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Abstract

Psychiatry’s foremost challenge is that its symptom-based classification has insufficient predictive value for
clinical outcomes. Precision psychiatry attempts to improve treatment response by searching for predictive
biomarkers, which should be described in the context of the neurobiology of illness to help facilitate the
development of new treatments.

This primer for clinicians aims to outline the problems that precision psychiatry faces, how computatio-
nal methods can overcome them and how these methods can be used in clinical practice. Clinicians have
an important role in translating this research and incorporating computationally-derived transdiagnostic
biomarkers in clinical trials opening the possibility for personalised therapies.

Keywords:

Diagnosis; biomarkers; precision medicine;
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Why current diagnostic categorisation may impair the progress of precision psychiatry

Precision medicine aims to increase treatment success by tailoring therapies based on individual differences.
As in other specialities, psychiatry has attempted to implement approaches from precision medicine by
seeking biomarkers to inform treatment and therefore improve prognosis. There is a need for a precision
approach in psychiatry as current treatments have been shown to have poor initial success rates for patients
within well-defined diagnostic categories [1].

However, in contrast to other areas of medicine, psychiatric patients may not fit any diagnostic category
clearly, or may have multiple diagnoses (co-morbidity) [1]. This implies that in psychiatry, diagnostic ca-
tegories may not be sensitive enough to individual differences or representative of underlying pathologies.
Using a symptom-based nosology may impair the search for biomarkers, as diagnostic groups are likely to be
heterogeneous in terms of aetiology and pathogenesis. Here, multiple neurobiological mechanisms may lead
to similar symptoms or a single mechanism may lead to different symptoms depending on their interaction
with other biopsychosocial factors [2] (Fig 1A).

How this can be overcome by redefining groups around mechanisms of disease

Motivated by the National Institute of Mental Health Research Domain Criteria (RDoC) initiative, a recent
approach to this problem considers mental health transdiagnostically. The aim is to better capture the
complexities of individuals’ mental health conditions and explain the prevalence of deficits across multiple
disorders [3]. Computational methods have been utilised to better characterise variation in psychopathology
and to define new sub-groups of mental illness [3]. These groups should be built around the presence of
physiological or cognitive biomarkers and have roots in the neuro-biological mechanisms of mental illnesses
(Fig 1A).

Factor analysis is one method of discovering new dimensions of psychopathology. To this end, large online
population studies have illustrated novel and robust dimensions of psychiatric disease derived from a consis-
tent set of self-report questionnaires which, independent of traditional scoring systems, are also associated
with specific deficits on cognitive tasks (Fig. 1B) [3].

Theory-driven approaches: advancing understanding of disease processes

Cognitive tasks and neuroimaging are combined with theoretical approaches in computational psychiatry to
learn more about differences in behaviour, which in extremis are associated with symptoms of mental illness.
Computational models are created with the aim of explaining observed behaviour (e.g. responses on tasks) in
a mathematical framework. These models are composed of free variables, i.e. parameters which vary on a per
individual basis and represent unobservable neurobiological processes, such as learning or decision-making.
When these models are applied to imaging and to cognitive tasks, the resulting parameters can illustrate
individual differences in performance at a mechanistic level, capturing the heterogeneity that is a cardinal
feature of complex conditions.

Reinforcement learning models represent a promising example of this approach. Under this framework, the
relationship between two modes of learning about rewards can be assessed e.g., goal-directed vs. habitual.
Fitting these models to each individual’s data produces parameters, i.e., summaries of the learning process,
which can be compared to reveal if there is a significant difference between two predefined groups or if novel
groups exist within the population.

