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Abstract

In literature until today, many authors have studied special sequences in different number systems. In this paper, we have

introduced the Oresme hybrid quaternion numbers. We give some properties and identities such as Binet’s formula, generat-

ing function, norm and characteristic equation for these quaternions. Furthermore, matrix and determinant forms for these

quaternion numbers are given.
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Abstract. In literature until today, many authors have studied special
sequences in different number systems. In this paper, we have intro-
duced the Oresme hybrid quaternion numbers. We give some properties
and identities such as Binet’s formula, generating function, norm and
characteristic equation for these quaternions. Furthermore, matrix and
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1. Introduction

Oresme numbers are introduced and given some properties for example Cassini’s
identity, Catalan’s identity and d’Ocagne’s identity for Oresme numbers by
Horadam in [6]. Oresme sequence denoted with On is defined by the following
recurrence relation for n ≥ 0

On+2 = On+1 −
1

4
On (1.1)

with the initial conditions O0 = 0 , O1 = O2 = 1
2 . This sequence are also

expressed as:

On+2 −
3

4
On +

1

4
On−1 = 0 , (1.2)

On+2 −
3

4
On+1 +

1

16
On−1 = 0 , (1.3)

*Corresponding Author.



2 F. Torunbalcı Aydın

That is, Oresme sequence On is

1

2
,
2

4
,
3

8
,
4

16

5

32
, . . . ,

n

2n
, . . . (1.4)

and Binet’s formula and generating function for Oresme numbers respectively,
as follows:

On =
n

2n
, (1.5)

gOn(t) =
∞∑

n=1

On t
n =

1
2 t

1− t+ 1
4 t

2
. (1.6)

Some properties of Oresme numbers are:

On+1 On−1 −O2
n =− (

1

4
)n , (1.7)

On+r On−r −O2
n =− (

1

4
)n−r+1 F 2

r−1 , (1.8)

O2
n+1 − (

1

4
)2 O2

n−1 =
1

2
O2n+1 +

1

8
O2n−1 , (1.9)

1

2
Om+n−1 =Om On − 1

4
Om−1 On−1 , (1.10)

1

2
O2n−1 =O2

n − 1

4
O2

n−1 = On+1 On−1 −
1

4
On On−2 , (1.11)

On−r On+r+s −On On+s =− (
1

4
)n−r+1 Fr−1 Fr+s−1 , (1.12)

n∑
j=0

Oj = 4 (O1 −On+2) . (1.13)

Oresme numbers were generalized by Cook in [1]. On Oresme Numbers and
their connection with Fibonacci and Pell Numbers by [4]. In [3], authors have
given generalization of the matrix form of the Oresme sequence and Oresme’s
hybrid numbers. In 2021, generalized Oresme numbers defined by [10]. In [11],
the authors investigated Oresme hybrid numbers and hybrationals. In [9], au-
thors have given dual-generalized complex component extension of Oresme
numbers.
The hybrid number system can be accepted as a generalization of the com-
plex, dual and hyperbolic number systems. In 2018, firstly, set of hybrid
numbers was introduced by [8] as follows:

K ={ a+ b i + c ε + d h |a, b, c, d ∈ R , i2 = −1 , ε2 = 0 , h2 = 1 }, (1.14)

where units satisfy the rules

i h = −h i = ε+ i .

The set K of hybrid numbers forms non-commutative ring with respect to
the addition and multiplication operations.
Taking two hybrid numbers

z1 = a1 + b1 i+ c1 ε+ d1 h
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,

z2 = a2 + b2 i+ c2 ε+ d2 h

and s ∈ R get:

• Equality z1 = z2, if and only if, a1 = a2, b1 = b2, c1 = c2, and d1 = d2;
• Sum z1 + z2 = (a1 + a2) + (b1 + b2) i+ (c1 + c2) ε+ (d1 + d2)h;
• Subtraction z1 − z2 = (a1 − a2) + (b1 − b2) i+ (c1 − c2) ε+ (d1 − d2)h;
• Multiplication by scalar s.z = s.a+ s.b i+ s.c ε+ s.d h.

