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Abstract

In this paper, the leader-follower architecture is constructed by combining intermittent-influence leaders with a signed social

network. Unlike a typical network with leaders where leaders are supposed to continuously influence followers, in this article,

the leaders intermittently influence followers. Furthermore, the number of influences is limited. We focus on how intermittent-

influence leaders impact the evolution of followers’ opinions. The relationship between followers’ opinions and the number of

leader broadcasts is analyzed in detail. Then, the number of broadcasts is regarded as the cost, and the changing trend of the

revenue per broadcast is obtained. The results show that as the number of broadcasts increases, the revenue per broadcast

decreases gradually. Finally, the concept of assimilation is introduced to weigh the costs and benefits, and the minimum number

of broadcasts required for the leader to assimilate the followers is derived. Two examples are given to demonstrate the validity

of the main conclusions.
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Opinion dynamics with intermittent-influence
leaders on the signed social network

Ziwen Shen, Guang He∗, Xiaotai Wu, Yixin Zhu, Mingxuan Shen

Abstract—In this paper, the leader-follower architecture is
constructed by combining intermittent-influence leaders with a
signed social network. Unlike a typical network with leaders
where leaders are supposed to continuously influence followers,
in this article, the leaders intermittently influence followers.
Furthermore, the number of influences is limited. We focus
on how intermittent-influence leaders impact the evolution of
followers’ opinions. The relationship between followers’ opinions
and the number of leader broadcasts is analyzed in detail. Then,
the number of broadcasts is regarded as the cost, and the
changing trend of the revenue per broadcast is obtained. The
results show that as the number of broadcasts increases, the
revenue per broadcast decreases gradually. Finally, the concept
of assimilation is introduced to weigh the costs and benefits, and
the minimum number of broadcasts required for the leader to
assimilate the followers is derived. Two examples are given to
demonstrate the validity of the main conclusions.

Index Terms—opinion dynamics; signed graph; polarization;
DeGroot model.

I. INTRODUCTION

In recent years, opinion dynamics, as an international hot
research topic in the field of systems and control science, has
been widely discussed [1], [2], [3], [4]. Opinion dynamics is
concerned with a social network closely related to human life,
in which agents in a network can be countries, social groups,
or living individuals [5], [6]. The individuals’ evolution of
behaviors and opinion in social networks is specifically and
deeply studied in opinion dynamics [7]. Opinion dynamics
in society is scientifically modeled and analyzed, which can
not only reveal the laws of development of human society
and animal groups in nature (such as zero-sum games in
futures, the migration of animal populations), but also facilitate
the development of man-made complex networks such as the
Internet and transportation networks [8], [9], [10].

To characterize the opinion evolution in social networks,
a classical linear time-invariant model, also known as the
DeGroot (DG) model, was proposed in [11]. In this model,
each individual’s opinion at this time is determined by the
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weighted average of his own and his neighbors’ opinion at
the previous moment. In the past decades, the research on
the consensus of the DG model has never stopped. For any
individual in the network, all the remaining individuals are not
necessarily its neighbors. Despite this, the network can achieve
the opinion consensus as long as the network connectivity is
strong enough. When each node has a self-loop, the network
can achieve the opinion consensus if and only if the network
has a spanning tree [12]. Later, in order to describe the
interaction of opinions in more detail, a series of variants of
the DG model such as the Friedkin-Johnsen (FJ) model [13]
and the Hegselmann-Krause (HK) model [14] were proposed,
and many outstanding results were obtained [15], [16], [17].

The DG model is widely used in reality, such as company
board of directors and jury panels [18]. It is worth noting
that in the classical DG model, only cooperative relationship
between individuals is considered. However, whether in nature
or human society, the confrontation (or distrust) exists widely
[19], [20]. In nature, animals compete for food and territory.
Meanwhile, plants compete for sunlight and water. For human
society, people compete for a series of valuable things such
as social resources and natural resources. Therefore, opinion
dynamics with competitive relationship has attracted a lot of
attention [21], [22], [23].

Typically, the competitive relationship between individuals
can be modeled by negative ties, which makes the network
topology corresponding to a social network with competition
into a signed graph [22]. For a signed graph, different control
protocols may lead to polarization, fluctuation, and neutral-
ity [24]. In [20], the competition was introduced into the
continuous-time DG model, and the necessary and sufficient
conditions for opinion polarization were obtained when the
signed graph was structurally balanced. However, since the
structurally unbalanced network had a very complex structure,
the structurally unbalanced networks were less discussed [25].
Although competition may be a source of inconsistency, the
authors of [25] pointed out that opinions could achieve a
consensus in a signed network. In [26], the sign-consensus of
opinion was studied when opinion can not reach an agreement.
In fact, the opinion evolution on the signed graph was more
complicated than the unsigned graph due to the existence
of competition [20]. Hence, more efforts should be made to
explore the competition’s impact on opinion evolution.

It should be pointed out that in all the opinion dynamics
models mentioned above, each individual has exactly the same
characteristics, i.e., while they influence others’ opinions, their
opinions are also influenced by others’ opinions. But in real
life, there are special individuals called opinion leaders who
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are not influenced by other individuals [27]. Considering the
existence of opinion leaders, the leader-follower framework
was used to model opinion evolution [28], [29]. The leader-
follower architecture divides individuals in a social network
into leaders and followers. Leaders, as special individuals,
influence the opinions of followers while keeping their own
opinions unchanged. In other words, the opinions of all
followers are influenced by the leaders and will gradually tend
to the opinions of the leaders.