These models have a biological basis, and provide further mechanistic insight into the processes underlying
aberrant behaviour. For example, mismatches between what is expected and what is actually observed by an
individual generates prediction errors, which are encoded by dopaminergic neurons in subcortical regions [1].
Deficits in goal-directed learning, and therefore a tendency towards habits, have been found across disorders
such as binge eating, addiction, social anxiety and obsessive-compulsive disorder (OCD), and have also been
related to a specific transdiagnostic factor - compulsive behaviour and intrusive thought - which underlies
all of these disorders [3].
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Data-driven approaches: Creating applications in clinical settings

Another approach in the search for predictive biomarkers, is the use of data-driven approaches such as
machine learning. These methods have been used successfully on neuroimaging and clinical data to answer
questions about prognosis and treatment outcomes. In one study, using existing clinical trial data, clinical
variables were used to predict remission in depression following treatment with selective serotonin re-uptake
inhibitors (SSRIs)[4]. Supervised dimensionality reduction enabled large numbers of clinical variables to be
reduced to a select few predictive variables, which were then fed into a machine learning algorithm to predict
remission in patients with depression. Applying this algorithm had a number needed to treat (NNT) of 14
to achieve remission in depression[1]. Ultimately, machine learning methods could provide the basis for the
creation of tools to support clinical decision making.

Better together: A combined theory-driven and data-driven approach

To realise the full potential of parameters derived from computational models as biomarkers, theory-driven
models will have to be combined with data-driven (machine learning) approaches. Generative embedding is
a process which exemplifies this combined approach. Here, models of brain connectivity or cognitive tasks
are used to fit parameters, representing physiological or cognitive processes, which can then be classified into
subgroups by machine learning techniques. These groups are validated against clinical variables, and assessed
for prognostic value. One example uses dynamic causal modelling, which infers synaptic coupling between
large neuronal populations based on connection strengths between brain regions, to predict participant
disease trajectory in depression [5].

There are several benefits to a combined theoretical and data-driven approach. Data-driven models are de-
pendent on the quality of the input data, i.e. clean signals with little noise, and how sensitive they are to
relevant biological, cognitive, and environmental processes that shape behaviour. Theory-driven models pro-
vide a specific mechanistic description for the input data, based on prior research and expertise. Parameters
of a theory-driven model can therefore provide a framework that reduces the dimensionality, i.e. the total
number of variables, of the input data, leading to more stable and accurate output from data-driven machine
learning techniques.

Challenges facing this approach

Despite the aforementioned strengths, there are several challenges facing this approach. As time progresses
it may be difficult to integrate knowledge across studies without a community-agreed standardisation. For
example, methods such as factor analysis (used to derive transdiagnostic symptom dimensions), are depen-
dent on the self-report questionnaires used [3]. Furthermore, computational methods also require significant
expertise, and non-experts may find the tools difficult to navigate.

Using transdiagnostic measurements in clinical trials focusing on multiple related diagnoses is an approach
that may prove the utility of computational biomarkers. As treatments may differ between diagnoses, trans-
diagnostic trials could help clinicians to identify therapies which work across related diagnoses, and identify
comorbid patients who could benefit from these therapies (Fig 1B). However, despite studies demonstrating
that behaviours, on which diagnosis rests, can be characterised by computational parameters with specific
neurobiological correlates [6, 7], patients with similar computational parameters may not all respond to
a particular pharmaceutical agent. This group of individuals may also be heterogeneous and large expe-
rimental medicine studies will be required to establish the mapping between neurobiology, pharmacology
and computation in order for the computational approach to realise its potential to improve person-specific
treatments.

Implementing transdiagnostic tools in clinical practice may also prove challenging. However, these tools have
the potential to complement current nosological approaches. Although symptom-based diagnoses overlap and
may only provide a rough approximation of underlying pathology, symptoms are still the primary concern
of the patient [2]. The complexity of individual psychiatric conditions will mean that clinical assessment will
remain vital to providing holistic treatment and will also help to determine which particular investigative

4
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computational batteries e.g. questionnaires, tasks, imaging modality and specifications, would be most ap-
propriate, in much the same way that a physician would run particular diagnostic biomarkers when there is
suspicion of cancer. Because transdiagnostic factors are based on symptoms, they would augment diagnoses
due to their demonstrable links to underlying psychopathology. As transdiagnostic factors and biomarkers
develop, become standardised, and their predictive value is realised, greater weight can be placed on these
investigative methods as diagnostic tools in psychiatry.