The real number C(z) = z.z = z.z = a2 + (b− c)2 − c2 − d2 is called the char-
acter of the hybrid number z. A new expression for the character of a hybrid
number z is given by

C(z) = (a− b)2 − 2 b(c− a)− d2 (1.15)

The real quaternions were first described by Irish mathematician William

Table 1. Multiplication scheme of hybrid numbers

x 1 i ε h
1 1 i ε h
i i −1 1− h ε+ i
ε ε 1+h 0 −ε
h h −ε− i ε 1

Rowan Hamilton in 1843. Hamilton [5] introduced the set of quaternions
which can be represented as

H = { q = q0 + i q1 + j q2 + k q3 | q0, q1, q2, q3 ∈ R } (1.16)

where

i2 = j2 = k2 = −1 , i j = −j i = k , j k = −k j = i , k i = −i k = j .
(1.17)

There are several studies on hybrid quaternions for example Horadam hyrid
[2], Leonardo hybrid [7].
In this paper, we have defined the Oresme’s hybrid quaternions and obtained
some results.

2. Oresme’s hybrid quaternion numbers

In this section, Oresme’s hybrid quaternions will be obtained using the fol-
lowing definitions.
Definition.2.1. For n ≥ 1, the n-th Oresme’s hybrid numbers HOn are defined
by using the Oresme numbers as follows

HOn = On + i On+1 + εOn+2 + hOn+3 (2.1)

where initial values are HO0 = 1
2 i+

2
4 ε+

3
8 h, HO1 = 1

2 + 2
4 i+

3
8 ε+

4
16 h.
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Now we give the recurrence relation corresponding to expression Eq.(1.1).
That is

HOn = HOn−1 −
1

4
HOn−2. (2.2)

Using relations Eq.(1.1) and Eq.(2.1) we obtain that,

HOn = On + i On+1 + εOn+2 + hOn+3

= (On−1 − 1
4 On−2) + i (On − 1

4 On−1) + ε (On+1 − 1
4 On)

+h (On+2 − 1
4 On+1)

= HOn−1 − 1
4 HOn−2

Definition.2.2. For n ≥ 2, the n-th Oresme’s quaternion number QOn are
defined as follows

QOn = On + i On+1 + j On+2 + k On+3 (2.3)

Definition.2.3. The recurrence relation for Oresme’s quaternion numbersQOn,
n ≥ 2, is defined by as follows

QOn+1 = QOn − 1

4
QOn−1 (2.4)

where initial values are QO0 = 1
2 i+

2
4 j +

3
8 k, QO1 = 1

2 + 2
4 i+

3
8 j +

4
16 k.

Definition.2.4. Oresme’s hybrid quaternion numbers HQOn are defined as
follows

HQOn = HOn + iHOn+1 + jHOn+2 + kHOn+3 (2.5)

where i , j , k are the units of the quaternions and HOn is the n-th Oresme
hybrid number. Thus, Oresme’s hybrid quaternions can be rewritten by as
follows

HQOn = (On + i On+1 + εOn+2 + hOn+3)
+i (On+1 + i On+2 + εOn+3 + hOn+4)
+j (On+2 + i On+3 + εOn+4 + hOn+5)
+k (On+3 + i On+4 + εOn+5 + hOn+6)
= QOn + iQOn+1 + εQOn+2 + hQOn+3

(2.6)

where i , ε , h are the imaginary units of the hybrid numbers and QOn =
On + i On+1 + j On+2 + k On+3 is Oresme quaternion number.
Definition.2.5. The recurrence relation for Oresme’s hybrid quaternion num-
bers HQOn, n ≥ 1, is defined by as follows

HQOn+1 = HQOn − 1

4
HQOn−1 (2.7)

Definition.2.6. Oresme’s hybrid quaternion numbers HQOn are defined in
two different ways as follows

HQOn = HOn + iHOn+1 + jHOn+2 + kHOn+3

= QOn + iQOn+1 + εQOn+2 + hQOn+3
(2.8)

where initial values are

HQO0 = HO0 + iHO1 + jHO2 + kHO3

= QO0 + iQO1 + εQO2 + hQO3,
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Table 2. Oresme’s hybrids and O’resme quaternion numbers

n HOn QOn

o o+ 1
2 i+

1
2ε+

3
8 h 0 + 1

2 i+
1
2 j +

3
8 k

1 1
2 + 1

2 i+
3
8 ε+

1
4 h

1
2 + 1

2 i+
3
8 j +

1
4 k

2 1
2 + 3

8 i+
1
4 ε+

5
32 h

1
2 + 3

8 i+
1
4 j +

5
32 k

3 3
8 + 1

4 i+
5
32 ε+

3
32 h

3
8 + 1

4 i+
5
32 j +

3
32 k

...
...

...

