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Abstract

Hydrobatic Autonomous Underwater Vehicles (AUVs) can be efficient in range and speed, as well as agile in maneuvering.

They can be beneficial in scenarios such as obstacle-avoidance, inspections, docking, and under-ice operations. However, such

AUVs are underactuated systems - this means exploiting the system dynamics is key to achieving elegant hydrobatic maneuvers

with minimum controls. This paper explores the use of Model Predictive Control (MPC) techniques to control underactuated

AUVs in hydrobatic maneuvers and presents new simulation and experimental results with the small and hydrobatic SAM

AUV. Simulations are performed using nonlinear MPC (NMPC) on the full AUV system to provide optimal control policies for

several hydrobatic maneuvers in Matlab/Simulink. For implementation on AUV hardware in ROS, a linear time varying MPC

(LTV-MPC) is derived from the nonlinear model to enable real-time control. In simulations, NMPC and LTV-MPC shows

promising results to offer much more efficient control strategies than what can be obtained with PID and LQR based controllers

in terms of rise-time, overshoot, steady-state error and robustness. The LTV-MPC shows satisfactory real-time performance

in experimental validation. The paper further also demonstrates experimentally that LTV-MPC can be run real-time on the

AUV in performing hydrobatic maneouvers.
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Abstract

Hydrobatic Autonomous Underwater Vehicles (AUVs) can
be efficient in range and speed, as well as agile in maneuver-
ing. They can be beneficial in scenarios such as obstacle-
avoidance, inspections, docking, and under-ice operations.
However, such AUVs are underactuated systems - this means
exploiting the system dynamics is key to achieving elegant
hydrobatic maneuvers with minimum controls. This paper
explores the use of Model Predictive Control (MPC) tech-
niques to control underactuated AUVs in hydrobatic maneu-
vers and presents new simulation and experimental results
with the small and hydrobatic SAM AUV. Simulations are
performed using nonlinear MPC (NMPC) on the full AUV
system to provide optimal control policies for several hydro-
batic maneuvers in Matlab/Simulink. For implementation on
AUV hardware in ROS, a linear time varying MPC (LTV-
MPC) is derived from the nonlinear model to enable real-
time control. In simulations, NMPC and LTV-MPC shows
promising results to offer much more efficient control strate-
gies than what can be obtained with PID and LQR based
controllers in terms of rise-time, overshoot, steady-state error
and robustness. The LTV-MPC shows satisfactory real-time
performance in experimental validation. The paper further
also demonstrates experimentally that LTV-MPC can be run
real-time on the AUV in performing hydrobatic maneouvers.

Keywords: Underactuated robots, optimization and opti-
mal control, marine robotics, field testing, autonomous un-
derwater vehicles, model predictive control, nonlinear sys-
tems, simulation.

1 Introduction

The term hydrobatics stems from aerobatics and refers
to agile maneuvering of underwater robots. Hydro-
batic Autonomous Underwater Vehicles (AUVs) can
be efficient in terms of range and speed, as well
as agile in maneuvering. This combination of ef-
ficiency and agility can enable new capabilities for
use cases of AUVs in ocean production, environ-
mental sensing and security [Bhat and Stenius, 2018].

∗This work was supported by the Swedish Foundation for
Strategic Research (SSF) through the Swedish Maritime Robotics
Center (SMaRC). S.Bhat (svbhat@kth.se, corresponding author)
and I.Stenius (stenius@kth.se) are with the School of Engineering
Sciences, KTH Royal Institute of Technology, Stockholm, Sweden.
D.V.Dimarogonas (dimos@kth.se) is with the School of Electri-
cal Engineering and Computer Science, KTH Royal Institute of
Technology. C.Panteli (charikliapanteli@gmail.com) was at KTH
Royal Institute of Technology when the work for this paper was
performed, and is now with Cleeven Sc, Stockholm, Sweden.

Fig. 1: The hydrobatic SAM AUV in field tests in
Kristineberg, Swedish west coast

These capabilities can include increased perception
in unknown environments [Bosch et al., 2015], pre-
cise positioning and docking with moving targets
[Berg and Wicklander, 2016, Wilson, 2009], and collab-
oration in a swarm [Özkahraman and Ögren, 2020]. In
practice, such AUVs are underactuated (and have satu-
ration limits), can have highly nonlinear dynamics (es-
pecially during hydrobatic maneuvers at high incidence
angles), and operate in a dynamic and partially observed
environment.

A key benefit of hydrobatic AUVs in field deploy-
ments is that they can effectively perform transits and
longer missions, while being agile in critical scenarios
such as obstacle avoidance, escape from pursuit, inspec-
tion of targets in confined spaces, near/under ice launch
and recovery, and vertical hovering for station-keeping
or sampling. In these scenarios, hydrobatic maneu-
vers such as helical loops (e.g. for panoramic inspec-
tions), tight turns to avoid obstacles, and precise posi-
tioning (e.g. for docking) place high requirements on
sensing, actuation and modeling. This is due to mea-
surement uncertainty, underactuation, saturation lim-
its and unsteady flow conditions. To be successful in
these critical scenarios, a key challenge is to control an
underactuated AUV system and find optimal control
sequences to efficiently perform hydrobatic maneuvers
[Bhat and Stenius, 2018, Duecker et al., 2021]. By ad-
dressing this challenge, simple, cost effective and agile
robot configurations could yet offer high performance in
autonomy and endurance.

Underactuated robotics is an active research area,
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with significant interest in motion planning, control, and
learning. Several publications focus on agile robot ma-
neuvering tasks and employ methods including classical
PID and backstepping control [Bulka and Nahon, 2018,
Ferreira et al., 2012], feedback motion planning
[Majumdar and Tedrake, 2017, Tedrake et al., 2010,
Cory and Tedrake, , Moore and Tedrake, 2012],
supervised learning [Kaufmann et al., 2020], rein-
forcement learning [Abbeel et al., 2007], optimal
control [Mueller and D’Andrea, 2013] and model
predictive control [Bangura and Mahony, 2014,
Ru and Subbarao, 2017, Gros et al., 2012].

Model predictive control, in particular, offers a
pragmatic choice in underactuated robotics. The
use of a finite prediction horizon can enable real-
time implementations, since a locally optimal con-
trol can be recalculated periodically. Augmentations
can also be made to guarantee infinite horizon stabil-
ity and convergence [Chen and Allgöwer, 1997]. The
entire system dynamics model can be used during
the computation, thereby exploiting couplings with
uncontrolled states [Mayne et al., 2000]. The abil-
ity to set constraints on states and controls enables
us to account for saturation limits, and even ac-
count for model and measurement uncertainties (e.g.
using tube-like state constraints [Mayne et al., 2011,
Lu and Cannon, 2019]). MPC methods can also be
closely linked to learning - by offering expert demon-
strations [Kaufmann et al., 2020], using learned dynam-
ics models [Amos et al., 2018, Berberich et al., 2020,
Lorenzen et al., 2019], and providing stability guaran-
tees [Zhang et al., 2016, Fan et al., 2020]. However, as
with other optimal control methods, a key limitation is
that the control policy generated is only as good as the
model and solver used, which means modeling and im-
plementation is crucial.