Finally, to realise the clinical potential of these tools, it will be imperative to make them both accessible and
easy to operate in a low-resource environment. Factor analysis of self-report questionnaires may be one way
to face this last challenge. Factor scores are robust and reliable if a consistent set of questions are used. If
they are shown to be robustly related to specific computational descriptions of behaviour in cognitive tasks,
the use of factors derived from self-report questionnaires could act as a proxy for computational biomarkers
(Fig. 1B). This would preclude the need for time-consuming cognitive tasks and expensive imaging, making
precision psychiatry more accessible. This is a particularly important consideration given the increased risk
of mental illness in low socio-economic groups with limited access to well-funded mental health centres.

In summary, transdiagnostic computational phenotyping of mental illness may bridge the gap between biology
and clinical practice, providing investigative and predictive tools which could precipitate a shift away from
relatively crude group-average explanations that have had limited clinical utility in alleviating mental health
symptomatology at the level of the individual.

5



P
os

te
d

on
26

O
ct

20
22

—
T

h
e

co
p
y
ri

gh
t

h
ol

d
er

is
th

e
au

th
or

/f
u
n
d
er

.
A

ll
ri

gh
ts

re
se

rv
ed

.
N

o
re

u
se

w
it

h
ou

t
p

er
m

is
si

on
.

—
h
tt

p
s:

//
d
oi

.o
rg

/1
0.

22
54

1/
au

.1
66

67
26

91
.1

61
73

00
6/

v
2

—
T

h
is

a
p
re

p
ri

n
t

an
d

h
a
s

n
o
t

b
ee

n
p

ee
r

re
v
ie

w
ed

.
D

a
ta

m
ay

b
e

p
re

li
m

in
a
ry

.

Figure 1:

Figure 1.

(A) A simplified illustration of the different levels which may underlie psychiatric diagnoses. Traditional
diagnoses are signified by blue and yellow branches, with a transdiagnostic approach denoted by the green
branch. (i) Underlying causes (aetiology), e.g., genetic expression or predisposition, contribute to (ii) patho-
physiological mechanisms, such as inflammation, aberrant synaptic gain, perceptual differences, or can result
in psychopathology in response to the environment. For example, expression of a particular gene may lead to
differences in synaptic gain, affecting output at the circuit level and ultimately influence behaviour through
the interaction with other social and psychological factors (environment) to produce (iii) symptomatology.
In this way, symptoms can be seen as the product of single or multiple maladaptive processes which can occur
across multiple linked levels from biology through to the environment. Notably, many mechanisms can give
rise to (v) the same symptom, as can the same mechanism give rise to many symptoms. Traditionally, symp-

6
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toms are then categorized into a cluster known as a diagnosis (iv) , e.g., A orB . However, a transdiagnostic
factor (vi) may recapitulate common symptoms or behaviours across disorders, and is related to a specific
mechanism (‘Y’ denoted in green), which can be captured in cognitive experiments and/or neuroimaging
(see Fig 1B).

(B) Computational psychiatry techniques implementing a precision approach. (i) Studies can include in-
dividuals with a particular diagnosis or across related diagnoses. (ii) Studies may involve factor analysis
of questionnaires that aim to encompass a broad range of transdiagnostic behaviours and symptoms. (iii)
The battery may involve cognitive tasks and neuroimaging from which model parameters can be estimated,
thereby describing the behaviour/neurobiology of an individual. (iv) Model parameters can be used to find
new subgroups within diagnoses, or alternatively (v) they can be correlated against factor scores to determine
if the factors correspond to an underlying mechanism for disease across diagnoses. (vi) Using these data,
subjects can be grouped either based on subgroups within existing disease categories (purple pathway) or
across diagnoses (orange pathway). (vii) Longitudinal data from clinical trials can be used in conjunction
with machine learning techniques to determine if the parameters produced from the models, or the factors
associated with them, have any predictive value in terms of treatment response or prognosis. Looking for
cognitive biomarkers within diagnoses is compatible with defining new dimensions of disease as cognitive
biomarkers in existing disease subgroups may be common to multiple diagnoses associated with a single
dimension. (viii) Data gained from these trials can be used in clinical practice in the form of a decision
aid, where patients can undergo clinical investigation in the form of a questionnaire battery or undergo neu-
roimaging while performing a cognitive task to allow an informed decision about which treatment may be
better. This may improve patient outcomes as it facilitates a quicker response to treatment and circumvents
the trialling of multiple different therapies.
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Supplementary Material

