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Abstract  
Vegetative indices (VIs) collected from an unoccupied aerial vehicle (UAV) equipped with a multi-spectral 
camera can be used to study growth and development of alfalfa throughout each growth cycle. Random 
regression models are well suited to fit longitudinal phenotypes such as VIs collected over time to estimate 
growth curves using covariance functions. Using these functions genetic variation in growth through time 
can be estimated and the relationships between VIs and end-use traits, like forage yield and quality, can be 
assessed. The main objectives of this project are (1) to incorporate aerial high-throughput phenotyping to 
predict performance and genetic merit of the breeding materials, (2) to fit longitudinal random regression 
models to estimate genotype-specific growth curves and estimate the heritability of key growth parameters. 
Univariate and multivariate models were used to estimate heritability of image features for alfalfa trial of 
Helfer, 2020 and 2021. The heritability of different image features in alfalfa ranged from 0 - 0.78. The 
preliminary results showed the strongest correlation for Green NDVI and biomass yield (0.4053, 0.7875, 
and 0.6779), followed by Red edge NDVI and biomass yield (0.417, 0.7898, and 0.6417) for the first, 
second and third cuttings respectively of the experimental trial located at Helfer, Ithaca for 2020, while the 
genetic correlations for 2021 were strongest for Red edge NDVI and biomass yield (0.76, 0.74, and 0.66) 
followed by Green NDVI and biomass yield (0.75, 0.76 and 0.60) for the first, second and third cuttings. 
The potential of random regression models was investigated using Legendre polynomial functions. Random 
regression model converged for most of the time points and showed potential for modeling genetic 
parameters associated with growth and development.  
Keywords:  High-throughput   phenotyping (HTP), multi-spectral   imagery, random regression model 
 
Introduction 
The genetic gain in alfalfa has approached stagnation in the past few decades limiting the benefits to alfalfa 
farmers. Additionally, the complexity of the genomes and a high phenotypic burden has limited the adoption 
of new breeding technologies. Evaluation of breeding material requires multiple harvests per year for 
multiple years, limiting the size and number of field trials. The low heritability of forage yield also demands 
extensive replications, further limiting the breeding materials to be evaluated whereas the ability to screen 
more materials will lead to selection efficiency. 

The alfalfa phenotype (P) is determined by its genotype (G), environment (E) and the interaction between 
genotype and environment (G×E) i.e. P = G +E + G×E. Therefore, variety trials in an alfalfa breeding 
program are usually conducted in multiple environments to minimize the risk of discarding the genotypes 
that potentially perform poor in some but not in all environments due to the significant G × E. Evaluation 
of the genotypes in multiple environments is important in breeding program to get the insight of G × E and 
this is of great interest for crop breeders to assess how much selection process achieved in one environment 
could be carried to other environments. Although the impact of environment on different genotypes has 
been known and considered in alfalfa breeding for a long time, it is still considered to be a challenging 
issue. In such scenario, advanced technologies such as high-throughput genotyping and phenotyping can 
help to reduce phenotypic burden. High throughput phenotyping (HTP) could drastically reduce the 
phenotypic burden in alfalfa by replacing the plot harvester with an unoccupied aerial vehicle (UAV). 
Images taken throughout the production years of a stand will enable the evaluation of large number of 
breeding materials and provide insights into genotype-by-environment interactions (G×E), in which 



varieties have differential growth responses under different conditions. Quantitative genetic models can be 
built to accurately predict forage yields from spectral imaging. Advanced statistical models such as random 
regression models with Legendre polynomials could be implemented to fit such longitudinal phenotypes 
like VIs collected over time to estimate growth curves, to access genetic variation in growth and the 
relations of VIs to end-use traits like forage yield and quality (Meyer 2005). Understanding the genetic 
signal in differential growth response will allow for identification of breeding targets and optimal 
population change for sets of predictable environmental conditions.  

The main objectives of this project were to (1) incorporate aerial high-throughput phenotyping to predict 
performance and genetic merit of the breeding materials, and (2) fit longitudinal random regression models 
to estimate genotype-specific growth curves and estimate the heritability of key growth parameters. 