MPC implementations on autonomous un-
derwater vehicles include trajectory plan-
ning [Shen et al., 2015], trajectory tracking
[Shen et al., 2016, Shen et al., 2019, Yan et al., 2020],
formation control[Gomes and Pereira, 2018,
Gomes and Pereira, 2019], manipulation
[Nikou et al., 2018] and docking [Nielsen et al., 2018].
Most of these developments have been demonstrated
in simulation studies, and very few cases of experi-
mental and field demonstrations exist. Notably, in
[Steenson et al., 2014], MPC is used for speed and
depth control of a hybrid AUV in field conditions.
Additionally, experimental nonlinear MPC studies are
presented in [Saback et al., 2020] for velocity control
and in [Heshmati-alamdari et al., 2018] for waypoint
tracking in a constrained environment respectively. Two
broad reasons exist for the small number of field and
experimental implementations. First, the dimension of
the optimization problem can be too large for real-time
control if the full dynamics model (with over 12 states)
is used. This computational issue can be addressed
by combining reduced order models of weakly inter-
acting subsystems [Shen et al., 2016], or by generating
pre-computed lookup tables of attainable controls
and trajectories [Gomes and Pereira, 2018]. Second,

uncertainty in state measurement and hydrodynamic
modelling is high due to sensing constraints (low visibil-
ity, limited localization, lack of GPS) and the nature of
the underwater environment (unsteady flow, currents,
disturbances). Such uncertainty can be addressed
with good state estimation [Steenson et al., 2014],
with additional safety and robustness constraints
[Nikou et al., 2021], or by extending the MPC to
hybrid automata (including state machines or behav-
ior trees) [Gomes and Pereira, 2019]. To the best of
our knowledge, there have been no real-time MPC
implementations for agile underactuated AUVs.

This paper presents a method to control underactu-
ated AUVs in hydrobatic maneuvers online in real time
using model predictive control (MPC), together with
new simulation and experimental results. The following
contributions are made:

1. A nonlinear MPC for underactuated AUVs is pre-
sented. For real-time control, the nonlinear MPC
is linearized periodically to obtain a Linear Time-
Varying MPC (LTV-MPC). Both these controllers
are applied to perform hydrobatic maneuvers with
an AUV model.

2. The nonlinear MPC is validated in Simulink within
a high-fidelity simulation environment. It provides
better performance and robustness to disturbances
than the baseline controllers.

3. The LTV-MPC is implemented and tested with field
experiments on the agile and hydrobatic SAM AUV
(using the CVX convex optimization library). SAM,
short for Small and Affordable Maritime Robot, is
a 1.5m long torpedo shaped research AUV platform
developed by the Swedish Maritime Robotics Cen-
ter ([Bhat et al., 2019], see Fig. 1). This is one
of the first real-world demonstrations of hydrobatic
capabilities using MPC on AUV hardware.

The subsequent sections will show that using MPC can
enable efficient and elegant control strategies for com-
plex maneuvers. Furthermore, implementations on robot
hardware can validate the use of MPC for underactuated
AUVs.

2 Preliminaries and problem formulation

2.1 Model Predictive Control

In optimal control, the control problem is reformulated
as an optimization problem with an objective and con-
straints. Model predictive control offers a pragmatic ap-
proach to solve the following optimal control problem on-
line in real time. The open loop optimal control problem
is solved for a finite (relatively short) prediction horizon
Tp, and the optimal control is applied for only the first
time step (or a pre-defined control horizon). In contin-
uous time, such a problem formulation can be presented
as:
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min
u

J = ϕ(xp) +
∫ t+Tp

t
f0(x, u)dt,

s.t
ẋ = f1(x, u),

x ∈ X,
u ∈ U,

(1)

where x represents the states, u represents the control
input, ϕ(x) is the cost at the final state at the predic-
tion horizon x(Tp), t and t+Tp refer to the current time
and the final time after the prediction horizon respec-
tively while f0 is the objective function at each time in-
stant. The dynamics of the system are represented by a
nonlinear ordinary differential equation (ODE) through
the function f1(x, u). The states and controls are con-
strained to sets X and U.

At each time step, the optimal control u∗ is recalcu-
lated and the states are updated. This receding horizon
strategy enables fast computations (due to the smaller
horizon) while adding some robustness to disturbances
(due to recalculation of the optimal control). In most
cases, the continuous time problem formulation is dis-
cretized, enabling the use of numerical optimization
solvers.

In this work, we employ nonlinear model predictive
control to solve the optimal control problem, by using
techniques from convex optimization and nonlinear pro-
gramming to obtain optimal solutions at each time step.

2.2 Dynamics model

A hydrobatic AUV (Fig. 2) is modeled with quaternion
kinematics and nonlinear dynamics using the notation
given by Fossen [Fossen, 2011]. An NED coordinate sys-
tem is used to represent the world frame (with a positive
downwards ZE axis), while a right handed Cartesian co-
ordinate system is used in the AUV frame of reference.
The kinematics in 6DOF are represented by the relation

η̇ = Jq(η)ν , (2)

where Jq ∈ R7×6 is a combined transformation matrix
between the pose vector η and the velocity vector ν. The

pose vector η =
[
xE yE zE ε0 ε1 ε2 ε3

]T
,

contains the positions and quaternion orientations in the
world frame. Unit quaternions are used instead of Euler
angles in order to avoid a singularity at 90◦ pitch (see
e.g. [Silva and Sousa, 2008]) during hydrobatic maneu-

vers. The velocity vector ν =
[
u v w p q r

]T
contains the translational and rotational velocities with
respect to the xB , yB and zB axes in the body fixed
frame.

A vectorial robot-like representation, as presented by
Fossen [Fossen, 2011], is used to describe the dynamics
of the AUV as follows:

(MRB +MA)ν̇ + (CRB(ν)+CA(ν))ν+

D(ν)ν + g(η) = τC , (3)

Fig. 2: AUV world and body reference frames and angle
definitions.

where MRB is the rigid body mass and inertia matrix
and CRB is the matrix of Coriolis and centripetal terms
on the left hand side. MA and CA(ν) represent the
effect of added mass, D(ν) represents the damping ma-
trix and g(η) is the vector of gravitational and buoyancy
forces and moments. τC is a vector of external control
forces, and depends on the robot’s actuator configura-
tion.