HQO1 = HO1 + iHO2 + jHO3 + kHO4

= QO1 + iQO2 + εQO3 + hQO4,

HQO2 = HO2 + iHO3 + jHO4 + kHO5

= QO2 + iQO3 + εQO4 + hQO5 .

Definition.2.7. Let HQOn and HQOm be any two Oresme’s hybrid quater-
nion numbers. The addition and subtraction of the Oresme’s hybrid quater-
nion numbers are defined by

HQOn ±HQOm = (HOn ±HOm) + i (HOn+1 ±+HOm+1)

+ j (HOn+2 ±HOm+2) + k (HOn+3 ±HOm+3)
(2.9)

or

HQOn ±HQOm = (QOn ±QOm) + i (QOn+1 ±+QOm+1)

+ ε (QOn+2 ±QOm+2) + h (QOn+3 ±QOm+3)
(2.10)

Definition.2.8. Let HQOn and HQOm be any two Oresme’s hybrid quater-
nion numbers. Multiplication of the Oresme’s hybrid quaternion numbers are
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defined by

HQOn ×HQOm = (HOn + iHOn+1 + jHOn+2 + kHOn+3)

(HOm + iHOm+1 + jHOm+2 + kHOm+3)

= (HOn HOm −HOn+1 HOm+1 −HOn+2 HOm+2

−HOn+3 HOm+3)

+ i (HOn HOm+1 +HOn+1 HOm +HOn+2 HOm+3

−HOn+2 HOm+2)

+ j (HOn HOm+2 −HOn+1 HOm+3 +HOn+2 HOm

+HOn+3 HOm+1)

+ k (HOn HOm+3 +HOn+1 HOm+2 −HOn+2 HOm+1

+HOn+3 HOm).

(2.11)
or

HQOn ×HQOm = (QOn + iQOn+1 + εQOn+2 + hQOn+3)

(QOm + iQOm+1 + εQOm+2 + hQOm+3)

= (QOn QOm −QOn+1 QOm+1 −QOn+3 QOm+3

+QOn+1 QOm+2 +QOn+1 QOm+3 +QOn+2 QOm+1)

+ i (QOn QOm+1 +QOn+1 QOm −QOn+3 QOm+1)

+ ε (QOn QOm+2 +QOn+2 QOm −QOn+2 QOm+3

−QOn+3 QOm+1 +QOn+3 QOm+2 +QOn+1 QOm+3)

+ h (QOn QOm+3 −QOn+1 QOm+2 +QOn+2 QOm+1

+QOn+3 QOm).

(2.12)
Definition.2.9. Oresme’s hybrid quaternion conjugate can be defined in three
different for

HQOn = QOn + iQOn+1 + εQOn+2 + hQOn+3

as follows

Quaternion− conjugate : HQOn = QOn + iQOn+1 + εQOn+2 + hQOn+3

Hybrid− conjugate : (HQOn)
C = QOn − iQOn+1 − εQOn+2 − hQOn+3

Total − conjugate : (HQOn)
† = QOn − iQOn+1 − εQOn+2 − hQOn+3

Definition.2.10. The norm of Oresme’s hybrid quaternion numbers is defined
as follows

N(HQOn) = HO2
n +HO2

n+1 +HO2
n+2 +HO2

n+3 (2.13)
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or

N(HQOn) = QO2
n +QO2

n+1 −QO2
n+3 − 2QOn+1 QOn+2

= QO2
n + (QOn+1 −QOn+2)

2 −QO2
n+2 −QO2

n+3

= QO2
n +QO2

n+1 − 2QOn+1QOn+2 −QO2
n+2

+
1

2
QOn+1QOn+1 −

1

16
QO2

n+1

= QO2
n +

15

16
QO2

n+1 −
3

2
QOn+1QOn+2 −QO2

n+2 .

(2.14)

Definition.2.11. The character of Oresme’s hybrid quaternion numbers is de-
fined as follows

C(HQOn) = QO2
n + (QOn+1 −QOn+2)

2 −QO2
n+2 −QO2

n+3 (2.15)

Theorem 1. (Generating function)
Let HQOn be Oresme’s hybrid quaternion number. For the generating func-
tion for these quaternions is as follows:

gHQOn
(t) =

∞∑
n=1

HQOn t
n =

HQO0 + (HQO1 −HQO0) t

1− t+ 1
4 t

2
. (2.16)

Proof. Using the definition of generating function, we obtain

gHQOn
(t) = HQO0 +HQO1 t+ . . . +HQOn t

n + . . . . (2.17)

Multiplying (1− t+ 1
4 t

2) both sides of Eq.(2.17) and using Eq.(2.4), we have

(1− t+ 1
4 t

2) gHQOn
(t) = HQO0 + (HQO1 −HQO0) t

+(HQO2 −HQO1 +
1
4 HQO0) t

2

+(HQO3 −HQO2 +
1
4 HQO1) t

3 + . . .