Materials and Methods 
A total of 36 Cornell varieties and breeding populations were established in a replicated variety trial with 
5 replicates in Helfer, NY in 2019. The planting of the experimental trial was done on June 12, 2019. 
Forage yield was measured using a plot flail harvester, and dry matter yield for each plot was calculated 
from fresh forage weight and dry matter content samples. Forage yield (FY) was collected for three cuts 
in 2020 and 2021. 
 
Aerial phenotyping  
Aerial phenotyping commenced on April 6, 2020. A DJI Matrice 600 Pro unoccupied aerial vehicle 
(UAV) equipped with a Micasense Rededge-MX multi-spectral camera was used for all flights. A flight 
plan was designed to obtain an 80% overlap in images collected at a flight speed of 2 m/s and an altitude 
of 20 m. Flights were conducted within 2 hours of solar noon on clear days when possible. A total of 56 
flights were conducted on average every 4.3 days across six harvests. Four ground control points 
positioned at the four corners of the trial were measured with a Trimble RTK-GPS, which was used to 
geo-locate plots. Orthomosacis were constructed using Pix4D mapping software, and were subsequently 
uploaded into Imagebreed (www.imagebreed.org), a plot image database developed by our lab (Morales 
et al. 2020), for image processing and storage and vegetative index (VI) calculation at the plot level.  
Normalized difference vegetation indices (NDVI) were calculated from mean pixel values of near 
infrared (NIR) and Red bands of plot level images as  

𝑁𝐷𝑉𝐼 = 	
(𝑅!"# − 𝑅#)
(𝑅!"# + 𝑅#)

 

where RNIR is the near infrared reflectance and RR is the red reflectance. Green normalized difference 
vegetation indices (GNDVI) and Normalized difference red edge indices (NDRE) were calculated using 
green and red edge reflectance instead of the red reflectance in Eq. 1, respectively.  

Visible atmospherically resistant index (VARI) was calculated from mean pixel values of Green, Red and 
Blue reflectance. 

𝑉𝐴𝑅𝐼 = 	
𝐺𝑟𝑒𝑒𝑛 − 𝑅𝑒𝑑

𝐺𝑟𝑒𝑒𝑛 − 𝑅𝑒𝑑 + 𝐵𝑙𝑢𝑒
 

Triangular greenness index (TGI) was calculated as, 

𝑇𝐺𝐼 = 𝐺𝑟𝑒𝑒𝑛 − (0.39 ∗ 𝑅𝑒𝑑) − (0.61 ∗ 𝐵𝑙𝑢𝑒) 

(1) 

(2) 

(3) 



 

Random regression  
Random regression models using third order of Legendre polynomials were used to fit a model for all 
time points using mean NDVI values. The general random regression model for a single trait can be 
formulated as (Schaeffer 2004):  

NDVI𝑡𝑗 = 	C𝜙(𝑡)%&𝛽&
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where, ϕ(t)jk is a time covariate coefficient defined by a basis function evaluated at time point t ; 
βk is a kth fixed regression coefficient for the population’s mean growth trajectory;  
ujk is a kth random regression coefficient associated with the additive genetic effects of the jth accession;  
K1 is the number of random regression parameters for fixed effect time trajectories; 
K2 and K3 are the number of random regression parameters for random effects;  
and pjk is a kth permanent environmental random regression coefficient for the accession j.  
Growing degree days (GDD) for each time points were calculated: 

𝐺𝐷𝐷 =	
𝑇𝑚𝑎𝑥 + 𝑇𝑚𝑖𝑛

2
− 𝑇𝑏𝑎𝑠𝑒 

where Tmax is the maximum temperature, Tmin is the minimum temperature and T = 40 ◦C is the base 
temperature. Any temperature below Tbase is set to Tbase before calculating the average.  

Results  
Heritability and Correlation of phenotypic indices close to the harvest date with biomass yield 
The heritability of different phenotypic indices ranged from 0 to 0.78 with the highest median value of 
0.63 for GNDVI followed by 0.60 for TGI and 0.55 for NDRE. 