Lumping together the mass terms and the
damping terms in (3) as effective mass and
damping matrices, Meff = MRB + MA and
Ceff(ν) = CRB(ν) + CA(ν) + D(ν), we get:

Meffν̇ +Ceff(ν)ν + g(η) = τC , (4)

Equation (4) can now be rewritten as:

ν̇ = M−1
eff (τC −Ceff(ν)ν − g(η)) . (5)

Equations (2) and (5) combine to provide the nonlin-
ear dynamics model d(x, u) in (1) with the state vector[
η ν

]T
and control vector τC . The quaternion ori-

entations in the state vector sT =
[
η ν

]T
are con-

verted to Euler angles by an output function o(η, ν).

2.3 Problem formulation

In this paper, nonlinear model predictive control
(NMPC) is considered for output reference tracking
(where the optimal control must minimise the deviation
of the output from a reference value) with the following
problem formulation:

Problem 1: Consider an AUV with its output state given

by sTout =
[
ηout νout

]T
, and the reference state to be

tracked given by sTref =
[
ηref νref

]T
. We assume the

vector of control forces τC to be a function of the vec-
tor of available control inputs c. The reference tracking
problem is then formulated as
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min
τC

J =
∫ t+Tp

t
[(sref − sout)

TQ(sref − sout)+

cTR1c+ ċTR2ċ]dt
s.t.

sout = o(η, ν),
η̇ = Jq(η)ν ,

ν̇ = M−1
eff (τC(c)−Ceff(ν)ν − g(η) ,

sout ∈ S,
τC ∈ T.

(6)

where t is the time, Tp is the prediction horizon, and
Q,R1 andR2 are weighting matrices. The state dynam-
ics are given by equations (2) and (5), and are subject
to state and control constraints contained in sets S and
T.

The NMPC aims to minimize the deviation from the
reference trajectory, while also minimizing the control in-
put c and its rate ċ. The formulation can be customized,
and it is possible to include additional constraints, objec-
tives, and allow model updates. The initial state is also
constrained within the state constraint set which falls
within the stabilizable region sout(0) ∈ S. If the state
constraints constrain the state within a region Ω, then
with Ω ⊆ S, the formulation above can be a stabilizing
controller. Furthermore, for practical implementations,
if the terminal state of the system region is in a stabiliz-
able region (as it is here), then a nominal controller can
be used to keep the system neutral within the terminal
set, thus reducing computational effort.

In order to solve Problem 1, the following strategies
are considered:

1. Nonlinear MPC (NMPC) using sequential
quadratic programming(SQP) [Betts, 2010]. Here
the SQP algorithm in the Matlab optimization li-
brary 1 is used. Continuous time dynamics are dis-
cretized using zero-order hold for a specified sam-
pling time.

2. Linear Time Varying MPC (LTV-MPC) using
convex optimization. Here, the nonlinear system is
periodically linearized with an appropriate resolu-
tion to reduce the computational complexity, and
in addition to Matlab’s SQP algorithm, the OSQP2

algorithm in CVXPY3 is used.

In the first strategy, the solver speed of the nonlinear
solver could limit the use of MPC for online real-time
implementations due to a large state space, especially
if nonlinear dynamics in 6DOF is considered (as it is
here). Linearizing the model around a specific reference
state simplifies the optimization problem, and can enable
rapid solutions. The second strategy can therefore en-
able real-time implementations. The nonlinear solution
is compared to LTV solutions in simulation. The best-
performing real-time LTV solution can then be used in
the robot hardware.

1 https://se.mathworks.com/help/mpc/ug/

configure-optimization-solver-for-nonlinear-mpc.html
2 https://osqp.org/
3 https://www.cvxpy.org/

Fig. 3: SAM AUV subsystems: 1. Battery pack, 2.
Longitudinal Center of Gravity Trim System
(LCG), 3. Variable Buoyancy System (VBS), 4.
Transversal Center of Gravity System (TCG), 5.
Thrust Vectoring System with Counter-rotating
Propellers.

3 Implementation

The presented method is implemented on the hydro-
batic SAM AUV as a test case [Bhat et al., 2019,
Bhat et al., 2020]. This section specifies implementation
details including the nature of the system, and the con-
trol algorithms used.

3.1 The SAM AUV

SAM is a hydrobatic AUV, and has a unique actuator
configuration to make it agile, while being underactu-
ated (Fig. 3). Counter-rotating propellers are used for
propulsion, while a thrust vectoring nozzle is used for
maneuvering. A variable buoyancy system enables static
depth control by pumping water in and out of a tank.
A movable battery pack enables longitudinal changes to
center of gravity (c.g.) position and allows pitch con-
trol, while rotating counterweights allow transversal c.g.
changes and offer static roll control. With this actuator
configuration, both static and dynamic changes to state
are possible, and MPC offers exciting opportunities for
controlling this system. Navigation and payload sensors
include an IMU, a compass, a GPS (for surface opera-
tions), a Doppler Velocity Logger, cameras, sonar and
environmental sensors. From a software perspective, the
autonomy packages on SAM run on the Robot Operat-
ing System (ROS) environment, and subcomponents in-
clude mission planning, robust mission execution (using
behavior trees), motion planning (using spline-fitting),
feedback control (cascaded PID controllers) and dead
reckoning (with an Extended Kalman Filter).

The actuator equations are integrated into the system
dynamics model used for MPC in (5), with 6 control
inputs, c = [ rpm1 rpm2 δe δr vbs lcg ]. These
are integrated as follows:

1. The thrust forces (FT ) and moments (MT ) are mod-
eled as linear functions of the propeller rotational

https://se.mathworks.com/help/mpc/ug/configure-optimization-solver-for-nonlinear-mpc.html
https://se.mathworks.com/help/mpc/ug/configure-optimization-solver-for-nonlinear-mpc.html
https://osqp.org/
https://www.cvxpy.org/
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rates (rpm) as[
FT

MT

]
=

[
KF KF

KM KM

] [
rpm1

rpm2

]
, (7)

where KF and KM are constant force and moment
coefficients and rpm1,2 ∈ [rpm1,2,min; rpm1,2,max].

2. The thrust vectoring systems align the thrust force
in the right direction using effective elevator (δe)
and rudder (δr) deflections. On rotating the thrust
forces and moments with respect to δe and δr, the
control force vector τC is modeled as:

τC =


FT · cos δe · cos δr

−FT · sin δr
FT · sin δe · cos δr
MT · cos δe · cos δr

−MT · sin δr
MT · sin δe · cos δr

 , (8)

where δe,r ∈ [δe,r,min; δe,r,max].

3. The longitudinal center of gravity system influences
the Meff and CRB matrices by changing the c.g. x
position as

xg = xg0 + lcg, (9)

where lcg ∈ [lcgmin; lcgmax].

4. The variable buoyancy system is modeled as an ad-
ditional buoyancy force that augments or counter-
acts the existing weightW to influence the net buoy-
ancy as

g(η) =W + vbs, (10)

where vbs ∈ [vbsmin; vbsmax].