Recently, the lead-follower architecture has been widely dis-
cussed in social networks [30], [31]. The article [32] pointed
out that opinion leaders can make the group’s opinion converge
faster. The opinion leaders were introduced to the fractional
opinion formation model in [33] and sufficient conditions
for all followers to converge to the leader’s opinion were
obtained. In [34], the authors got a sufficient condition to
ensure that the followers’ opinions move at the same speed as
the dynamic leader’s opinion (or the opposite of the dynamic
leader’s opinion). In the above-mentioned articles, leaders are
continuously involved in the evolution of group opinions in a
social network. This persistent influence truly characterizes the
evolution of opinions in small groups. However, with the rapid
development of communication technology and Internet tech-
nology, the way humans obtain and interact with information
has undergone major changes. On the Internet, the influence
of the leaders on the followers is often intermittent rather than
continuous [35].

The intermittent-influence leaders are quite common on the
Internet. For example, popular information exchange platforms
such as Twitter or Weibo can be regarded as social networks.
On this network, famous people such as celebrities can be
regarded as leaders, and correspondingly their subscribers are
regarded as followers. Famous people, through their tweets or
blogs, influence their subscribers intermittently. In particular,
the number of influences is limited. In this case, the follower’s
opinion often cannot converge to the leader’s opinion, and
there will be more complex phenomena in the signed social
networks. In this article, these phenomena and the underlying
factors that determine them are analyzed and discussed. This
is undoubtedly an interesting thing.

The purpose of this study is to analyze the influence of
intermittent-influence leaders on the evolution of followers’
opinions in a signed social network. This intermittent influence
of the leader on the followers is called broadcast. Without loss
of generality, in this paper, we assume that followers have
sufficient time to interact with opinions to achieve a modulus
consensus of opinions after the leader’s last broadcast. The
main contributions of this paper are as follows.

First, we design intermittent influence leaders for a signed
social network. Whereas, Liang et al. [35] considered leaders
with intermittent influence for an unsigned network.

Second, since broadcasts are intermittent and limited, we
generally think that the opinions modulus consensus of fol-
lowers is related to the number of broadcasts and the time
of broadcast. For single-leader and multi-leader situations, a
sufficient and necessary condition and a sufficient condition
are given respectively to ensure that the opinions of the
modulus consensus of followers are only related to the number

of broadcasts and not to the time of broadcast. Also, an ex-
pression of the relationship between the opinions of followers’
modulus consensus and the number of broadcasts is obtained.

Finally, as the number of broadcasts increases, the follower’s
opinion will gradually approach the leader’s opinion (or the
opposite of its opinion value), and the number of broadcasts
can be regarded as the cost. Through analysis, we can conclude
that as the number of broadcasts increases, the revenue of
each broadcast decreases gradually. Then, after introducing the
concept of assimilation, we discuss how to weigh the costs and
benefits.

This paper is organized as follows. In section II, we first
introduce the notions and the relevant knowledge of graph
theory. Then we introduce the DG model with the competitive
relationship. Finally, we conduct a brief introduction of the
model studied in this paper. The main results and proofs are
in Section III. Section IV provides two examples to verify our
conclusions. Finally, we give our conclusion in section V.

II. PRELIMINARIES

2.1 Notions
In this article, the following rules regarding symbols are

given. Rn×m represents a real matrix with n rows and m
columns, and Rn represents a real space of n dimensions. For
any matrix W = [wij ] ∈ Rn×m, ρ(W ) denotes its spectral
radius and every element in |W | is the absolute value of
each element in the matrix W . W ≥ 0 means that every
element in matrix W is not less than 0. For any column vector
b = [b1, · · ·, bn]T ∈ Rn, diag(b) represents a diagonal matrix
whose main diagonal elements are the elements in the vector
b. 1n (0n) is the n-dimension column vector with all elements
being 1 (0). In is an n-dimension identity matrix. ∅ is used to
represent the empty set. ⟨℘⟩ is used to denote the number
of elements in the set ℘. ⌈m⌉ represents the first integer
greater than m. ∆y(k) represents the forward difference of
the function y(k), i.e., ∆y(k) = y(k + 1)− y(k).

2.2 Graph theory
Let G(W ) = G(V, E ,W ) represent a weighted directed

graph, where the node set V = (v1, · · ·, vN ), the edge set
E ∈ V × V , and W = [wij ] ∈ RN×N represents the weighted
adjacency matrix corresponding to this graph. An edge from
vj to vi can be denoted as eji = (vj , vi) ∈ E , it indicates
that node i can receive information from node j. And ejj =
(vj , vj) indicates that node j has a self-loop. wij ̸= 0 if and
only if eji ∈ E . A directed path from vi to vj is a sequence
of nodes starting at vi and ending at vj , where any node is
distinct. In a directed graph, if there is a node vo that has
directed paths to all other nodes, then the node vo is called
the root node. A directed graph has a spanning tree if there
is at least one root node in the graph. When all nodes in a
directed graph are root nodes, the graph is said to be strongly
connected.

