal

«set»
:Hazard

Consequence

Figure 14 HARA with function attributes connected to function steps (UML notation)

For HARA, the lifecycle view has been split into two separate views, because otherwise there would too many control flow arrows and object
flow arrows crossing each other, which wouldmake the view verymessy. There is 1) a viewwith just the order of the steps andwithout any function
attributes related to them (Figure 13), and 2) a view, which specifies which function attributes are participating in which function step (Figure 14).
Another option is to use a textual notation for the function steps, like with a regular programming language, where a function call contains the link
between variables and the actual parameters of the function call.

Bookkeeping -

During the modeling of Hazard Analysis, Hazardous Event Identification, and Safety Goal Determination, we detected that they all required
the usage of the domain activitiesTo Reject andTo Combine from the Functional Safety domain. These are activities to manage Safety Analysis

Objects. Following the guideline Define a function for recurring behavior in multiple functions, we identified the function Bookkeeping, which is
specified in Figure 15.

Phrases that were classified as a condition need to be captured in the model as a precondition, postcondition, or invariant of a function, domain
activity, or function step. The elements from the domain model that are used in the specification of the condition, need to be identified. To be able
to understand the formal specification of the condition, we have shown the relevant part of the domain model in Figure 16.



DECKERS and LAGO 21

toCombine toReject
«set»

existing safety analysis
objects: Safety Analysis

Object

new safety analysis
object: Safety Analysis

Object

«precondition»
{IF type(toCombine.into)
=SafetyGoal THEN
toCombine.ASIL = MAX
(toCombine.d_o.ASIL)}

into

d_od_o

Figure 15 Function lifecycle of Bookkeeping (UML activity diagram)

Safety Analysis
Object

To Combine

Safety Goal ASIL Object

«enumeration»
ASIL Ranking

+ASIL

into +ASILd_o

2..*

Figure 16 Fragment of domain model around to Combine (UML notation)

The candidate condition is: If safety goals are combined into a single safety goal, then the single safety goal’s ASIL shall be equal to the highest ASIL of
the combined safety goals. The referred model elements in this phrase are:

• Domain class: Safety Goal.
• Domain activity: To Combine.
• Activity role: To Combine into.
• Activity role: To Combine d_o (direct object) derived from “safety goals are combined" in the phrase.
• Context class: ASIL.
• Attribute: Safety Goal.ASIL with type ASIL.
• Operation: highest (defined onASIL values). There must be a ranking of ASIL values to be able to speak of the highest ASIL. This is covered

in the definition of the class ASIL.
• Activity attribute: To Combine.ASIL with type ASIL.

Finally, the condition has to be added to the model. This is done in two steps: 1) determine the moment in the lifecycle that the condition must
hold, and 2) formalize the predicate. In this case, the position is the To Combine step in Bookkeeping (see Figure 15). The predicate is:

If type(BookKeeping.toCombine.into.SafetyDesignObject) = SafetyGoal

then Bookkeeping.toCombine.ASIL = MAX(Bookkeeping.toCombine.d_o.safetyGoal s: s.ASIL)

The IF clause about “type(...) = SafetyGoal” is added, because the domain activity To Combine is defined on the abstract domain class Safety

Design Objects (see Figure 16) and not just on the domain class Safety Goal. The requirement about taking over the highest ASIL ranking is only
valid for Safety Goals and not for other types of Safety Design Objects.

6.5 Specify Function Signatures

Figure 17 presents the final signatures of a subset of the functions. The major changes to the initial function signatures of Figure 9 are the addition
of some constraints. The invariant connected to Item Definition states that only the Design Objects that are used in the definition of the system



22 DECKERS and LAGO

may be used in the definition of the Item. Similarly, in HARA, only the Safety Design Objects that are part of the Item may be used in the sub
functions of HARA. The semantics for these invariants come from the domain model of Item Definition, which is depicted in Figure 18. Another
constraint is the precondition that only Items that have been declared complete in the Item Definition may be used in HARA.

Safety Lifecycle

Item Definition HARA

Design Specification::
System

Item Definition::Item

Design Specification::
Design Object

Item Definition::Safety
Design Object

«invariant»
{all Design Objects used in
definition of the System}

«invariant»
{all Safety Design Objects
are part of the Item : }

«precondition»
{the Item.declared_complete
=true}

+the system

+the Item

+all Safety Design Objects

+all Safety Design Objects

+all systems

+all design objects

+all Items

+the Item

Figure 17 Final function signatures (UML notation)

Design Specification::
System

Design Specification:
:Design Object

Safety Design Object

Item
is an ISO 26262 analysis of

1

refers to

1

/used in definition of

Figure 18 Fragment of Item Definition domain (UML class diagram)

6.6 Specify Feature Structure

At the end of the feature engineering phase, we revisit how the functions in the feature model relate to each other and to the context (see
Figure 19). Most of the functions refer to activities from the domains that the Safety Lifecycle feature is dependent on, e.g., Bookkeeping and
Item Definition. This means that the function lifecycle of those functions may contain steps that are instances of such a domain activity. The
function Safety Lifecycle, which is the root of the structure, as well as the function HARA, only use other functions from the feature model.

7 DISCUSSION

In this section, we reflect on the research questions and discuss our findings emerging from the case study. Section 7.1 discusses the support that
MuDForM provides for making domain-based specifications. Section 7.2 reflects on how MuDForM helps bridge the gap between feature models
(as meant in FODA 16) and domain models. Section 7.3 discusses how feature modeling fits into the rest of MuDForM. The usability of UML for
MuDForM is discussed in Section 7.4. Finally, Section 7.5 discusses how the case study helped to realize the objectives of TNO.

7.1 Support for domain-based Specifications

This section discusses the methodical support for specifying feature models in terms of domain models (RQ2 from Section 1.2). Objective O5
of MuDForM is to support the separation of what can happen from what shall happen, i.e., distinguish descriptive domain specifications from
prescriptive domain-based specifications. Deckers and Lago 6 concluded that the existing domain-related literature provides very little support for
the methodical use of a domain specification (DM or DSL). This paper shows how MuDForM provides such support.