3.2 MPC Algorithms

Two MPC algorithms based on the NMPC and LTV-
MPC strategies respectively have been implemented
for studying hydrobatic maneuvers with SAM. These
discrete-time algorithms aim at driving the system to
follow a reference trajectory, within a pre-defined error
threshold ϵ. Note that in discrete time, we use the stan-
dard notations for states (xk), outputs (yk, yref ) and
controls (uk) at each time-step k to represent their con-
tinuous time counterparts for states (s), outputs (sout,
sref ) and controls (τC) in equation (6). At each time
instant k (with time step Ts), the algorithms take the
current state xk and the reference trajectory yref as in-
put, and return the optimal control uk as the output -
uk is applied to the system. When the system is within
the error threshold ϵ, a nominal control (u0) is applied to
keep the AUV in a neutral state. This nominal control
is computed when the AUV is first launched based on
the steady actuator commands that keep it stationary
and stable in its current weight and trim configuration
(e.g. 0 rpm to the propellers, no steering, 50% VBS and
LCG levels). When the system exits the threshold re-
gion, the MPC is reapplied. This aims at saving energy
and computational power while improving stability.

Parameters for MPC include weights on states (Q)
and controls (R1,2), as well as the prediction horizon
(Tp) and control horizon (m). Algorithm 1 describes
the NMPC implementation, while Algorithm 2 presents
the real-time LTV variant. Both algorithms are imple-
mented in Matlab/Simulink, while Algorithm 2 is also
implemented in Python/ROS.

In Algorithm 1, the nonlinear MPC presented in Prob-
lem 1 is solved using Sequential Quadratic Program-
ming, and this solver is encapsulated in a function called
ComputeNMPC. The state feedback is computed at each
time-step, quaternions are converted to Euler angles for
output tracking, and the optimal control is computed for
a finite prediction horizon Tp considering the objective
and constraints. The computed control is applied to the
plant until the objective is achieved.

Algorithm 1: Nonlinear MPC, discrete time

Inputs: xk, yref
Outputs: uk
Parameters: Tf , Ts,Q,R1,R2, Tp,m
for k = 0 to Tf/Ts do

yref = GetRefTrajectory(k)
xk = GetStateFeedback(k)
yk = ConvertQuatToEul(xk)
uk = ComputeNMPC(...
Dynamics(xk, uk),yref, yk, Tp,m,Q,R1,R2)
if yref − yk ≥ Threshold then

ApplyControl(uk,m)
else

ApplyControl(u0)
Return Success
Exit Loop

end

In Algorithm 2, a similar procedure is followed, but
instead of the nonlinear model, a linearized dynamics
model is used to compute the optimal control. The
nonlinear system is approximated by a piecewise linear
system, with a specified linearization resolution. For
example, a coarse resolution would include lineariza-
tion every 100 or 1000 time steps, while a fine resolu-
tion would consider linearization every 10 or 20 time
steps. If the nonlinear dynamics are represented by a
function ẋ = f(x, u) with state x and control u, and
the output function is presented as y = o(x), then
at each linearization step, Jacobian matrices are com-
puted by calculating the gradient with respect to the
relevant state/control vector. This means the linearized
system in the neighborhood of a point x̃, ũ can be ob-
tained as AJac = ∇(f(x, u), x̃), BJac = ∇(f(x, u), ũ),
CJac = ∇(o(x), x̃). If this operation is performed peri-
odically, then the linearized system at a time step k is
represented by

ẋ = AJac(k)x̃+BJac(k)ũ ,
ỹ = CJac(k)x̃ .

(11)

This system is in a standard linear time-varying state
space form and several solvers (including OSQP) can be
used to solve the optimization problem.
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Algorithm 2: Linearized Nonlinear MPC,
discrete time
Inputs: xk, yref
Outputs: uk
Parameters: Tf , T s,Q,R1,R2, Tp,m,Res
for k = 0 to Tf/Ts do

yref = GetRefTrajectory(k)
xk = GetStateFeedback(k)
yk = ConvertQuatToEul(xk)
uk = ComputeMPC(...
[AJac, BJac, CJac], yref, yk, xk, Tp,m,Q,R1,R2)

if k mod Res == 0 then
[AJac, BJac, CJac] =
GetLinearModel(Dynamics,xk, uk, yk)

if yref − yk ≥ Threshold then
ApplyControl(uk,m)
else

ApplyControl(u0)
Return Success
Exit Loop

end

In the algorithms presented, the function GetRef-
Trajectory obtains the reference values for the states
from a path planner, while GetStateFeedback obtains the
current state feedback from the navigation and dead-
reckoning software. ConvertQuatToEul transforms the
orientation from quaternions to Euler angles for calcu-
lating the state error. Dynamics encapsulates the non-
linear dynamics model of the system based on equations
(2) and (5), while GetLinearModel linearizes the nonlin-
ear model at a particular state and control to obtain the
Jacobian matrices. ApplyControl applies the control ac-
tion to the plant by sending commands to the actuators.

3.3 Baseline controllers

In order to assess the performance of the MPC algo-
rithms above, two baseline controllers are considered for
comparison. These are:

1. A time-varying Linear Quadratic Regulator
(LQR): LQR computes the solution to the Alge-
braic Ricatti Equation for the linearized model of
the system (11). The nonlinear AUV model is lin-
earized periodically and the optimal feedback con-
trol from LQR is applied to drive the system to the
setpoint. (This is a simpler version of Algorithm 2.)

2. PID controllers: Existing trim and flight con-
trollers on SAM are based on PID. Linear PID con-
trollers are used for static depth and pitch control
using the trim actuators. Cascaded PID controllers
enable control of velocity, heading and diving using
the propellers and thrust vectoring.

4 Results

This section is organized as follows. First, the under-
actuated system’s reachability is analysed. Second, re-

sults of hydrobatic maneuvers of increasing complexity
are presented using the two MPC algorithms in Matlab.
Third, the Nonlinear MPC in Algorithm 1 is then val-
idated in the Simulink hydrobatics simulator. Finally,
the real-time LTV-MPC from Algorithm 2 is applied
on the real hardware, and validated in simulation and
experiment. Results from the Stonefish simulator and
experiments at a testing facility are presented. The per-
formance of the nonlinear and LTV-MPC are compared
to LQR and PID.

4.1 Validation of method

4.1.1 System reachability analysis

In order to gain a clearer understanding of the behavior
of the underactuated system as well as observe poten-
tial trajectory deviations due to uncertainty, a reacha-
bility validation is performed. Several sets of random-
ized control inputs within the whole operating range of
the different actuators are applied to the system starting
from a specific initial condition. The system is time pro-
pogated for 20 seconds with these initial control inputs,
and the trajectories and terminal states are recorded in
Fig. 4a and 4b respectively. It can be seen that us-
ing constant controls, uncertainties can lead to a cone
of reachable trajectories (Fig. 4a). The point cloud of
terminal states (Fig. 4b) appears like a double-funnel
with the initial state at the centre due to the limits in
the thrust vectoring and trim systems. It can be seen
from the extremeties of the funnels that the thrusters
are the dominant actuators, but the use of trim subsys-
tems can enable enhanced maneuverability and reacha-
bility, especially in the vertical plane. Specific combi-
nations and control sequences are however necessary to
cover unreachable states in the point cloud (e.g. for tight
turns or vertical hovering), and these cannot be reached
by constant controls.