2.3 DeGroot model with competition
Let us consider a social network consisting of N individuals.

The interactions of these N individuals can be represented
by a weighted directed graph G(W ). In this directed graph,
the signs of edges can be negative, so G(W ) is a signed
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graph. In the signed matrix W , wij > 0 (wij < 0) means
that individual i trusts (distrusts) individual j, so there is
a cooperative (competitive) relationship between individual i
and individual j. Naturally, wij = 0 and wji = 0 indicate that
there is no relationship between individual i and individual j.
Without loss of generality, |W | is assumed to be row random.

Let zi(k) represent the opinion of individual i at time k.
zi(k) can be positive, negative, or zero. When zi(k) is positive
(negative), it means that individual i holds a positive (negative)
attitude on the topic at time k. When zi(k) = 0, it means that
the individual i is neutral on the topic at time k. The opinion
of individual i at time k is affected by its own opinion and
the opinion of its neighbors at time k − 1, i.e.,

zi(k + 1) =
N∑
j=1

wijzj(k). (1)

Let z(k) = [z1(k), z2(k), · · ·, zN (k)] ∈ RN , W = [wij ], then
equation (1) can be written in the following compact form:

z(k + 1) = Wz(k), (2)

where wii > 0 for all i = 1, 2, · · ·, N .
Definition 1. The signed network (2) can achieve modulus

consensus if there exists γ ∈ R such that

limk→∞|zi(k)| = limk→∞|zj(k)| = γ, (3)

for any i, j = 1, 2, · · ·, N . In particular, if γ ̸= 0, the signed
social network (2) can achieve bipartite consensus.

In the signed social networks, the bipartite consensus is
the polarization of individuals’ opinions into two opposite
groups. In order to deal with this kind of signed graph
more conveniently, we also need the following definition and
assumption.

Definition 2. A signed graph G(W ) = G(V, E ,W ) is
(V ′

,V ′′
) structurally balanced if its node set V can be divided

into two vertex sets V ′
and V ′′

, where V ′ ∪ V ′′
= V and

V ′ ∩ V ′′
= ∅. The sign of the edges between the vertices

in V ′
(V ′′

) is positive, while the sign of the edges formed
by the nodes in V ′

and V ′′
is negative. G(W ) is structural-

ly balanced if and only if there exists a diagonal matrix
Γ = diag(τ1, τ2, · · ·, τN ), τi = ±1, i = 1, 2, · · ·, N such that
ΓWΓ ≥ 0 [20].

Assumptions 1. The network G(W ) is (V ′
,V ′′

) structurally
balanced and has a spanning tree. When there is a leader, the
leader maintains a cooperative relationship with the followers
in set V ′

(V ′′
) and a competitive relationship with the follow-

ers in set V ′′
(V ′

). Similarly, when there are multiple leaders,
multiple leaders are cooperative with the followers in set V ′

(V ′′
) and competitive with the followers in set V ′′

(V ′
).

Remark 1. When the network G(W ) composed of follow-
ers is (V ′

,V ′′
) structurally balanced, the leader must maintain

a cooperative relation with individuals in one set (V ′
or V ′′

)
and competitive relations with individuals in the other set,
which is necessary to ensure that the social network containing
leaders is structurally balanced. If not, the relationship between
individuals in the network becomes extremely complicated and
difficult to describe, and the evolution of opinion is full of

uncertainty due to a sea of different scenarios one needs to
analyze.

When the G(W ) is (V ′
,V ′′

) structurally balanced, its node
set V must can be divided into two vertex sets V ′

and
V ′′

. There must be a diagonal matrix Γ2 = diag(τ1, τ2, · ·
·, τN ), τi = ±1, i = 1, 2, · · ·, N such that Γ2WΓ2 ≥ 0. In
particular, τi = 1 if vi ∈ V ′

and τi = −1 if vi ∈ V ′′
. Γ2WΓ2

is a row random matrix, and the left and right eigenvectors
corresponding to the eigenvalue of 1 are l and 1N , respectively.
In addition, we have lT1N = 1. For this social network
to achieve modulus consensus, we assume that G(W ) has a
spanning tree. Let g(k) = Γ2z(k). Then we have

g(k + 1) = Γ2z(k + 1)

= Γ2Wz(k)

= Γ2WΓ2g(k).

(4)

Obviously, G(Γ2WΓ2) has a spanning tree and the elements
of its main diagonal are all greater than 0. In this case,
1 is the only maximum modulus eigenvalue of Γ2WΓ2

and its algebraic multiplicity is 1 [12]. Naturally, we have
limk→∞(Γ2WΓ2)

k = 1N lT [36]. Then, limk→∞g(k) =
1N lT g(0) and limk→∞z(k) = Γ21N lT g(0). Let α = lT g(0),
we have limk→∞g(k) = 1Nα and limk→∞z(k) = Γ21Nα.
It can be seen from the above equations that when there are
no leaders participating on a signed social network, if α ̸= 0,
the opinions of individuals in a social network are polarized
into two distinct groups α and −α.

When the G(W ) is structurally unbalanced and strongly
connected, ρ(W ) < 1 [25]. Naturally, limk→∞W k = 0,
where 0 is a matrix with all elements being 0. At this time,
for any initial value z(0), we have limk→∞z(k) = 0N .
Eventually, all individuals remain neutral on the topic.