DECKERS and LAGO 23

Safety Lifecycle

Item Definition HARA

BookkeepingTo Combine

(from Functional Safety)

To Reject

(from Functional Safety)

To Analyze Safety

(from Item Definition)

To Choose For Safety
Analysis

(from Item Definition)

To Declare Complete

(from Item Definition)

To Estimate Controllability

(from Hazard Analysis and Risk 
Assessment)

To Estimate Exposure

(from Hazard Analysis and Risk 
Assessment)

To Estimate Severity

(from Hazard Analysis and Risk 
Assessment)

To Combine into
Hazardous Event

(from Hazard Analysis and Risk 
Assessment)

To Define Hazard

(from Hazard Analysis and Risk 
Assessment)

To Identify Hazard
Consequence

(from Hazard Analysis and Risk 
Assessment)

To Determine
Safety Goal

(from Hazard Analysis 
and Risk Assessment)

To Analyze Malfunction

(from Hazard Analysis and Risk 
Assessment)

Hazard Analysis

Hazardous Event
Identification

Risk Assessment

Safety Goal
Determination

Figure 19 Final feature structure (UML notation)

In our case study, we modeled clauses of part 3 of the ISO26262 as functions in the feature “Safety Lifecycle”. We followed the MuDForM
method steps and applied the guidelines. The results are 1) a feature structure, 2) a set of function lifecycles, and 3) a set of function signatures.
The domain model concepts have been applied in the specification of function lifecycles, i.e., the domain activities are invoked as a function step,
and the domain classes are used in the specification of function attributes, and in the formulation of invariants and preconditions in the function
signatures and function lifecycles. Moreover, the concepts of the System Design context model are used in the specification of the Item definition
function. This function is the place where concepts from outside the scope of Functional Safety, i.e., System and Design Object, are used to define
the main concepts for the Safety lifecycle, i.e., the Item and its Safety Design Objects.

The result is that all the terms in the feature model are expressed in terms of the domain models and context models, and all the used UML
notations have an unambiguous interpretation. We observe that the resulting model of the case study resembles the input text in both structure
and terminology. This resemblance is not surprising, because the ISO26262 has evolved for several years and is used in industry by automotive
engineers, which has led to a mature structure and text. Furthermore, it is structured via processes and contains an explicit vocabulary, which
respectively correspond to the structure of the feature model, and the terms in the domain model. This maturity of the standard could be seen
as a disadvantage for the case study in the sense that helpfulness of all the MuDForM steps and guidelines could not be fully demonstrated,
because the text was relatively easy to translate into the model. This situation differs from many industry projects where textual specifications
are written specifically for the project and are not the result of years of reviewing and re-engineering. On the other hand, the maturity of the text
was an advantage for the case study, because there was little delay caused by long discussions between domain experts, who’s availability was
limited. The clearest examples of ambiguity reduction are the identification, specification, and integration of the Bookkeeping function, which is
not explicitly present in the standard’s text, and the formalization of the included constraints (see Section 6.4). If for some readers the diagrams
are less comprehensible than the text of the standard, then it is possible to adjust the standard’s text based on the inconsistencies and gaps that
were detected and solved during the modeling process.

The case study showcases how all the steps in themethod flow are performed. In themodeling phase from the case initiation to the initial model,
there are no separate steps related to feature modeling, because texts usually do not distinguish between contexts, domains, and features. But
there are guidelines that specifically have an impact on feature models. During Model engineering, there is a separate step for feature engineering,
including specific guidelines.



24 DECKERS and LAGO

Duringmodeling, we observed that some of the guidelines can be considered as separatemethod steps. For example,Define a function attribute
for central objects is now defined as a guideline. It could, however, also be defined as a separate step Define function attributes with a guideline
Check for the central objects. This refinement of the method steps could be useful, e.g., for building a modeling tool that actively leads the
modeler through the method steps. Though, the content of the method would still be the same. At this moment, we do not have hard criteria to
decide whether something is a step or a guideline, because in the development of MuDForM we started identifying steps and gathering guidelines
separately. Later, we assigned guidelines to steps and discovered in practice that some guidelines could be seen as a step. We plan to develop the
criteria and refactor the method flow and guidelines.

7.2 Bridging the Gap between Feature Trees and Domain Models

We argue that MuDForM feature modeling can be applied to bridge the gap between approaches that focus on modeling feature structures (top-
down), like FODA 16 and ADOM 35, and approaches that consider domain models as a language to define other specifications (bottom-up), like the
security domain model by Firesmith 5, and the many examples from van Deursen et al. 8. The MuDForM part presented in this paper can unite
these perspectives. The functional decomposition in the feature structure viewpoint of MuDForM is similar to the feature model in FODA, and by
specifying the functions in the feature in terms of the domain model, the gap is bridged.

In addition, MuDForM feature modeling and domain modeling can be used to formalize the process models from approaches centered around
process modeling languages like BPMN 36,37. The MuDForM steps and guidelines help to organize the modeling activities. Furthermore, the use of
an explicit domain model, with both domain classes and domain activities, facilitates the formalization of the process flows and process artifacts.
As a result, the process models are fully expressed in well-defined terms, like in the case study of Section 6.

The steps and guidelines for feature modeling could support modeling with the Object Process Methodology (OPM) 38,39. OPM integrates
behavior concepts (processes) and state concepts (objects). It also allows composition for both types of concepts and has viewpoints similar to
the feature signature and feature structure viewpoints of MuDForM. OPM has the Object Process Diagram, which is similar to the interaction
view of a MuDForM domain model 17, and to the function signatures viewpoint. To our knowledge, OPM does not have a viewpoint to model the
internal behavioral structure of a process, like the function lifecycle of MuDForM. Nor does it explicitly distinguish contexts, domains, and features.
Modelers using OPM could benefit from the steps and guidelines of MuDForM, and vice versa.