The actuator configuration enables effective control in
x, z and θ, while control along the y, ϕ and ψ degrees
of freedom is more challenging. Furthermore, if actua-
tion energy is considered, it also costs more to influence
the second set (y, ϕ and ψ). When rates are considered,
the influence of the propellers and thrust vectoring sys-
tem make it easy to control the x-velocity and the yaw
and pitch rates, but influencing the roll rates, y- and
z-velocities is more complicated.

These considerations mean that the use of model
based methods can be beneficial in exploiting the
dynamics and stability characteristics.

4.1.2 Hydrobatics with Nonlinear MPC

Nonlinear MPC is used to find the optimal control for
maneuvering by solving the problem formulated in (6)
using SQP through Algorithm 1. In this case, the non-
linear prediction model in equation (5) together with
the actuator models is used as the plant to which con-
trol sequences are applied. Control strategies for ma-
neuvers of increasing complexity (and requiring the use
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(a) Reachable trajectories

(b) Terminal states

Fig. 4: Reachable trajectories (a), terminal states (b)
with randomized control inputs starting from
(x, y, z) = (0, 0, 0) for 20 seconds.

of different actuator combinations) are studied in or-
der to validate the method used. In each maneuver,
the objective function J from (6) was set with a refer-
ence output state sref, output state weight Q ∈ R12×12,
control weight matrix R1 ∈ R6×6 and control rate
weight R2 ∈ R6×6. The weight matrices were re-
spectively multiplied by the the state vector sref,out =
[ x y z ϕ θ ψ u v w p q r ] and control
input vector c = [ rpm1 rpm2 δe δr vbs lcg ] ac-
cording to (6). In each case, the system was initialized at
sout = [ 0 0 4 0 0 0 0 0 0 0 0 0 ], with
all values in SI units. The presented maneuvers are rele-
vant for practical scenarios including transit, inspection,
docking and obstacle avoidance. These maneuvers in-
clude:

Transit in confined spaces (Fig. 5) Transit is a com-
mon scenario in most underwater operations, where the
AUV has to go to a desired position some distance away.
In transiting to the goal position, the AUV uses the pro-
peller and thrust vectoring systems, with some trim ad-
justments. The propeller’s rpm in particular go to the
maximum positive and negative values, and the rpm con-
trol has a bang-bang characteristic.

Considering the problem formulation in (6), the objec-
tive function J(s, c) for this maneuver includes the fol-
lowing weight matrix Q for deviation from the reference
position sref and small weights R1, R2 on the control
inputs. Orientations and velocities are unconstrained.

sref =
[
8 2 8 0 0 0 0 0 0 0 0 0

]
Q = diag(

[
100 100 100 0 0 0 0 0 0 0 0 0

]
)

R1 = diag(
[
10 10 10 10 1 1

]
)

R2 = diag(
[
10 10 10 10 1 1

]
).

(12)

Tight turning for launch, recovery and obstacle avoid-
ance (Fig. 6) During launch, recovery and obstacle
avoidance, tight turns and on-the-spot maneuvers can
be needed for precise positioning. This becomes a chal-
lenge with an underactuated system, since dynamic con-
straints mean that all states are not easily reachable.
However, the MPC suggests a control where the propul-
sion and thrust vectoring are asynchronously cycled be-
tween maximum positive and negative values, enabling
an elegant ’turbo-turn’. This asynchronous bang-bang
thrust vectoring sequence enables turning on the spot,
akin to parallel parking a car.

The objective function for tight turning includes
weights Q on deviation from the reference position and
orientation, as well as small weights on R1, R2 the con-
trol inputs. For readability, the orientations are pre-
sented in degrees but calculations are performed after
conversion to radians.

sref =
[
1.5 3 4 0 0 deg2rad(60◦) 0 0 0 0 0 0

]
Q = diag(

[
100 100 100 0 0 100 0 0 0 0 0 0

]
)

R1 = diag(
[
10 10 10 10 1 1

]
)

R2 = diag(
[
10 10 10 10 1 1

]
).

(13)
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(a) AUV Trajectory

(b) Actuators

Fig. 5: Going to a position (8,2,8) using nonlinear MPC
with Algorithm 1 and the Matlab SQP solver.
A bang-bang control is seen with the propellers
while thrust vectoring, LCG and VBS actuators
are used for adjustments. The AUV starts from
(0,0,4).

(a) AUV Trajectory

(b) Actuators

Fig. 6: A tight 90 degree turbo-turn using nonlinear
MPC with Algorithm 1 and the Matlab SQP
solver. The propellers and thrust vectoring are
cycled asynchronously between maximum and
minimum values.The AUV starts from (0,0,4).
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(a) AUV Trajectory

(b) Actuators

Fig. 7: Transition to vertical hovering using nonlinear
MPC with Algorithm 1 and the Matlab SQP
solver. The propellers and thrust vectoring sub-
system are used to begin the maneuver, while the
trim subsystems are used to hold the orientation.
The AUV starts from (0,0,4).

Vertical hovering and agile trimming for inspection
(Fig. 7) The trim subsystems can enable static po-
sitioning, and allow the AUV to pitch up to 90◦. In this
maneuver, the controller uses the propulsion and thrust
vectoring subsystems to turn the AUV upwards using
the turbo-turn sequence, while the trim actuators allow
the AUV to stay vertical. Such positioning can, for ex-
ample, be useful for hovering and docking. To achieve
trimming, a high penalty is added in Q to the pitch de-
viation and the propeller inputs. This encourages the
use of the trim subsystems to minimise the pitch error.

sref =
[
0 0 6 0 0 deg2rad(90◦) 0 0 0 0 0 0

]
Q = diag(

[
100 100 100 0 1000 0 0 0 0 0 0 0

]
)

R1 = diag(
[
1000 1000 100 100 1 1

]
)

R2 = diag(
[
1000 1000 100 100 1 1

]
).

(14)

Helical inspection of a confined space (Fig. 8) A
combination of the turbo-turn sequence and the trim

(a) AUV Trajectory

(b) Actuators

Fig. 8: A helical inspection using nonlinear MPC with
Algorithm 1 and the Matlab SQP solver. All ac-
tuators are used to different extents to realize this
maneuver. The AUV starts from (0,0,4).

actuators can also be used for a helical maneuver, where
the AUV can perform panoramic inspections of confined
spaces, or perform coverage of irregular shapes. Here it
can be seen that all actuators are used in a bang-bang se-
quence. To enable this maneuver, the objective penalises
deviation from a reference position and orientation, with
minor weights on the control inputs. A reference posi-
tion close to the start position encourages tighter turning
and trimming.

sref =
[
2 2 4 0 deg2rad(45◦) deg2rad(90◦) 0 0 0 0 0 0

]
Q = diag(

[
100 100 100 100 100 100 0 0 0 0 0 0

]
)

R1 = diag(
[
10 10 10 10 1 1

]
)

R2 = diag(
[
10 10 1 1 1 1

]
).