2.4 Model formulation
In this section, we introduce the intermittent-influence lead-

ers into the DeGroot model with competition, and propose a
leader-follower architecture on a signed social network. This
type of leaders is an abstraction of some of the stars on the
Internet platform. Stars can influence subscribers through text
and video, while their own opinions are not influenced by
subscribers. In short, subscribers are not neighbors of stars
and stars are neighbors of subscribers.

For the convenience of description, the behavior of the
leader influencing the followers is called broadcast, and these
intermittent moments when the leader influences the followers
are called broadcast moments. The opinions of followers
evolve independently of the leaders at most moments, which
are known as silence moments.

The influence factor bi ∈ [−1, 1] represents the influence of
the leader on the follower vi at the broadcast moment. When
vi receives the influence of the leader, the influence of the rest
of vi’s neighbors on vi is weakened, so the influence of vi’s
neighbors on the individual vi becomes (1 − |bi|) times the
original influence. Without loss of generality, the broadcast
factor is assumed to be finite, i.e.,

N∑
j=1

bj = bs. (5)
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When there is only one leader, we use vl and xl to repre-
sent the leader and the opinion of leader, respectively. Let
b = [b1, b2, ···, bN ]T and B = diag(|b|). At this time, the state
vector in Equation (2) is augmented to z̄(k) = [zl, z

T (k)]T ,
and the adjacency matrix is augmented to T (F) at the
broadcast moments (silence moments). The specific forms of
T and F are as follows:

T =

[
1 0
b (I −B)W

]
F =

[
1 0
0 W

]
.

(6)

When there are multiple leaders, we use superscripts to
number the leaders for convenience. Suppose there are p lead-
ers, denoted by v1l , v

2
l , · · ·, v

p
l , respectively. Correspondingly

their opinions are denoted as zl = [z1l , · · ·, z
p
l ]

T . For all
d = 1, 2, · · ·, N , bd = [bd1, b

d
2, · · ·, bdN ]T represent the influence

of the leader vdl on N followers. Bd = diag(|bd|). At this
time, the opinion vector in Equation (2) is augmented to
z̄(k) = [zTl , z

T (k)]T ∈ RN+p, and the adjacency matrices at
the broadcast moments and silence moments are respectively
augmented to the following forms:

T =

[
Ip 0

b1, · · ·,bp (I −
∑p

d=1 B
d)W

]
F =

[
Ip 0
0 W

]
.

(7)

Since the broadcast moments are intermittent and limited,
without loss of generality, the set of broadcast moments is
represented by ℘ = {t1, · · ·, tk}, and the number of broadcasts
is denoted as ⟨℘⟩. Let z̄∗ denote the final opinion vector when
leaders participate in the opinions’ evolution of social network.
It is supposed that after the last broadcast, the followers can
still have sufficient discussions. Naturally, the evolution of
a social network consisting of leaders and followers can be
expressed as:

z̄∗ = F ∗(

k−1∏
h=1

TF th+1−th−1)TF t1−1z̄(0), (8)

where

F ∗ = limk→∞F k. (9)

Remark 2. F ∗ represents a phenomenon in which the
followers’ opinions evolve independently of the leaders after
the last broadcast. This phenomenon fits our real life. After
browsing the information on Weibo, Twitter and other network
platforms, individuals often share, communicate and discuss
information online or offline with friends, relatives, colleagues,
etc.

III. MAIN RESULTS

Inspired by the fact that internet famous use text or video
to influence their subscribers intermittently on Twitter or other
network platforms, we introduce intermittent-influence leaders
into the DG model with competitive relationship. With the

participation of these particular leaders, the evolution of the
follower’s opinions has different special properties than those
described in the existing literature. This article will focus on
these special properties and the determinants behind them.

Since the number of broadcasts is limited, the followers’
opinions cannot completely converge to the leader’s opinion
(or its opposite value), but only tend to the leader’s opinion
(or its opposite value) to a certain extent. It is worth noting
that the degree of this tendency is related to the broadcast
moments and the number of broadcasts. Therefore, we use
mathematical expressions to give the relationship between
the two in structurally balanced and structurally unbalanced
networks, respectively. As the number of broadcasts increases,
so does the corresponding control cost. Trends in the change
in marginal revenue per broadcast are analyzed. And after
introducing the concept of assimilation, we give our unique
insights on how to weigh the cost and benefit.

Theorem 1. Assume that Assumption 1 is satisfied. If there
is only one leader and ⟨℘⟩ is given, then opinion evolution of
followers is independent of the set of broadcast moments ℘
if and only if |bi| = b̂ for ∀i = 1, 2, · · ·, N . Furthermore, if
⟨℘⟩ = k, the final opinion vector of follower has the following
form:

z∗ = Γ21N{[1− (1− b̂)k]ϖzl + (1− b̂)kα}. (10)

Proof: Since the Assumption 1 is satisfied, there must be a
matrix

Γ =

[
ϖ 0
0 Γ2

]
, (11)

where ϖ = 1 or −1, such that ΓTΓ ≥ 0 and ΓFΓ ≥ 0. In
particular, ϖ = 1 if the leader is cooperative with the followers
in set V ′

and competitive with the followers in set V ′′
, ϖ = −1

if the leader is cooperative with the followers in set V ′′
and

competitive with the followers in set V ′
. Let T̃ = ΓTΓ and

F̃ = ΓFΓ, then we have

T̃ =

[
ϖ 0
0 Γ2

] [
1 0
b (I −B)W

] [
ϖ 0
0 Γ2

]
=

[
1 0

Γ2bϖ (I −B)Γ2WΓ2

]
≥ 0,

(12)

F̃ =

[
ϖ 0
0 Γ2

] [
1 0
0 W

] [
ϖ 0
0 Γ2

]
=

[
1 0
0 Γ2WΓ2

]
≥ 0.