In all these cases, it is the concept of domain activities and the distinction between prescriptive feature models and descriptive domain models,
that enable the unambiguous specification of the process flows. Due to making feature specifications domain-based, they are unambiguous and
fully integrated with data (object states). In combination with explicit context models, it follows that there are no undefined terms in a feature
specification. Furthermore, the domain activities and their relation with domain classes enable an easy verbalization of a model. For example in
Figure 16, one can read the phrase “to combine several safety analysis objects into another safety analysis object.". Such a verbalization is very
helpful in validating the model with domain experts, who might not easily understand a graphical notation like UML.

The use of domain activities and domain classes could be an addition to BPMN related methods 36,37. Namely, those methods do not have the
literals in their models normalized, i.e., they model process steps, but the steps have no explicit type with well-defined properties. For example,
where in the example of Section 6.4, “to Combine” is the type of the step Bookkeeping.toCombine, in pure process-oriented methods, one could
not build on the predefined feature-independent definition of something like the domain activity “to Combine”. We cannot, however, fully make
this claim, as we did not perform a complete literature review on the use of types and references in process modeling approaches. We plan to carry
out this review after having gathered more guidelines for function and process modeling from the existing literature.

Although not demonstrated in section 6, not only the processes, but also the process artifacts can be defined completely in terms of the domain
model. Each artifact can be specified as a composition of domain model elements, similar to the use of domain model elements in the constraint
example of Figure 15 in Section 6.4. For example, a HARA document can be seen as a query on a repository with a database scheme that is based
on the domain model. Also here, having explicit domain activities plays an important role, because they facilitate the logging of all elementary
changes during a HARA execution.

7.3 Feature modeling is part of MuDForM

This section discusses how the support for feature modeling fits into MuDForM (RQ1 from Section 3). MuDForM is an extension of the KISS
method for Object Orientation 3, which already has support for function modeling. Differently from MuDForM, however, the KISS method does
not provide support for grammatical analysis related to functions, nor does it cover the notion of (MuDForM) feature, or the steps, guidelines, and
viewpoints for feature modeling.

Section 4 presents the foundation of MuDForM and how the steps and guidelines for feature modeling fit into the overall steps and guidelines
of MuDForM. The partial metamodel of Figure 4 addresses minimally how the modeling concepts fit.



DECKERS and LAGO 25

We observed the following regarding the method flow: already in Scoping, feature modeling is addressed, because the purpose of a feature
mostly differs from the purpose of a domain model. During the grammatical analysis, MuDForM offers guidelines for the identification of functions,
function attributes, function steps, and constraints. In the transformation from text to model, there are guidelines for the identification of typical
function attributes, i.e., for the central objects in a feature, and for the context objects that the feature uses as input. The transformation from
text to model introduces the creation of two views: 1) the feature structure, and 2) the function signatures. During Model engineering, feature
engineering is a step, which is typically organized separately. Though, feature engineering might lead to changes in the domain models and context
models. Namely, if a term in a feature model is not defined, then it is not the correct term and thus may not be used, or it must be integrated in
a domain model or context model. This way, feature modeling validates the domain model and context model. We did not detect a point where
feature modeling does not fit or is inconsistent with the rest of the MuDForM definition.

The above discussion only pertains to the integration of feature modeling in MuDForM. We think that similar constructs should be applied
when the support for feature modeling is integrated in other domain modeling methods. The following describes the general aspects of such an
integration:

• On themetamodel. Themetamodel hasmodeling concepts that are specific for featuremodelingmust be related to the concepts for domain
modeling, and possibly to other modeling concepts as well, e.g., analogous to the context modeling concept in MuDForM. This is not just
a matter of relating concepts to each other, but also the semantics must be aligned. For example, most domain modeling methods do not
have autonomous modeling concepts for specifying behavior, like the domain activity concept in MuDForM. They just model classes and
attributes, and relations between classes, and often capture behavior in generic data-oriented operations like create, update, and delete.
The feature modeling metamodel in this paper uses behavioral elements, i.e., operations, domain activities, and functions as elementary
modeling concepts (see Section 4.3). They are used as the types of the steps in a function. If the domain model only has classes, then the
function steps will be a combination of create, update, and delete operations. One can solve this complexity, bymodeling low-level functions
that serve as a surrogate for the domain activities.

• On the notation and viewpoints. The case study uses UML for the notation of MuDForM concepts. But MuDForM itself does not prescribe
a specific notation. When feature modeling is integrated with another domain modeling method, it is possible to choose a notation that is
close to the existing notation of that domain modeling method. For example, a text based notation can be chosen for the function flows,
which resembles the notation of any imperative programming language Java or Python. Of course, a notation must be defined for the
viewpoints described in Section 5.2.

• On the method steps. The four main steps of the MuDForM method flow (Figure 2a cf. page 8) can be generalized into: Scoping, Discovery
and Elicitation (for capturing specific knowledge from a knowledge source), Switch to modeling, and Model engineering. Scoping, and
Discovery and Elicitation do not require specific steps for feature modeling. However, the scope of a feature model is inherently different
from the scope of a domain model. So, the knowledge that is captured from a knowledge source is different for a feature model then for a
domain model. The steps Switch to modeling andModel engineering will have detailed steps that are specific for feature modeling, because
feature modeling has different viewpoints then a domain model, and the modeling steps typically correspond with viewpoints. We think
the steps described in Figure 6 (cf. page 13) can be used unchanged in integrations with other methods.

To put the method part of this paper in perspective of the whole method: the MuDForM metamodel contains 61 classes, the total method flow
has 33 steps and sub steps, there are 12 different viewpoints, and there are currently 125 guidelines. At this moment, themethod’s ingredients differ
in maturity and completeness. Namely, the metamodel is quite stable, and the method steps change sometimes, but guidelines are still frequently
discovered, discussed, and specified more concisely. The latest version of the complete MuDForM definition is available via the MuDForM Github
repository 15.