(15)

Generalized trajectory tracking (Fig. 9) Combining
such approaches, the AUV can be made to go to an ar-
bitrary pose in 3 dimensional space, including transit as
well as tight maneuvering. In this example, the AUV is
commanded to a waypoint, and asked to maintain a 30◦

pitch angle. This makes it necessary to combine transit
and agile maneuvering. Such trajectory tracking can be
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(a) AUV Trajectory

(b) Actuators

Fig. 9: Tracking a general 3D trajectory using nonlin-
ear MPC with Algorithm 1 and the Matlab SQP
solver. A bang-bang control sequence is seen,
with the propellers used for transit and the trim
actuators for final orientation adjustments. The
AUV starts from (0,0,4).

achieved with the same objective as the helix maneuver,
but with a different reference state.

From these different maneuvers, it can be seen that
the optimal control balances the use of the available
actuators, uses the propellers for transit, and the LCG
and VBS for fine adjustments and tight maneuvers. The
optimal control using NMPC tends towards bang-bang
control in the absence of disturbances.

4.1.3 Linearization for real-time control

The nonlinear controller is linearized periodically for
real-time control using Algorithm 2; and the results of
the real-time controller for generalized trajectory track-
ing are presented in Fig. 10. The time-varying linear
MPC (LTV-MPC) shows qualitatively similar controls
and behaviors as the nonlinear MPC, but the lineariza-
tion leads to some deviations from the NMPC solution.

Qualitatively, the performance of the real-time con-

(a) AUV Trajectory

(b) Actuators

Fig. 10: Tracking a general 3D trajectory using realtime
MPC with Algorithm 2 and the QP solver. The
LTV solution appears to be a coarser form of
the nonlinear solution. The AUV starts from
(0,0,4).

Controller Solver/Realtime ratio Tracking Error(m) Cost
NMPC 2.3 0.17 2.26e6

LTV-MPC 0.2 0.56 2.39e06

Tab. 1: MPC performance comparison for going to a
general waypoint in Figures 9 and 10.

troller is a coarser solution of the NMPC, with a finer
linearization resolution leading to a control that is closer
to the nonlinear solution. Three linearizations are con-
sidered, and the deviation is presented in Fig 11. It can
be seen that linearizing the model with a fine resolution
of every 20 time steps offers a closer approximation of the
nonlinear controller when compared to a coarse resolu-
tion of 100 time steps. However, if the model is linearized
too frequently (< 5 timesteps), the solver sometimes fails
to converge due to insufficient iterations during that in-
terval. A resolution > 10 timesteps has been used in this
paper to address this issue.

Table 1 presents a comparison between the tracking
performance, cost (a measure of efficiency) and solver
time ratio (where a value ≥ 1.0 means the control is
slower than real-time) of the two approaches. It can
be seen that the LTV-MPC with a resolution of 20 time
steps has a significant advantage in solver time, but with
a trade-off in cost and tracking.
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Fig. 11: Deviations from NMPC based on linearization
resolution. the parameter Res indicates the
number of time-steps between successive lin-
earizations.

Fig. 12: The AUV model in the Simulink hydrobatics
simulator

4.2 Implementation in simulation and
hardware

4.2.1 Nonlinear MPC implementation in Simulink

The tracking and robustness performance of the nonlin-
ear MPC is evaluated in the SMaRC hydrobatics simu-
lator in Simulink (detailed technical information on the
simulator can be found in [Bhat et al., 2021]). The sim-
ulator uses a full-envelope hydrodynamic model for an
AUV and exhibits dynamic behavior similar to the real
vehicle even at high angles of attack. The AUV model is
integrated with ROS and it is possible to auto-generate
C-code in Simulink for hardware deployment. Evalua-
tion on this simulator is a step closer to running the
MPC on the robot hardware.

The nonlinear MPC’s tracking performance is tested
on two maneuvers - straight line transit and vertical as-
cent, and the performance is compared to a time vary-
ing Linear Quadratic Regulator (LQR) and a PID con-
troller. Furthermore, to test robustness to disturbances,
random noise (having mean amplitude of 0.8, variance
of 0.25, sample time of 0.1s leading to a signal-to-noise
ratio of 20dB) is added to the state feedback. The re-
sults are presented in Figures 13, 14 and 15. It can be
seen that the NMPC has significantly better robustness
to disturbances in comparison to the LQR and PID, with
reasonable performance in terms of rise time, overshoot
and steady state error. More information on the LQR
implementation can be found in [Panteli, 2019].

Detailed results of the controller performance com-

Fig. 13: Nonlinear MPC in Simulink, Top left: Horizon-
tal trajectory without noise, Bottom left: Verti-
cal trajectory without noise, Top right: Horizon-
tal trajectory with noise, Bottom right: Vertical
trajectory with noise.

parison are presented in Table 2. The nonlinear MPC
exhibits a significantly lower steady state error than
the PID and LQR for most cases. The NMPC steady
state error was as low as 10% of the PID error and
18% of the LQR error in the maneuvers. The MPC has
a slower rise time (up to 2x the rise time of LQR) in
the horizontal case where the propellers are used, but
a faster rise time (up to 40% the rise time of PID) in
the vertical case, where the buoyancy system is used.
NMPC has a higher overshoot than LQR (up to 2x the
LQR overshoot), and a comparable overshoot to PID.
However, as expected the NMPC uses more processing
power than the other two controllers, as is seen from
a higher run time/simulation time ratio in general
(a value closer to 1 signifies real-time performance).
It can be seen that for simpler maneuvers such as
these, the LQR and PID have competitive performance,
though when maneuver complexity and robustness
requirements increase (such as in the turbo-turn or trim
control maneuvers), the LQR and PID cannot always
be used and the NMPC offers better performance.
Furthermore, in the presence of disturbances, the LQR
has a significantly increased rise time (up to 2x, see
Fig. 14) compared to a disturbance-free case, while
the PID sometimes fails completely (e.g in a horizontal
trajectory, see Fig. 15). The NMPC’s performance
however, is relatively unaffected at the same noise level
.