The correlation was strongest for Green NDVI and biomass yield (0.4053, 0.7875, and 0.6779), followed 
by Red edge NDVI and biomass yield (0.417, 0.7898, and 0.6417) for the first, second and third cuttings 
respectively for 2020, while the genetic correlations for 2021 were strongest for Red edge NDVI and 
biomass yield (0.76, 0.74, and 0.66) followed by Green NDVI and biomass yield (0.75, 0.76 and 0.60) for 
the first, second and third cuttings (Figure 1). The difference in number of days between imaging and 
harvest were 9, 4 and 3 days respectively for first, second and third cutting of 2020 and 6, 3 and 3 days 
for first, second and third cutting of 2021 respectively. 

 

Figure 1(a). Box plot showing Heritability of GNDVI, NDRE, NDVI, NGRDI, TGI and VARI 



Figure 1(b). Correlation of GNDVI, NDRE, NDVI, NIR and VARI with biomass yield for 2020 and 
2021. Lines with red, green and blue color shows first, second and third cutting respectively. 
Genetic correlation  
The genetic correlation between NDVI at first, second, third and last imaging timepoint were 0.76, 0.77, 
0.8, 0.81 and 0.92, respectively, for the first cutting; 0.29, 0.41, 0.74 and 0.89 for the second cutting; 0.35, 
0.45, 0.58 and 0.79 for the third cutting respectively for 2020 (Figure 2). The genetic correlation between 
NDVI at first, second, third and last imaging timepoint were -0.4, -0.37, -0.33, -0.10 and 0.86, 
respectively, for the first cutting; 0.59, 0.61, 0.69 and 0.98 for the second cutting; 0.4, 0.48, 0.72 and 0.99 
for the third cutting respectively for 2021 (Figure 2). 

 

Figure 2. Heatmap showing genetic correlation of NDVI at different imaging timepoints (converted to 
Growing Degree Days (GDD) with biomass yield). 

Growth curves 

The breeding values estimated from NDVI and cNDVI (Cumulative NDVI) using random regression 
model were used to plot growth curves of 36 genotypes across different imaging time points (Figure 4 and 
Figure 5). The imaging time points were converted to Growing Degree Days (GDD). The breeding values 
of high yielding genotypes (upper ten percentile) were high starting from the first imaging. The variance 
in breeding values was high during early growing season than later growing season i.e. close to harvest 
time. 



 

Figure 3. Growth curves of 36 genotypes across first, second and third cutting (2020) and fourth, fifth 
using breeding values of NDVI calculated using random regression model with third order of Legendre 
polynomials. X-axis shows Growing degree days (GDD) and Y-axis shows breeding values. The upper 
10th percentile of high yielding genotypes and lower 10th percentile of low yielding genotypes are shown 
in blue and red color respectively. 

 

 



Figure 4. Growth curves of 36 genotypes across first, second and third cutting (2020) and fourth, fifth 
using breeding values of cNDVI (Cumulative NDVI) calculated using random regression model with 
third order of Legendre polynomials. X-axis shows Growing degree days (GDD) and Y-axis shows 
breeding values. The upper 10th percentile of high yielding genotypes and lower 10th percentile of low 
yielding genotypes are shown in blue and red color respectively. 

Conclusion 

The correlation of phenotypic indices derived from multi-spectral imaging was strongest with yield when 
the difference between imaging day and harvest day days was less for both 2020 and 2021. The genetic 
correlation of NDVI with biomass yield was strongest for the imaging time point closest to the harvest 
date and weakest for the imaging time point earliest in the growing season for all the cuttings. The 
random regression model with third order of Legendre polynomials was converged and able to separate 
the high yielding (upper 10th percentile) and low yielding (lower 10th percentile) for most of the cuttings. 
Random regression models with a Legendre polynomials including other environmental trials are under 
evaluation to see the potentiality of these models to fit VIs from multiple time points. 
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