7.4 Reflection on using UML for MuDForM

In the case study, we used UML 18 and Enterprise Architect 31 as the modeling tool. We used the standard notation and semantics as much as
possible. Though, for somemodeling concepts and viewpoints, wemisused a UML concept, by giving it aMuDForMmeaning. These are our findings:

• There is no UML diagram to model the allocation of function attributes to (actual parameters of) function steps. We used the UML concept
Object Flow, but this does not cover theMuDForM semantics. Namely, a function attribute, which is a reference to an object, participates in
a function step; it does not flow in or out the function step. Moreover, there is no syntax to state explicitly which parameter of the function
step a function attribute is allocated to.

• Activity diagram coordinators, i.e., fork-join and decision-merge are not suited for the MuDForM metamodel, which is based on process
algebra. Coordinators for selection and concurrency are already offered in othermethods 40,3, and they can be used. For example, the process



26 DECKERS and LAGO

algebra counterpart of Figure 10 is “(Item Definition | HARA)*”. So, we perceive UML activity diagrams to be cumbersome for representing
processes, because they are derived from the concept of state transition diagrams, which were already present in earlier UML versions. The
process algebra notation does not require arrows for the loop, nor an explicit “merge” symbol, which leads to diagrams with fewer nodes
and edges.

We find UML usable for a large part of the feature modeling view, but not so much for the aspects mentioned above. This is one of the reasons
why we are currently collaborating with another company to build a MuDForM modeling tool in MPS (Meta Programming System) 41.

7.5 Reflection on Case-specific Objectives

The objective of TNO, which is mentioned in Section 6.1, is realized via several MuDForM characteristics:
• The process models, i.e., steps and object flows, are unambiguous now, because they are completely defined via concepts in the MuDForM

metamodel.
• The processes are completely defined in terms of the domain model and the context models:

– The process steps are expressed as invocations of domain activities, or invocations of other functions, and the modeling process has
eliminated homonyms and synonyms, which makes the process steps unambiguous.

– The objects (data) that are handled by the processes are expressed as function attributes, which are instances of domain classes or
context classes.

– The requirements in the standard are expressed as constraints, and defined in terms of the context classes, domain classes, and their
attributes. They are attached to the model as a function invariant, function precondition, guard, or pre- or postcondition of a function
step.

TNO also used the model of the case study to build a tool for compliance testing. This tool gives two benefits. First, The domain classes, and
their attributes and relations, are used for the data structure and user interface terminology of the tool. The artifacts prescribed by the standard are
corresponding with the function attributes defined in the function signatures (see Section 6.5). This encoding of the model in the tool helps unify
the terminology for the safety engineers of TNO and its customers. The second benefit is that the tool provides a formalization of requirements of
the standard, e.g., the constraint in Section 6.4 (cf. page 21). They are implemented in the tool as validity checks 42 on the imported functional safety
artifacts, and allow the tool to automatically create a (partial) ISO26262 compliance statement. This has increased the objectivity and uniformity
of the certification process.

8 THREATS TO VALIDITY

As highlighted by Petersen et al. 25, action research yields three main validity concerns: 1) context dependency (which is intrinsic to action research
and hence“can never be really mitigated but it can be reduced [...] when lessons learned may be transferred to similar contexts”), 2) bias of the researcher
(which can be mitigated by involving multiple researchers and/or feedback from external experts), and 3) the time factor, i.e., learning and changes
in the context (which can be mitigated, again, by involving multiple researchers and being aware of major changes).

Petersen et al. map the above threats to external validity and internal validity. Accordingly, we follow the definition of Wohlin et al. 43 to report
the related potential validity threats that we identified, and the measures we adopted to mitigate them.

External Validity concerns the generalizability of the study. We identify two main limitations to external validity, regarding the set of guidelines
we built, and the general applicability of MuDForM.

We make no claims to the general applicability or completeness of the guidelines. To mitigate this threat, we share them to be reusable and
extensible so that they mature for general applicability. In fact, the guidelines are continuously adapted and extended. During modeling activities,
we write down reasons for decisions when we notice them. We then periodically let them review by others and the possibly formulate it as a
guideline.

The guidelines are written in terms of metamodel elements and, if necessary, complemented by commonly-used terminology from outside the
metamodel. As such, we cannot ensure general-understandability. As a mitigation, however, we use common terminology that ’anybody in the
field’ should be able to understand. To verify this, the method steps have been applied in this and in other studies, and the guidelines are reviewed
by several practitioners.



DECKERS and LAGO 27

Concerning the general applicability ofMuDForM, the method is designed to be domain independent (cf. objective O2 in Section 2.1). A possible
limitation is that the method takes a textual description as input. As a mitigation of this potential threat, the step of extracting phrases can also
be applied in interviews with domain experts, to acquire a set of usable input sentences. About domain experts, in this specific study we have
involved a member of the ISO26262 standard committee to provide feedback. We are therefore confident that the modeled standard, output of
the application of our method, is generally applicable to ensure standard conformity.

Finally, the study might not cover all the method parts, and thus some method parts might potentially be incorrect. More experimentation will
be needed to increase method maturity. As a general mitigation, the steps have been executed in other cases too 44,17,45, and the guidelines have
been reviewed by practitioners.

Internal Validity concerns the causality between the study and its outcomes 43. We see a limitation regarding the potential bias that the direct
involvement of the method developers might have introduced. For example, with respect to our observation that the used UML notation is unam-
biguous (Section 7.1), or that all process artifacts of the modeled ISO26262 processes can be defined completely in terms of the domain model
(Section 7.2). To mitigate this threat, we regularly involved other stakeholders to provide feedback, namely ISO26262 standard experts, experts in
the automotive domain, ISO26262 users (e.g., for feature engineering), and functional safety tool developers.

9 RELATED WORK

Our SLR 6 did not uncover any work on methodical support for applying a created domain specification. However, the SLR started the literature
search with a search string that included the term “domain". So, it might have missed works that are not centered around the domain concept. To
make sure we would not miss relevant work, we performed a search on Google Scholar on the following terms in the publication title: ((function)
OR (process) OR (feature) OR (use case)). This leads to more than 100.000 hits. Adding “domain" as a mandatory term would not be helpful, as this
is already covered by our SLR. For feasibility, we instead checked the top publications ordered by relevance. This resulted in a number of works
related to ours, even though none of them covered methodical support for creating domain-based specifications. The following reports on them.