(13)

Let ḡ(k) = Γz̄(k), accordingly, Equation (8) has the
following variant:

ḡ∗ = F̃ ∗(

k−1∏
h=1

T̃ F̃ th+1−th−1)T̃ F̃ t1−1ḡ(0), (14)

where

ḡ(0) = Γz̄(0) =

[
ϖ 0
0 Γ2

] [
zl

z(0)

]
=

[
ϖzl

Γ2z(0)

]
, (15)

F̃ ∗ = limk→∞F̃ k =

[
1 0
0 1N lT

]
. (16)
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A necessary and sufficient condition for followers’ opinions
to be independent of the broadcast moments is that T and F
are commutative. Further, T and F are commutative equivalent
to T̃ and F̃ are commutative since TF = ΓT̃ΓΓF̃Γ =
ΓF̃ΓΓT̃Γ = FT . Then, one has

T̃ F̃ =

[
1 0

Γ2bϖ (I −B)Γ2WΓ2

] [
1 0
0 Γ2WΓ2

]
=

[
1 0

Γ2bϖ (I −B)Γ2W
2Γ2

]
,

(17)

F̃ T̃ =

[
1 0
0 Γ2WΓ2

] [
1 0

Γ2bϖ (I −B)Γ2WΓ2

]
=

[
1 0

Γ2WΓ2Γ2bϖ Γ2WΓ2(I −B)Γ2WΓ2

]
.

(18)

Sufficiency: If |bi| = b̂ for i = 1, 2, · · ·, N , then by Equation
(12), Γ2bϖ can be represented by b̂1N . Correspondingly, (I−
B) can be represented by (1− b̂)I . Naturally, one can get

Γ2WΓ2Γ2bϖ = Γ2WΓ2b̂1N = b̂Γ2WΓ21N

= b̂1N = Γ2bϖ
, (19)

Γ2WΓ2(I −B)Γ2WΓ2 = Γ2WΓ2(1− b̂)IΓ2WΓ2

= (1− b̂)Γ2W
2Γ2

= (I −B)Γ2W
2Γ2.

(20)

This shows that F̃ T̃ = T̃ F̃ . At this point, the evolution
of followers’ opinions is independent of the sequence of
broadcast moments ℘.

Necessity: F̃ T̃ = T̃ F̃ implies that Γ2WΓ2Γ2bϖ = Γ2bϖ.
If b = 0N , then bi = 0 for i = 1, 2, · · ·, N . If b ̸= 0N , it
means that Γ2bϖ is the corresponding right eigenvector when
the eigenvalue of Γ2WΓ2 is 1. Since Γ2WΓ2 is row random,
the corresponding right eigenvector when its eigenvalue is 1
is 1N , and Γ2bϖ is linearly related to 1N . So, Γ2bϖ = b̂1N ,
|bi| = b̂ for any i = 1, 2, · · ·, N .

At this point, T̃ and F̃ are commutative. When the number
of broadcasts ⟨℘⟩ = k, it can be concluded that

T̃ k =

[
1 0

b̂1N (1− b̂)Γ2WΓ2

]k
=

[
1 0

[1− (1− b̂)k]1N (1− b̂)kΓ2W
kΓ2

]
.

(21)

Regardless of how the broadcast moments are chosen, the final
opinion vector is as follows:

ḡ∗ = F̃ ∗T̃ kḡ(0)

= F̃ ∗T̃ kΓz̄(0)

=

[
1 0
0 1N lT

] [
1 0

b̂1N (1− b̂)Γ2WΓ2

]k [
ϖzl

Γ2z(0)

]
=

[
ϖzl

ϖzl[1− (1− b̂)k]1N + (1− b̂)k1N lTΓ2z(0)

]
=

[
ϖzl

ϖzl[1− (1− b̂)k]1N + (1− b̂)k1N lT g(0)

]
=

[
ϖzl

ϖzl[1− (1− b̂)k]1N + α(1− b̂)k1N

]
.

(22)

Then,

z̄∗ = Γḡ∗

=

[
ϖ 0
0 Γ2

] [
ϖzl

ϖzl[1− (1− b̂)k]1N + α(1− b̂)k1N

]
=

[
zl

ϖzl[1− (1− b̂)k]Γ21N + α(1− b̂)kΓ21N

]
.