4.2.2 LTV-MPC experiments on the SAM AUV

For testing in real-time on the robot hardware, the LTV-
MPC based on Algorithm 2 has been implemented in
Python and ROS using the CVXPY optimization library
and the OSQP solver. The experimental scenario focuses
on simultaneous pitch and depth control of SAM using
the trim (LCG) and buoyancy (VBS) actuators within
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Maneuver Controller Rise time(s) Overshoot(%) S.S.error(%) Solver/Realtime ratio
NMPC 5.60 50.0 2.22 6.42

Straight line transit LQR 2.25 24.5 12.56 5.90
PID 4.56 64.66 20.9 7.13

NMPC 12.71 13.29 2.23 8.23
Vertical ascent LQR 19.07 8.006 3.84 6.24

PID 29.08 10.91 14.849 5.73

Tab. 2: NMPC performance chart, horizontal transit and vertical ascent trajectories in the Simulink Hydrobatics
Simulator. All results presented are averages of 3 repeated runs.

Fig. 14: LQR in Simulink, Top left: Horizontal trajec-
tory without noise, Bottom left: Vertical trajec-
tory without noise, Top right: Horizontal tra-
jectory with noise, Bottom right: Vertical tra-
jectory with noise.

a confined environment. The weights used are the sim-
ilar to the simulated trimming maneuver in (14). This
testing scenario is relevant for inspection, manipulation
and hovering in confined environments, and requires ag-
ile maneuvering. It places high requirements on control
due to close coupling between the pitch and depth states.
Another factor in this scenario is limited sensor feedback
to the EKF used for state estimation. The nature of the
confined environment means we have good orientation
and depth feedback from the compass, IMU and pres-
sure sensors, but bad positioning from the DVL due to
reflections.

In order to verify the control algorithms and check
system integration, the test scenario is first rehearsed
in the Stonefish Simulator, comparing the LTV-MPC to
time-varying LQR and PID controllers.

The results of the MPC, LQR and PID to hold a depth
of 1.5m and pitch angle of 6 degrees in the Stonefish
simulator are presented in Figures 17, 18 and 19. An
error threshold ϵ = 0.1m in depth was set for the MPC
and LQR. Looking at detailed results in Table 3, it can
be seen that the MPC has a lower rise time than the
LQR and PID (< 50% of PID). MPC has similar over-
shoot behavior as LQR and PID (with a relative dif-
ference of 20%), while MPC and PID have significantly

Fig. 15: PID in Simulink, Top left: Horizontal trajectory
without noise, Bottom left: Vertical trajectory
without noise, Top right: Horizontal trajectory
with noise, Bottom right: Vertical trajectory
with noise.

lower steady state error in comparison to LQR. It can
be seen that the MPC has the best overall performance
overshoot, steady-state error, rise time and settling time
than the LQR and PID. The presented cost is the sum-
mation of the objective function J in (6), including the
state error and control usage over the full period of con-
trol. A lower cost would imply lower error and actuator
usage. From this quantitative cost summation, MPC has
a lower cost than PID and LQR. Looking at the result
plots, it can also be seen qualitatively that the actuator
usage, error and oscillations are minimum with MPC.

Following the rehearsal in Stonefish, the experimental
scenario was tested with the SAM AUV in an indoor
test tank at Saab Dynamics, Linköping, Sweden (see
Fig. 20). The tank is 6m deep and 10m in diameter,
and offers a controlled environment for repeatable ex-
periments. The MPC and PID controllers were used to
control SAM and the controller performance was com-
pared. The MPC was run at a frequency of 10hz (mean-
ing a timestep of 0.1s) and linearized every 20 timesteps,
while the PID was run at 50hz. Note that, due to hard-
ware failure the PID controllers could not be run with
the exact same setpoints as the MPC, and the LQR con-
trollers could not be tested.

The experimental results of the LTV-MPC on SAM
are presented in Fig. 21. It can be seen that the MPC



, 13

Fig. 16: SAM in the Stonefish simulator. A simulation
video can be viewed in Video 1 in the supple-
mentary material.

Fig. 17: LTV-MPC in Stonefish

holds the depth at 1.5m with a deviation of up to 0.2m
with few oscillations. The pitch angle is maintained at
-6 degrees within a precision of ±1 degrees. In contrast,
the PID controller has higher steady state errors (47%
higher than MPC) and longer settling time due to the
coupling between the states. It is also interesting to ob-
serve that the actuator usage is significantly less in the
case of MPC compared to PID - the LCG actuator is
heavily used to compensate for center of gravity and cen-
ter of buoyancy changes with the PID, while the MPC
predicts these changes and pre-empts them with the ac-
tuator commands. Quantitatively as well, on comparing
the summation of the objective function, the MPC has
a 7% lower cost.

Detailed results in terms of overshoot, rise-time, set-
tling time and steady-state error of the different evalu-
ated controllers in Stonefish and in the experiment are
presented in Table 3. It is clear that the LTV-MPC of-
fers good performance at low cost. This means that it is
possible to achieve real-time control on target hardware
with the presented model predictive control approach.

Datasets and videos from the Stonefish simulations
and tank experiments are available in the supplementary
material.

Fig. 18: Time-varying LQR in Stonefish

Fig. 19: PID in Stonefish

5 Discussion

5.1 Numerical simulations with nonlinear
MPC

Simulating maneuvers of increasing complexity, follow-
ing a stability and reachability validation, enables a san-
ity check of the nonlinear MPC method. Simpler ma-
neuvers such as transiting to a waypoint, or performing
a turbo-turn have intuitive controls, and the computed
optimal solution aligns with intuition. The existence of
the bang-bang results motivates the optimality of the
solution. When more complex maneuvers such as verti-
cal hovering or helices are evaluated, actuators are ex-
ploited based on their relative strengths (including the
use of bang-bang sequences). Such control solutions con-
sidering the dynamics model and constraints cannot be
easily obtained by linear feedback control methods. The
sequential quadratic programming solver converged in all
these cases, meaning the ’optimum’ cost has been found.

The solution time is the main limitation of the
nonlinear MPC implementation (this has also been
noted in [Shen et al., 2016, Steenson et al., 2014]). A
Solver/Realtime ratio ≤ 1 is beneficial for real-time con-
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Context Controller Mean Rise Time(s) Mean Overshoot(%) Mean S.S.error(%) Cost
LTV-MPC 21.0 24.17 3.42 5.80e7

Stonefish Simulator LQR 21.6 24.5 22.5 5.81e7
PID 54.15 19.17 0.42 5.82e7

Experiment LTV-MPC 45.83 33.67.0 15.0 8.39e7
PID 34.0 39.77 23.18 9.08e7

Tab. 3: Results from the experimental scenario considering static pitch and depth control of the SAM AUV in a
confined environment.

Fig. 20: The SAM AUV during the MPC tests at
Linköping, Sweden. A video from the experi-
ment can be viewed in Video 1 in the supple-
mentary material.

trol implementations. However, the nonlinear control
problem could only be solved slower than real-time, and
the implementation is not yet fast enough for online im-
plementations. With further evaluation and code op-
timization, even the nonlinear MPC may be real-time
applicable. Notably though, the optimal solutions of the
nonlinear MPC provided an expert demonstration, en-
abling evaluation of other sub-optimal strategies.