On process modeling. The Object Process Methodology (OPM) 38,39 also has concepts for modeling state (objects) and change (processes), and
has a viewpoint to specify how those are related (object process diagram). It also allows composition for both types of concepts and has some
viewpoints similar to viewpoints of MuDForM. OPM distinguishes a descriptive aspect and a prescriptive aspect in a domain, but does not provide
methodical support for the specification of the prescriptive models in terms of descriptive models. (Section 7.2 elaborates on the relation between
OPM and MuDForM.)

On feature modeling. Lee et al. 24 give guidelines for identifying features and state that a domain dictionary is required to assure uniformity
across feature names. But they do not give steps and guidelines on how to use such a dictionary.

On use case modeling. Samarasinghe and Somé 46 discuss the extraction of domain models from use cases. But we could not find a paper that
shows how to write use cases in terms of a domain model. A paper from Śmiałek et al. 47 presents an approach and metamodel to standardize
sentences in use case scenarios. However, they do not show a method to do so, i.e., no steps or guidelines are presented. Furthermore, they do
not use a domain model, but just a vocabulary.

On functional modeling.We did not find any relevant papers that use a domain model as the vocabulary in functional specifications, except for
the aforementioned KISS method 3 in Section 1.1. But this book and other publications that refer to the KISS method, e.g., 48,49 do not provide a
metamodel, detailed steps, or guidelines.

10 CONCLUSION AND FUTURE WORK

This paper describes the MuDForM methodical support for using a domain model as a language to define other models in general, and feature
models in particular; and reports on an industrial case study in the automotive domain.

We were interested in studying the following research questions: (RQ1)How should methodical support for making feature specifications be
integrated in a method that supports the creation of domain models?, and (RQ2) What methodical support can be given for the specification of
a feature, such that it is defined in terms of domain models? We conclude that the current way in which MuDForM is defined, is applicable to
define feature modeling too. Namely, we have defined modeling concepts, method steps, guidelines, and viewpoints, and integrated those method
ingredients with the rest of the MuDForM definition. Furthermore, we conclude that it is possible to provide guidance for the creation of domain-
based specifications. In doing so, we observe that the defined metamodel, and method steps are quite mature, as we did not detect relevant
knowledge from the ISO26262 that we could not capture. However, more case studies would help perform a quantitative evaluation of MuDForM,
to get clarity on which method ingredients are more or less mature, and which modeling decisions require better guidance. Furthermore, we would



28 DECKERS and LAGO

also like to have a more elaborate comparison onmaking domain-based specifications with and withoutMuDForM, which (of course) would require
the involvement of modelers that have no previous knowledge of MuDForM.

The results from our study fill an important gap in the state of the art, which to the best of our knowledge lacks in providing methodical support
in the first place. It lays the foundation for our future work on building a significant, validated and reusable set of guidelines for which we plan the
following:

• Building a community that actively validates, identifies, and manages guidelines.
• Searching for guidelines in existing literature, and extending the list of useful publications 3,50,51,52,53,54 which were found by our literature

review 6.
• Conducting a literature review to find, and analyze guidelines from process modeling approaches. We will also search for more literature on

OPM, besides the already mentioned publications 38,39.
Regarding the method engineering, in our future work we plan to define criteria for deciding whether something should be a method step or a

guideline. This could lead to a refactoring of MuDForM as mentioned in Section 7.1.
To facilitate industrial adoption, we plan to create a MuDForM handbook for practitioners, and manage its evolution via an open platform. We

are currently investigating the requirements and possibilities for a modeling tool that supports MuDForM, in order to replace the UML modeling
tool that we currently use, i.e., Enterprise Architect 31.

Finally, we want to mention that we, MuDForM researchers and TNO, have plans for a project to model the processes of the ISO21434 standard
for Cybersecurity Engineering in Automotive 55. This standard has a high conceptual overlap with the ISO26262 standard, and the idea is that the
models from our case study can be reused in this project.

ACKNOWLEDGMENTS

We like to thank Frank Benders, Dennis van den Brand, Jennek Geels, Arjan van Krimpen, Wan Fokkink, and Ivano Malavolta for their feedback
and good discussions.

References

1. Shlaer S, Mellor SJ. An Object-Oriented Approach to Domain Analysis. SIGSOFT Softw. Eng. Notes 1989; 14(5): 66–77. doi:
10.1145/71633.71639

2. Simos MA. Organization Domain Modeling (ODM): Formalizing the Core Domain Modeling Life Cycle. In: ; Aug 1995: 196–205.
3. Kristen G. Object Orientation, The KISS Method, From Information Architecture to Information System. Addison Wesley . 1994.
4. Evans E. Domain-Driven Design: Tackling Complexity in the Heart of software. Addison-Wesley . 2004.
5. Firesmith D. Specifying reusable security requirements. Journal of Object Technology 2004; 3: 61–75.
6. Deckers R, Lago P. Systematic Literature Review of Domain-oriented Specification Techniques. Journal of Systems and Software 2022: 1–23.

doi: 10.1016/j.jss.2022.111415
7. ISO I. 26262: Road vehicles-Functional safety. International Standard ISO/FDIS 2018; 26262-2.
8. Deursen Av, Klint P, Visser J. Domain-specific languages: An annotated bibliography. ACM Sigplan Notices 2000; 35: 26–36.
9. Barišic A, Amaral V, Goulao M, Barroca B. Quality in use of DSLs: Current evaluation methods. Proceedings of the 3rd INForum-Simpósio de

Informática (INForum2011) 2011.
10. Barišic A, Amaral V, Goulão M, Barroca B. Evaluating the usability of domain-specific languages. In: IGI Global. 2014 (pp. 2120–2141).
11. Barišić A, Amaral V, GoulãoM. Usability driven DSL development with USE-ME. Computer Languages, Systems & Structures 2018; 51: 118–157.
12. Gabriel P, Goulão M, Amaral V. Do Software Languages Engineers Evaluate their Languages?. arXiv preprint arXiv:1109.6794 2011.