(23)
In the end, the opinion vector of followers is as follows:

z∗ = Γ21N{[1− (1− b̂)k]ϖzl + (1− b̂)kα}. (24)

Remark 3. In Equation (24), α or −α is the final opinion
value of followers when no leader is involved. The constant
zl is the leader’s opinion value. When ϖ = 1, the modulus of
each follower’s opinion is:

|[1− (1− b̂)k]zl + (1− b̂)kα|. (25)

When ϖ = −1, similarly, the modulus of each follower’s
opinion is:

| − [1− (1− b̂)k]zl + (1− b̂)kα|. (26)

It can be seen from the above results that the modulus
consensus opinion of followers is only related to the number of
broadcasts and has nothing to do with the broadcast moments.
[1 − (1 − b̂)k]zl represents the influence of the leader on
the followers. The more broadcast times, the greater the
influence of the leader on the followers. When the number
of broadcasts is close to 0, limk→0(1 − b̂)k = 1. Naturally,
z∗ = Γ21Nα, and the evolution of the followers’ opinions is
independent of the leader, i.e., each follower’s opinion is either
α or −α. When the number of broadcasts tends to infinity,
limk→∞(1 − b̂)k = 0. After that, z∗ = Γ21Nϖzl. In this
case, each follower’s opinion is either zl or −zl.

Next, we will specifically study which individuals in the
followers tend to zl and which tend to −zl as the number of
broadcasts k tends to infinity.

Corollary 1. It is assumed that the conditions and as-
sumptions of Theorem 1 are satisfied. When the number of
broadcasts tends to infinity, if ϖ = 1 (ϖ = −1), the opinions
of followers in V ′

(V ′′
) converge to zl, and the opinions of

followers in the set V ′′
(V ′

) converge to −zl.
Proof: By equation (24), limk→∞z∗ = Γ21Nϖzl. When

ϖ = 1, limk→∞z∗ = Γ21Nzl. Naturally, the opinion of
followers in set V ′

converges to zl, while the opinion of
followers in set V ′′

converges to −zl. When ϖ = −1, similar
to the above discussion, it can be concluded that the opinion
of followers in set V ′′

converges to zl, and the opinion of
followers in set V ′

converges to −zl. So far, the proof of this
Corollary is completed.

Remark 4. Corollary 1 points out that in a structurally
balanced network, when the number of broadcasts tends to
infinity, the followers in the camp that cooperated with the
leader would tend to the leader’s opinion, while the followers
in the other camp would tend to the opposite value of
the leader’s opinion. This conclusion is consistent with the
Theorem 1 in [34] and the Theorem 2 in [37].

Combining Theorem 1 and Corollary 1, when ϖ = 1,
the more the number of broadcasts, the closer the followers’
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opinion in V ′
is to the leader’s opinion zl, and the closer

the followers’ opinion in V ′′
is to −zl. The less the number

of broadcasts, the closer the followers’ opinion in V ′
is to

the opinion α when no leader is involved, and the closer the
followers’ opinion in V ′′

is to −α. Similarly, when ϖ = −1,
the more the number of broadcasts, the closer the opinion of
followers in V ′

and V ′′
is to −zl and zl, respectively. The less

the number of broadcasts, the closer the followers’ opinion in
V ′

and V ′′
is to α and −α, respectively.

Theorem 2. Suppose there are multiple leaders and As-
sumption 1 is satisfied. When ⟨℘⟩ is given, if ∀d = 1, 2, · · ·, p,
|bdi | = |bdj | = b̂d for ∀i, j ∈ V , the modulus consensus opinion
of followers is independent of the set of broadcast moments
℘. Further, if ⟨℘⟩ = k, the final opinion vector of follower has
the following form:

z∗ = Γ21N{1− (1− b̂
′
)k

b̂′
b̆TΓ1zl + (1− b̂

′
)kα}, (27)

where b̆ = [b̂1, b̂2, · · ·, b̂p]T and b̂
′
=

∑p
d=1 b̂

d.
Proof: Similar to the proof of Theorem 1, we have

T̃ = ΓTΓ

=

[
Γ1 0
0 Γ2

] [
Ip 0

b1, · · ·,bp (I −
∑p

d=1 B
d)W

] [
Γ1 0
0 Γ2

]
=

[
Ip 0

Γ2(b
1, · · ·,bp)Γ1 Γ2(I −

∑p
d=1 B

d)WΓ2

]
≥ 0,

(28)

F̃ = ΓFΓ

=

[
Γ1 0
0 Γ2

] [
Ip 0
0 W

] [
Γ1 0
0 Γ2

]
=

[
Ip 0
0 Γ2WΓ2

]
≥ 0,

(29)

where Γ1 = Ip or −Ip, Γ1 = Ip if multiple leaders are
cooperative with the followers in set V ′

and competitive with
the followers in set V ′′

, Γ1 = −Ip if multiple leaders are
cooperative with the followers in set V ′′

and competitive with
the followers in set V ′

. When ∀d = 1, 2, ···, p, |bdi | = |bdj | = b̂d

for ∀i, j ∈ V , let b̆ = [b̂1, b̂2, · · ·, b̂p]T and b̂
′
=

∑p
d=1 b̂

d,
then Γ2(b

1, · · ·,bp)Γ1 and Γ2(I −
∑p

d=1 B
d)WΓ2 can be

represented by 1N b̆T and (1 − b̂
′
)Γ2WΓ2, respectively. At

this time,

T̃ F̃ =

[
Ip 0

1N b̆T (1− b̂
′
)Γ2WΓ2

] [
Ip 0
0 Γ2WΓ2

]
=

[
Ip 0

1N b̆T (1− b̂
′
)Γ2W

2Γ2

]
,

(30)

F̃ T̃ =

[
Ip 0
0 Γ2WΓ2

] [
Ip 0

1N b̆T (1− b̂
′
)Γ2WΓ2

]
=

[
Ip 0

Γ2WΓ21N b̆T (1− b̂
′
)Γ2W

2Γ2

]
.

