A robust mRNA signature obtained via Recursive Ensemble Feature Selection predicts the responsiveness of omalizumab in moderate-to-severe asthma

Alejandro Lopez-Rincon¹, S. Kidwai¹, P. Barbiero², I. Meijerman¹, A. Tonda³, * PPerez-Pardo¹, P. Lio², Anke-Hilse Maitland-van der Zee⁴, D. L. Oberski⁵, and Aletta Kraneveld¹

October 24, 2022

Abstract

Background: Not being well controlled by therapy with inhaled corticosteroids and long-acting β2 agonist bronchodilators is a major concern for severe-asthma patients. Current treatment option for these patients is the use of biologicals such as anti-IgE treatment, omalizumab, as add-on therapy. Despite the accepted use of omalizumab, patients do not always benefit from it. Therefore, there is a need to identify reliable biomarkers as predictors of omalizumab response. Methods: Two novel computational algorithms, machine-learning based Recursive Ensemble Feature Selection (REFS) and rule-based algorithm Logic Explainable Networks (LEN) were used on open accessible mRNA expression data from moderate-to-severe asthma patients to identify genes as predictors of omalizumab response Results: With REFS, the number of features were reduced from 28,402 genes to 5 genes while obtaining a cross-validated accuracy of 0.975. The 5 responsiveness predictive genes encode for the following proteins: Coiled-coil domain- containing protein 113 (CCDC113), Solute Carrier Family 26 Member 8 (SLC26A), Protein Phosphatase 1 Regulatory Subunit 3D (PPP1R3D), C-Type lectin Domain Family 4 member C (CLEC4C) and LOC100131780 (not annotated). The LEN algorithm found 4 identical genes with REFS: CCDC113 ,SLC26A8 PPP1R3D and LOC100131780. Literature research showed that the 4 identified responsiveness predicting genes are associated with: mucosal immunity, cell metabolism, and airway remodeling. Conclusion and clinical relevance: Both computational methods show 4 identical genes as predictors of omalizumab response in moderate-to-severe asthma patients. The obtained high accuracy indicates that our approach has potential for clinical settings. Future studies in relevant cohort data should validate our computational approach.

Hosted file

Main text_Kidwai et al., A robust mRNA signature obtained via Recursive Ensemble Feature Selection pred available at https://authorea.com/users/517143/articles/591786-a-robust-mrna-signature-obtained-via-recursive-ensemble-feature-selection-predicts-the-responsiveness-of-omalizumab-in-moderate-to-severe-asthma

Hosted file

Figures_Kidwai et al FINAL .docx available at https://authorea.com/users/517143/articles/

¹Universiteit Utrecht Utrechts Instituut voor Farmaceutische Wetenschappen

²University of Cambridge Computer Laboratory

³Fondation de cooperation scientifique Campus Paris-Saclay

⁴Amsterdam Universitair Medische Centra

⁵Universitair Medisch Centrum Utrecht

591786-a-robust-mrna-signature-obtained-via-recursive-ensemble-feature-selection-predicts-the-responsiveness-of-omalizumab-in-moderate-to-severe-asthma