http://dx.doi.org/10.1145/71633.71639
http://dx.doi.org/10.1145/71633.71639
http://dx.doi.org/10.1016/j.jss.2022.111415


DECKERS and LAGO 29

13. Gray J, Fisher K, Consel C, Karsai G, Mernik M, Tolvanen JP. DSLs: The Good, the Bad, and the Ugly. In: OOPSLA Companion ’08. Association
for Computing Machinery; 2008; New York, NY, USA: 791–794

14. Völter M. Best practices for DSLs and model-driven development. Journal of Object Technology 2009; 8(6): 79–102.
15. Deckers R. MuDForM Method definition. tech. rep., Atom Free IT, online at https://github.com/robertdeckers/MuDForM; 2022.
16. Kang KC, Cohen SG, Hess JA, Novak WE, Peterson AS. Feature-oriented domain analysis (FODA) feasibility study. tech. rep., Software

Engineering Institute, Carnegie Mellon University; 1990.
17. Khabbaz Saberi A. Functional Safety: A New Architectural Perspective: Model-Based Safety Engineering for Automated Driving Systems. PhD thesis.

Eindhoven University of Technology, 2020.
18. OMG . Unified Modeling Language Version 2.5.1. tech. rep., OMG; 2017.
19. Kronlöf K.Method integration, concepts and case studies. John Wiley and Sons . 1993.
20. Abouzahra A, Bézivin J, Didonet M, Fabro D, Jouault F. A Practical Approach to Bridging Domain Specific Languages with UML profiles. In: .

5. ; 2005.
21. Fowler M. Domain specific languages. Addison-Wesley Professional . 2010.
22. Kelly S, Tolvanen JP. Domain-Specific Modeling. IEEE Computer Society . 2008.
23. Simos M, Creps R, Klingler C, Lavine L. Software Technology for Adaptable Reliable Systems (STARS). Organization Domain Modeling (ODM)

Guidebook, Version 1.0.. tech. rep., UNISYS DEFENSE SYSTEMS RESTON VA; 1995.
24. Lee K, Kang KC, Lee J. Concepts and guidelines of feature modeling for product line software engineering. In: Springer. ; 2002: 62–77.
25. Petersen K, Gencel C, Asghari N, Baca D, Betz S. Action research as a model for industry-academia collaboration in the software engineering

context. In: ; 2014: 55–62.
26. Voelter M.DSL Engineering Designing, Implementing and Using Domain-Specific Languages. Createspace Independent Publishing Platform . 2013.
27. Mannaerts H, Verelst J. Normalized systems. Koppa BvBa . 2009.
28. Steinberg D, Budinsky F, Merks E, Paternostro M. EMF: eclipse modeling framework. Pearson Education . 2008.
29. OMG . Meta Object Facility 2.5.1. tech. rep., OMG; 2016.
30. MetaCase . MetaEdit+ Workbench User’s Guide version 4.5. tech. rep., OMG; 2022.
31. Sparx Systems . Enterprise Architect version 15.2. https://sparxsystems.com/products/ea/; 2021. Accessed: 2021-08-19.
32. Fokkink W. Introduction to process algebra. springer science & Business Media . 2013.
33. Luo Y, Brand v. dM, Kiburse A. Safety Case Development with SBVR-Based Controlled Language. In: Desfray P, Filipe J, Hammoudi S, Pires LF.

, eds.Model-Driven Engineering and Software DevelopmentSpringer International Publishing; 2015; Cham: 3–17.
34. Automotive T. RESEARCH ON INTEGRATED VEHICLE SAFETY. https://www.tno.nl/en/focus-areas/traffic-transport/expertise-

groups/research-on-integrated-vehicle-safety/; 2021. Accessed: 23-8-2021.
35. Reinhartz-Berger I, Sturm A. Behavioral Domain Analysis — The Application-Based Domain Modeling Approach. In: Springer-Verlag; 2004:

410–424.
36. Aagesen G, Krogstie J. Analysis and design of business processes using BPMN. In: Springer. 2010 (pp. 213–235).
37. Decker G, Dijkman R, Dumas M, García-Bañuelos L. The business process modeling notation. In: Springer. 2010 (pp. 347–368).
38. Dori D. Object-process analysis: maintaining the balance between system structure and behaviour. Journal of Logic and Computation 1995;

5(2): 227–249.

https://sparxsystems.com/products/ea/


30 DECKERS and LAGO

39. Dori D, Goodman M. From object-process analysis to object-process design. Annals of Software Engineering 1996; 2(1): 25–50.
40. Wieringa R. Object-oriented analysis, structured analysis, and Jackson System Development. In: Citeseer. ; 1991: 1–21.
41. JetBrains . MPS, Meta Programming System. https://www.jetbrains.com/mps/; 2021. Accessed: 2021-08-19.
42. Brand DVD. Formalization of the ISO 26262 standard. Master’s thesis. Eindhoven University of Technology. 2018.
43. Wohlin C, Runeson P, Höst M, Ohlsson M, Regnell B, Wesslén A. Experimentation in Software Engineering. Springer Science & Business Media

. 2012
44. Moghaddam FA, Deckers R, Procaccianti G, Grosso P, Lago P. A domain model for self-adaptive software systems. In: ; 2017: 16–22.
45. Deckers R, Lago P. Methodical conversion of text to models: MuDForM Definition and Case Study.

https://github.com/robertdeckers/MuDForM/blob/main/FromTextToModel.pdf; to be published in PoEM forum 2022 proceedings.
46. Samarasinghe N, Somé SS. Generating a Domain Model from a Use Case Model.. IASSE 2005; 278.
47. Śmiałek M, Bojarski J, Nowakowski W, Ambroziewicz A, Straszak T. Complementary use case scenario representations based on domain

vocabularies. In: Springer. ; 2007: 544–558.
48. Hoppenbrouwers S, Bleeker A, Proper H. Modeling linguistically complex business domains. tech. rep., Nijmegen Institute for Information and