(31)

Since Γ2WΓ2 is row-random, Γ2WΓ21N = 1N . So,
Γ2WΓ21N b̆T = 1N b̆T , i.e., T̃ F̃ = F̃ T̃ . Naturally, TF =
ΓT̃ΓΓF̃Γ = ΓT̃ F̃Γ = ΓF̃ T̃Γ = FT . In this case, the

modulus consensus opinion of followers is independent of
the broadcast moments ℘. If ⟨℘⟩ = k, Equation (14) has the
following form:

ḡ∗ = F̃ ∗T̃ kḡ(0)

= F̃ ∗T̃ kΓz̄(0)

=

[
Ip 0
0 1N lT

] [
Ip 0

1N b̆T (1− b̂
′
)Γ2WΓ2

]k [
Γ1zl

Γ2z(0)

]
=

[
Ip 0
0 1N lT

] [
Ip 0

ϕ11N b̆T ϕ2Γ2W
kΓ2

] [
Γ1zl

Γ2z(0)

]
=

[
Ip 0
0 1N lT

] [
Γ1zl

ϕ11N b̆TΓ1zl + ϕ2Γ2W
kΓ2Γ2z(0)

]
=

[
Γ1zl

ϕ11N b̆TΓ1zl + ϕ21N lTΓ2z(0)

]
=

[
Γ1zl

ϕ11N b̆TΓ1zl + ϕ21Nα

]
,

(32)
where ϕ1 = 1−(1−b̂

′
)k

b̂′
, ϕ2 = (1− b̂

′
)k.

Then,

z̄∗ = Γḡ∗

=

[
Γ1 0
0 Γ2

] [
Γ1zl

1−(1−b̂
′
)k

b̂′
1N b̆TΓ1zl + (1− b̂

′
)k1Nα

]

=

[
zl

1−(1−b̂
′
)k

b̂′
Γ21N b̆TΓ1zl + (1− b̂

′
)kΓ21Nα

]
.

(33)
In the end, the opinion vector of followers is as follows:

z∗ = Γ21N{1− (1− b̂
′
)k

b̂′
b̆TΓ1zl + (1− b̂

′
)kα}. (34)

Remark 5. When Γ1 = Ip, b̆TΓ1zl = b̆T zl =
∑p

j=1 b̂
jzjl ,

the modulus of each follower’s opinion can be expressed as

|[1− (1− b̂
′
)k]

p∑
j=1

b̂j

b̂′
zjl + (1− b̂

′
)kα|. (35)

When Γ1 = −Ip, b̆TΓ1zl = −b̆T zl = −
∑p

j=1 b̂
jzjl , the

modulus of each follower’s opinion can be expressed as

| − [1− (1− b̂
′
)k]

p∑
j=1

b̂j

b̂′
zjl + (1− b̂

′
)kα|. (36)

Comparing (35) and (36) with (25) and (26) respectively, it
is not difficult to find that the multi-leader situation can be
equivalently regarded as the single-leader situation with xl =∑p

j=1 b̂
jxj

l and the influence factor is b̂
′
. At this time, the

modulus consensus opinion of followers is jointly influenced
by all leaders.

In the above discussion, we have studied the case that
the signed graph is structurally balanced. For the structurally
unbalanced signed networks, we have the following result.

Theorem 3. When ⟨℘⟩ is given, if G(W ) is structurally
unbalanced and strongly connected, eventually all followers
remain neutral on the topic.

Proof: When G(W ) is structurally unbalanced and strongly
connected, ρ(W ) < 1. Naturally, limk→∞W k = 0. After that,
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F ∗ = limk→∞F k

= limk→∞

[
Ip 0
0 W

]k
=

[
Ip 0
0 0

]
.

(37)

Substituting F ∗ into Equation (8), we can get
limk→∞z̄(k) = [zTl ,0

T
N ]T ∈ RN+p. At this point, no

matter how many leaders there are in the network or the
number of broadcasts, all followers remain neutral on the
topic. This result is in line with our real life. When there
are multiple interest groups in an enterprise, different interest
groups check each other, so that the interests are not biased
towards a single camp.

At this point, we have investigated the evolution of the opin-
ion of followers for the structurally balanced and unbalanced
networks, respectively. Next, we focus on the marginal effect
of each broadcast by the leader. As the number of broadcasts in
structurally unbalanced networks has no effect on the evolution
of followers’ opinions, so the marginal effect is specifically
analyzed only in the structurally balanced network. For this,
we have the following results.

Theorem 4. Assume that Assumption 1 is satisfied. Suppose
there is only one leader and |bi| = b̂ for ∀i = 1, 2, · · ·, N . As
the number of the leader’s broadcasts increases, the revenue
of one single broadcast on the followers’ opinions gradually
decreases.