+(HQOk+1 −HQOk + 1
4 HQOk−1) t

k+1 + . . .

where

HQO0 = 0 + i ( 12 + 1
2 i+

3
8 ε+

1
4 h) + j ( 12 + 3

8 i+
1
4 ε+

5
32 h)

+k ( 38 + 1
4 i+

5
32 ε+

3
32 h)

HQO1 −HQO0 = ( 12 + 0 i− 1
8 ε−

1
8 h) + i (0− 1

8 i−
1
8 ε−

3
32 h)

+j (− 1
8 − 1

8 i−
3
32 ε−

1
16 h) + k(− 1

8 − 3
32 i−

1
16 ε−

5
128 h)

(HQO2 −HQO1 +
1

4
HQO0) = 0,

(HQO3 −HQO2 +
1

4
HQO1) = 0, . . . , (HQOk+1 −HQOk +

1

4
HQOk−1) = 0, . . ..

Thus, the proof is completed.
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Theorem 2. (Binet’s Formula)
Let HQOn be the Oresme hybrid quaternion. For any integer n ≥ 0, the
Binet’s formula for these numbers is as follows:

HQOn = HOn + iHOn+1 + jHOn+2 + kHOn+3

= ( n
2n + i n+1

2n+1 + ε n+2
2n+2 + h n+3

2n+3 )

+i ( n+1
2n+1 + i n+2

2n+2 + ε n+3
2n+3 + h n+4

2n+4 )

+j ( n+2
2n+2 + i n+3

2n+3 + ε n+4
2n+4 + h n+5

2n+5 )

+k ( n+3
2n+3 + i n+4

2n+4 + ε n+5
2n+5 + h n+6

2n+6 )

= QOn + iQOn+1 + εQOn+2 + hQOn+3

(2.18)

where QOn = On + i On+1 + j On+2 + k On+3 and On = n
2n [6]. Proof. Bi-

net’s formula of the Oresme hybrid quaternions is easily obtained by utilizing
Binet’s formula of Oresme hybrid numbers [11] and using

QOn =
n

2n
+ i

n+ 1

2n+1
+ j

n+ 2

2n+2
+ k

n+ 3

2n+3
.

Also, Oresme’s hybrid quaternion number can be represented in matrix
form.
Theorem 3. (Matrix and Determinant Form)
For n ∈ R, an array of Oresme’s hybrid quaternion number is defined as

φHQOn
=

(
QOn +QOn+2

3
4 QOn+1

2QOn+2 − 5
4 QOn+1 QOn −QOn+2

)
.

Proof. In [8], the matrix form of a hybrid number is defined as:

φa+b i+c ε+d h =

(
a+ c b− c+ d

c− b+ d a− c

)
.

Making the necessary substitutions, we have:

φHQOn
=

(
QOn +QOn+2 QOn+1 −QOn+2 +QOn+3

QOn+2 −QOn+1 +QOn+3 QOn −QOn+2

)

=

(
QOn +QOn+2

3
4QOn+1

2QOn+2 − 5
4QOn+1 QOn −QOn+2

)
where QOn+3 = QOn+2 − 1

4 QOn+1 Thus, the proof is obtained.

Now, we calculate determinant of φHQOn

det(φHQOn
) =

∣∣∣∣ QOn +QOn+2
3
4 QOn+1

2QOn+2 − 5
4 QOn+1 QOn −QOn+2

∣∣∣∣
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= (QOn +QOn+2)(QOn −QOn+2)−
3

4
QOn+1 ( 2QOn+2 −

5

4
QOn+1)

= QO2
n −QO2

n+2 −
3

2
QOn+1 QOn+2 +

5

16
QO2

n+1

= N(HQOn)

3. Conclusion

In this paper, we have introduced the Oresme hybrid quaternion numbers. We
give some properties and identities such as Binet’s formula, generating func-
tion, norm and characteristic equation for these quaternions. Furthermore,
matrix and determinant forms for these numbers are given.
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