Computing Sciences, University of Nijmegen; 2004.
49. Proper HA, Bleeker AI, Hoppenbrouwers SJBA. Object–Role Modelling as a Domain Modelling Approach. In: ; 2004: 317–328.
50. Sagar VBV, Abirami S. Conceptual modeling of natural language functional requirements. Journal of System and Software 2014; 88.
51. Abirami S, Shankari G, Akshaya S, Sithika M. Conceptual Modeling of Non-Functional Requirements from Natural Language Text. In: Jain LC,

Behera HS, Mandal JK, Mohapatra DP., eds. Computational Intelligence in Data Mining - Volume 3Springer India; 2015; New Delhi: 1–11.
52. Vos v. dB, Hoppenbrouwers. J, Hoppenbrouwers S. NL Structures and Conceptual Modelling: the KISS case. In: ; 1996: 197.
53. Ibrahim M, Ahmad R. Class diagram extraction from textual requirements using natural language processing techniques. In: IEEE; 2010: 200–

204.
54. Elbendak M, Vickers P, Rossiter N. Parsed use case descriptions as a basis for object-oriented class model generation. Journal of Systems and

Software 2011; 87: 1209–1223.
55. ISO IStc. ISO/SAE 21434 Road vehicles — Cybersecurity engineering. International Standard ISO/FDIS 2021.



DECKERS and LAGO 31

APPENDIX

A GUIDELINES PERTAINING TO FEATURE MODELING

The guidelines below pertain to feature modeling and are a subset of the complete MuDForM definition 15.
Step Name Description
Define purpose Common feature model

purposes
When in doubt about the purpose, check if these common purposes for
feature models are applicable:
• Provide the terminology for specifying other features.
• Provide the terminology for specifying requirements for a system that
implements the feature, like a software application, work process, or
hardware.

• Form the starting point for deriving specifications in another domain,
typically a software domain. In other words, generate code (or models)
for a specific target platform. In this case the model would typically
serve as the source model for transformation rules.

• Provide terminology for specifying tests to verify if a system works
according to the feature model.

• Provide actors with work instructions. Actors can also be (software)
systems, in that case the feature model can be seen as a functional
system specification.

Define purpose Different specification spaces
have a different purpose

Separate the purpose of a domain model from the purpose of a feature
model. A domain model has typically a wider applicability than a feature
model.

Select input text Start with the foundation and
the core concepts

When a text is too large to take in at once, then the selection can be
narrowed (initially) by selecting the parts of the text that are needed for
understanding other parts. This might require knowledge of the text, or
at least some initial analysis to see the dependencies between parts
(chapters, sections, paragraphs) of the text.

Select input text Start small Limit to 50 sentences for a first iteration. This helps to quickly get an
initial model. After the transformation from text to an initial model, one
can choose to start the model engineering, or to first addmore sentences.

Extract phrases Check if the subject is also an
object in other phrases

Check if the subject of an interaction phrase occurs as object in other
phrases. In this case, the phrase often means “The actual subject/actor
observes that”. One can maintain the original phrase structure, but the
subject will not become a candidate actor, but most likely a candidate
domain class. Example: In a toll registration system “The vehicle passes
the toll booth” could be rewritten as “The system observes the vehicle
passing the toll booth”. But the original phrase is more natural and can
be kept. And the subject “vehicle” will most likely occur as an object in
other phrases, causing it to be a candidate domain class.

Determine relevance Ignore phrases about the
document itself

Ignore phrases that are about the document itself, like an explanation of
the document structure, or sentences that “glue” paragraphs together.
For example, an extracted phrase like “TO explain <some topic> in
chapter”, or “TO summarize document in summary” can be ignored.
(Unless the domain is writing reports of course).



32 DECKERS and LAGO

Step Name Description
Eliminate homonyms
and synonyms

Replace generic verbs with a
domain specific term

Be aware of generic verbs. These are often data-oriented verbs or verbs
that are easily applicable to a neighboring domain. Examples of
data-oriented verbs are:
• Create, identify, enter, define, describe, register, select, add
• Update, adapt, change, modify
• Delete, terminate, erase, remove, endThese verbs are typical for administrative and conceptual objects.
Preferably use a more semantical term from the actual domain. For
example, “change address of a person” is actually “person moves to a
new address” or “enter an order” becomes “place an order” or simply “to
order”, or “change the color of the wall in blue” is really “paint the wall
blue”. The verb term may be overloaded, when there is no good
alternative available according to the domain experts. For example, to
describe a person could be seen the same as the same activity as to
describe a dog. But in case you consider it to be different, you can
postfix the general verb with the direct object, resulting in “to describe
person” and “to describe dog”.

Eliminate homonyms
and synonyms

Standardize logical constructs Logical constructs are not always formatted uniformly in the input text.
Sometimes punctuation is used to construct sentences containing the
semantics “if-then-else“, “for all”, “implies that”, and “or”. By adding a
clarifying keyword like “then” or parentheses it becomes clear which
interpretation is meant. It also holds for operations like “is equal to” or
“has the same value as”. Use a uniform syntax to express conditions and
operations in corresponding phrases. For example, replace “when it
rains, take an umbrella” with “if it rains, then take an umbrella”.

Classify candidates Identify features and functions
from text headers

Text headers often indicate the name of a function or feature, because
texts are typically written as a coherent chronological series of events.

Classify candidates Identify functions from use
case interactions

If use cases, user stories, system (interaction) scenarios, are used as
input source, then the steps that describe system behavior are often
calls of system functions.

Classify candidates Definite articles indicate a
function attribute

A definite article, i.e., “the”, might point to a role an object plays in a
function. Classify it as a function attribute with a (domain) class as a type.

Declare and allocate
elements

Auxiliary verbs indicate the
specification space type

Auxiliary verbs can be an indication if a phrase belongs to a feature or to
a domain. Verbs like “will, can, be able” indicate that it is content for a
domain model. Verbs like “must, shall, should, ought to” indicate that it is
content for a feature model.

Identify specification
spaces

Begin with one context, one
domain, and one feature

If there are no existing specifications spaces and there are no obvious
boundaries, then start with one context, one domain, and one feature.