Linearizing the nonlinear MPC periodically according
to Algorithm 2 enables faster solutions, but at the cost
of deviating from the optimum. This is clear on observ-
ing the optimal control solutions in Figs. 9 and 10. The
linearized solution appears as an approximation of the
optimal solution if the resolution is fine enough, though
deviations occur at coarse resolutions (Fig. 11). Overall,
such a linearization strategy appears suitable for real-
time control applications with a fine enough resolution.
Practically, for fast maneuvers, a ’fine’ resolution of lin-
earizations every 20 time-steps offers good performance.
Finer resolutions (< 5 time-steps) sometimes lead to a
lack of solver convergence. For slower maneuvers such
as trim control, a coarser resolution of 50 time-steps has
been sufficient.

5.2 MPC on robot hardware

Interesting results have been obtained on testing the
real-time MPC within the ROS ecosystem both on robot
hardware and in simulation. The existing AUV con-

Fig. 21: LTV-MPC: Experimental results on SAM to
control pitch and depth

Fig. 22: PID: Experimental results on SAM to control
pitch and depth

trol system uses a set of cascaded PID controllers for
depth and heading control, linear PID trim controllers
for buoyancy and pitch control, and scripted sequences
for advanced maneuvers, all regulated by a behavior tree
(with safety checks). Using MPC can reduce the com-
plexity of this setup, while also exploiting the couplings
between states and actuators. Maneuver sequences for
launch and recovery, as well as precise inspections can
benefit significantly from the model predictive controller.
MPC can simplify some complex actuator sequences and
enable tight maneuvers with a lower ’cost’, but with
higher computational load. In general, MPC enables
elegant use of the available actuators to perform hydro-
batic maneuvers, and this has been demonstrated in ex-
periments. Very fast maneuvers have not yet been tested
on hardware using MPC- it may be necessary to balance
the linearization resolution to effectively reflect the dy-
namics while offering real-time control.

Two key challenges have been observed during testing.
First, a lack of solver convergence may lead to outlier so-
lutions and numerical instability. This issue has been ad-
dressed by filtering the MPC output, and adding safety
checks with a behavior tree. Second, accurate state feed-
back is very difficult to obtain underwater due to high
sensor uncertainty. This has a direct effect on the con-
trol, since the MPC solver may not have an accurate
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estimate of the error it has to minimize. This has been
partially addressed by using an Extended Kalman Filter
for improving state estimation, but accurate underwa-
ter localization is still a challenging open problem in the
field.

Implementing and evaluating the nonlinear MPC in
Simulink with the hydrobatics simulator has been a cru-
cial step towards running nonlinear MPC in real-time
on hardware. Solver optimization and automatic C-code
generation are logical next steps to deploy the controllers
from the ROS environment in Simulink to the actual
AUV. Preliminary tests show promise, but comprehen-
sive evaluation is the scope of future work.

Operationally, it makes sense to use the most effective
control actions for specific mission segments. It would
be more efficient to use a simple PID controller for long
transits, while the same would show limitations in tight
maneuvers. Similarly, MPC can be effective in challeng-
ing scenarios, but might be too expensive computation-
ally for simpler maneuvers. In some critical scenarios
such as emergency ascent, it even makes sense to use
scripted sequences based on motion primitives instead
of feedback control. Therefore, effectively switching be-
tween controllers, and selecting a prioritization logic is
key to optimizing performance and robustness. The be-
havior tree automaton in our implementation offers a
flexible framework for such switching, and several inter-
esting combinations are yet to be explored.

5.3 Augmentations

Uncertainty estimates are not part of this work – ro-
bustness issues are addressed by adding measurement
noise, using a full envelope nonlinear model in the hydro-
batics simulator (presented in [Bhat et al., 2021]), and
extending the MPC to a hybrid automaton using be-
havior trees [Marzinotto et al., 2014] to account for un-
safe conditions (with safety limits and emergency actions
[Bhat et al., 2020]). Furthermore, robustness is inherent
in MPC because of its feedback nature, so a certain de-
gree of disturbance rejection and robustness to uncer-
tainty exists.

Augmentations can be made to improve the per-
formance of the real-time MPC. Improving robust-
ness in the presence of uncertainty is a key con-
sideration. Including uncertainty models within the
optimization problem can improve robustness to un-
certainties. Another robustness improvement can
be to include feedback motion planning libraries
[Majumdar and Tedrake, 2017] or quasi-infinite horizon
solutions [Chen and Allgöwer, 1997] with sets of globally
stabilising trajectories, so that regions of attraction can
be exploited. The use of a nominal control u0 is a first
step in this direction.

The prediction model used is crucial to controller per-
formance, since an inaccurate prediction model will lead
to incorrect controls. System identification techniques
(e.g. SINDy, Koopman operators, Lagrangian Neural
Networks, physics-informed learning) can be used to up-
date the dynamics model from sensor data. This can

enable adaptive control while reducing the model uncer-
tainty.

The hydrobatic maneuver sequences derived offline
through nonlinear MPC can also be used as motion prim-
itives. These primitives could be composed into hybrid
controllers using formal methods and sequential logic,
thus generating fast yet robust control strategies.

An alternate method to enable nonlinear MPC in real
time is to use the nonlinear MPC solution as an expert
demonstrator. Methods in supervised learning and rein-
forcement learning can then be used to learn the optimal
policy from the offline MPC solution. The trained agents
can then be deployed on hardware, thus reducing com-
puting time significantly. A limitation here, of course,
is the lack of stability guarantees, but this could be ad-
dressed by hard safety limits.

6 Conclusion

In this paper, nonlinear model predictive control has
been applied to underactuated AUVs. Nonlinear MPC
has been used to study hydrobatic maneuvers including
transits, turbo-turns, helices, and static hovering in nu-
merical simulations. For real-time applications, the non-
linear MPC has been periodically linearized to obtain
a Linear Time Varying MPC. Computationally, the lin-
earized controllers require significantly lower solver time
(down to the order of 1/100) compared to the nonlinear
solution, while deviations from the optimum stay in a
manageable level (up to 20%) for the maneuvers stud-
ied.

The nonlinear MPC algorithm has been validated in
Simulink, and shows better tracking performance and
robustness than baseline LQR and PID controllers. The
LTV-MPC has been implemented in ROS using CVXPY
and tested on the SAM AUV hardware. Simulations
and field experiments with SAM have shown positive
results, where the LTV-MPC outperforms PID and LQR
in terms of rise time, settling time, overshoot and steady-
state error as well as minimizes actuator usage.

The field tests have been one of the first demonstra-
tions of the use of MPC for hydrobatics with AUV hard-
ware. Such field experiments demonstrate the applicabil-
ity of real-time MPC in AUV missions. While the focus
here has been on real-time control, future work will fo-
cus on augmentations to improve robustness, stability
and adaptability.
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