Table 1Key of useful terms

Term Definition
Precision Medicine A form of practice using specific therapies which

are selected (‘personalised’) for patients based on
their individual characteristics or the
characteristics of a group to which they belong [1].
The aim of personalised therapy is to maximise
patient outcomes whilst reducing adverse effects.
An example of precision psychiatry, could be taken
as selecting a therapy for depression e.g. cognitive
behavioural therapy (CBT) versus an SSRI based
on the likelihood of success for that treatment given
a patient’s characteristics (clinical/biological).

Biomarkers “A defined characteristic that is measured as an
indicator of normal biological processes, pathogenic
processes or responses to an exposure or
intervention.” [2] Biomarkers refer to substances
which, found in the body, indicate information
about a disease. These substances are usually
component parts or bi-products of the disease
process itself, and have traditionally been
biological substrates such as proteins e.g.
C-reactive protein as a biomarker for inflammation.
As part of the disease process, biomarkers have
value as they indicate the presence or prognosis of
a disease. In psychiatric disease, due to a lack of
traditional biomarkers for disease prognostication,
increasing attention is being paid to computational
parameters which can capture a behavioural
process related to a particular disease.

Transdiagnostic Psychiatry Transdiagnostic psychiatry aims to look across
diagnoses to discover new dimensions of disease
based on biological and behavioural mechanisms
[3].

Nosology Related to the classification of disease
Factor Analysis Modelling observed variables as a weighted

combination of a smaller number of latent
variables (e.g. modelling scores from 9
questionnaires as 3 factors).

Reinforcement Learning A framework for adaptive decision-making in the
context of rewards and punishment.

9
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Computational Model In neuroscientific terms, a computational model is
a mathematical description that can be used to
characterize complex cognitive processes, such as
learning or decision-making. Parameters (see
below) of the model can be estimated and
quantify a specific part of the learning process,
e.g. the weighting of new information compared
to old. These parameters are estimated based on
an individual’s behavioural responses during a
cognitive task.

Parameter Models are composed of parameters which
represent a specific part of the learning process.
When models are fitted to data from a task,
parameters can be used to describe an individual’s
performance mechanistically. For example, two
people with major depressive disorder may show
the same negative emotional bias on a cognitive
task, but that behaviour may be caused by two
different mechanisms - captured as differences in
model parameters.

High dimensionality Data can be described as highly dimensional when
there are more measurable features or variables
than there are independent samples. In these
scenarios, machine learning algorithms perform
poorly. Reducing the number of variables is
important as it improves the performance of the
algorithm. [4]

Machine Learning Machine learning involves applying algorithms to
data in order to make predictions or classifications
based on input data, which either does
(supervised) or does not (unsupervised) have
known labels. A machine learning algorithm will
produce an estimate about pattern or structure in
the data.

Dynamic Causal Modelling (DCM) A method commonly used for the quantification of
effective connectivity (e.g. the influence that one
neural population exerts over another), DCM
allows comparison between models of
interconnected networks of neuronal populations
in order to explain data gained from dynamic
imaging during cognitive tasks. [5]

Overfitting Overfitting is a process in which models become
extremely sensitive to noise when they are fitted
to a training data set. The model inaccurately
treats noise as signal of interest, so that it can
better predict outcomes for the data that it is
trained on. Highly dimensional data sets can lead
to overfitting which in turn leads to poor
predictions in new data (poor generalisability). [6]
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Number needed to treat (NNT) The number needed to treat describes the number
of patients needing to receive a particular
intervention so that one additional patient has a
positive outcome. For example in a computational
context, applying an algorithm which can predict
remission in depression, the number needed to
treat describes the number of patients the
algorithm has to be applied to for the algorithm
predict remission in an additional patient.
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