Identify specification
spaces

Separate contexts for domain
definition from contexts for
feature interaction

Separate concepts for defining domain class attributes, domain activity
attributes, and operations in activity models, from concepts that are
needed to specify the interaction of features with their environment.
Examples of the latter are external actors and operations that are the
type of function events.

Create initial model,
Specify function
signatures

Introduce feature attributes for
sets of existing objects

A feature is often activated in an environment of sets of (independent)
objects. Such sets of objects often serve as the pool of objects to select
from for participation in function steps. Introduce set attributes for
those objects in the feature or in the top-level functions.



DECKERS and LAGO 33

Step Name Description
Create initial model,
Specify function
signatures

Introduce feature wide
attributes for the central objects

Features, and sometimes top-level functions in the feature, often center
around one or more central objects, which are referred to via a function
attribute. Such an attribute can be global in the feature (or the top-level
function) to prevent that other functions must define it separately as a
function attribute.

Specify feature
structure

Start specifying functions for
domain classes that are not a
part of a composition or
aggregation

If there are not already functions defined on a domain, then at least
functions are needed to create and manipulate the objects that are not
dependent on other objects; the so called strong objects. Namely those
objects are needed to instantiate the weaker objects that dependent on
them.

Specify feature
structure

Define a separate function for
function steps sequences that
occur more than once

Like normal functional decomposition used in programming or a
function-oriented modeling method, a functional decomposition is handy
when several higher-level functions contain the same sub-behavior. This
common sub-behavior may be captured in a separate function.

Specify feature
structure

Define a function for coherent
behavior that will be assigned
to one actor

Define functions for units of behavior, often called tasks, that will be
assigned to and performed by one actor.

Specify feature
structure

Check if atomic object
manipulations are domain
activities

During feature specification, one may find functions that manipulate a
single object. Take into consideration if such a function should be
defined as a domain activity. If so, it should be allocated to the domain
model. It might be a domain activity if it is about what can happen and
not about what must happen or how it happens, and if it is independent
from the feature, and any actor that performs the function.

Specify feature
structure

Find functions from system
specifications

System functions can be found from several perspectives:
• System use cases indicate a system function, and steps in the use
case scenario indicate lower-level functions.

• Sub-systems in a system architecture often indicate a high-level
function.

• A decomposition of the system requirements may indicate functions
and sub functions.

• Chapters or aspects in a requirements document indicate features
or high-level functions.

Specify feature
structure

Check the domain models for
unused activities

Go through the domain activities of the relevant domain models and
check if they should be used in the feature. It is not that all activities
must be used, because a feature might only cover a domain partially. But
if activities are not used at all, they might be forgotten in the feature
model, or might not be a domain activity at all.

Specify function
lifecycle

Go with the flow Begin with the major function steps:
• The activities and functions that must be executed in the function.
• Their temporal ordering: sequence, selection, parallel, iteration.
Initially skip:
• Constraints of steps (enter criteria and exit criteria)
• Decision logic of coordinators (guards of selections, forks, iterators)
• Decision logic of step participants, i.e., constraints on the attributes
that are allocated to step participants.



34 DECKERS and LAGO

Step Name Description
Specify function
lifecycle

Check if all function
sub-behaviors are occurring as
a step in a function lifecycle

All the function sub-behaviors should occur at least once as a step in the
function lifecycle. It means that the type of the function step is the same
as the type of the function sub-behavior.

Specify function
lifecycle

Check for temporal words in
the input text

Temporal words in the input text are a hint about the passage of time or
the position of an event in time, usually indicated with a transitional
preposition (e.g., after, before, during, until). Other temporal words can
also be a hint, e.g., now, eventually, suddenly, initially.

Specify function step Check the used activities with
the domain model

For each domain activity that is used (invoked) in a function step,
immediately cross-check the domain activity with the domain model. Is
the domain activity also present in the interaction view? Does it have
the same objects associated with it (using the same prepositions)?
Postpone other cross checks with the domain model until the function
lifecycle is completed. By doing the domain model check immediately,
the domain model is validated as well, and it is assured that all the
domain activities usages conform to the domain model.

Specify function step Check the consistency between
constraints that involve the
same domain class

Find all the constraints that are relevant for a function step and that
involve the same domain class. These are not only the constraints
directly connected to that step, but also the ones that are specified at a
higher aggregation level, e.g., as an invariant of a container function.
Then verify if they are free of contradictions.

Specify function step Default allocation Often one domain class will only occur just once as the type of an
attribute in a function. That means that such an attribute is probably the
attribute that will be allocated to all function step participants that have
that domain class as type. In practice, this guideline can imply that those
step participants do not need to be allocated manually.


	Specifying Features in Terms of Domain Models: MuDForM Method Definition and Case Study
	Abstract
	Introduction
	Problem Statement
	Contribution and Audience

	Background: MuDForM vision and terminology
	MuDForM objectives
	Domain
	Feature

	Research Methodology
	MuDForM Foundation
	MuDForM Modeling Process
	MuDForM model structure
	MuDForM Specification Elements

	Feature Modeling
	From Modeling Initiation to Initial Model
	Scoping
	Grammatical analysis
	Text-to-model transformation

	Engineer Feature
	Specify feature structure
	Specify function lifecycle
	Specify function step
	Specify function signatures


	A Case Study: Modeling the Processes of ISO26262
	Introduction to the Case
	Case study overview and execution
	From Modeling Initiation to Initial Model
	Scoping
	Grammatical analysis
	Text-to-model transformation

	Specify Function Lifecycles
	Specify Function Signatures
	Specify Feature Structure

	Discussion
	Support for domain-based Specifications
	Bridging the Gap between Feature Trees and Domain Models
	Feature modeling is part of MuDForM
	Reflection on using UML for MuDForM
	Reflection on Case-specific Objectives

	Threats to Validity
	Related Work
	Conclusion and Future Work
	Acknowledgments
	References
	Appendix
	Guidelines pertaining to Feature Modeling