Proof: When ϖ = 1, the opinion of followers in V ′

lies between the opinion zl of the leader and the opinion
α of the followers without the participation of the leader.
The opinion of followers in V ′′

is between −zl and −α.
At this time, combined with Equation (25), we can use
|[1 − (1 − b̂)k]zl + (1 − b̂)kα − α| to represent the deviation
of the opinion. The larger is the deviation of this opinion, the
closer the opinion of followers in V ′

is to zl, and the closer the
opinion of followers in V ′′

is to −zl. Therefore, this deviation
can be used to measure the benefits of broadcasts. Without
loss of generality, the number of broadcasts k is used to denote
the cost. After that, we can define a cost-performance function
y(k) whose specific form is as follows:

y(k) =
|[1− (1− b̂)k]zl + (1− b̂)kα− α|

k

=
1− (1− b̂)k

k
|zl − α|.

(38)

Taking forward difference of y(k), we can get

∆y(k) = y(k + 1)− y(k)

=
(kb̂+ 1)(1− b̂)k − 1

k(k + 1)
|zl − α|.

(39)

Let x(k) = (kb̂+ 1)(1− b̂)k − 1, then

∆x(k) = −b̂2(k + 1)(1− b̂)k . (40)

Since k is a positive integer and 0 < b̂ < 1, ∆x(k) < 0.
So, the maximum value of the monotonically decreasing
function x(k) is x(1) = (b̂ + 1)(1 − b̂) − 1 = −b̂2 < 0.

Naturally, ∆y(k) < 0, the cost-performance function y(k) is
monotonically decreasing. When ϖ = −1, combined with
Equation (26), deviation of the opinion can be denoted as
| − [1− (1− b̂)k]zl + (1− b̂)kα− α|. At this point, the cost-
performance function is y(k) = |−[1−(1−b̂)k]zl+(1−b̂)kα−α|

k .
Similarly, we can conclude that the cost-performance function
is still decreasing.

Theorem 4 states that when the network includes a leader,
the marginal revenue per broadcast decreases gradually as
the number of broadcasts increases. In fact, this phenomenon
also applies to multiple leaders. When extending the single-
leader situation to the multiple-leader situation, we just need
to replace b̂ and zl with b̂

′
and

∑p
j=1(b̂

j/b̂
′
)zjl , respectively.

Later, the same conclusion can be drawn.
Remark 6. For a cooperative social network, it was obtained

that the marginal revenue of broadcasting decreases gradually
with the increase of the number of broadcasts [35]. Theorem
4 shows that it is still true for a structurally balanced social
network with cooperation and competition.

From the above discussion, it can be concluded that in a
structurally balanced leader-follower network, when the leader
maintains a cooperative relationship with the followers in set
V ′

(V ′′
) and a competitive relationship with the followers in

set V ′′
(V ′

), with the increase of the number of broadcasts, the
opinion of the followers in V ′

(V ′′
) will gradually approach

that of the leader. but the marginal revenue per broadcast is
decreasing. The number of broadcasts represents the cost, and
without loss of generality, it is assumed that the cost of each
broadcast is the same. Naturally, how to weigh the cost and
the benefit of broadcasts is an intriguing topic. To this end,
we introduce the following concept of assimilation.

In a leader-follower network, the leader’s opinion is as-
sumed to be zl. Taking the opinion zl as the center, the
constant ε is the neighborhood radius. Followers are said to be
assimilated by the leader if their opinions are located within
the neighborhood. In particular, the neighborhood radius ε
is called the assimilation limit. The minimum number of
broadcasts required to assimilate followers is inextricably
linked to the assimilation limit. Next, under the premise that
ε is the assimilation limit, the minimum number of broadcasts
required for assimilation is specifically analyzed.

Corollary 2. It is assumed that the conditions and as-
sumptions of Theorem 4 are satisfied. Then, the following
conclusions hold.

1) If ϖ = 1, the minimum number of broadcasts required by
the leader to assimilate the followers in V ′

is ⌈ lnε−ln|α−zl|
ln(1−b̂)

⌉.

2) If ϖ = −1, the minimum number of broadcasts re-
quired by the leader to assimilate the followers in V ′′

is
⌈ lnε−ln|α+zl|

ln(1−b̂)
⌉.

Proof: Item1): When ϖ = 1, assume the minimum number
of broadcasts required by the leader to assimilate all followers
is m, then we have

|[1− (1− b̂)m]zl + (1− b̂)mα− zl| < ε

|[1− (1− b̂)m−1]zl + (1− b̂)m−1α− zl| ≥ ε
. (41)
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Afterwards,
(1− b̂)m|α− zl| < ε

(1− b̂)m−1|α− zl| ≥ ε
. (42)

Taking the logarithm of both sides of the above two inequal-
ities, we have

mln(1− b̂) < lnε− ln|α− zl|
(m− 1)ln(1− b̂) ≥ lnε− ln|α− zl|

. (43)

Finally,

m >
lnε− ln|α− zl|

ln(1− b̂)

m ≤ lnε− ln|α− zl|
ln(1− b̂)

+ 1

. (44)

Naturally, m = ⌈ lnε−ln|α−zl|
ln(1−b̂)

⌉.
Item2): When ϖ = −1, assume the minimum number of

broadcasts required by the leader to assimilate all followers is
m, then we have

| − [1− (1− b̂)m]zl + (1− b̂)mα+ zl| < ε

| − [1− (1− b̂)m−1]zl + (1− b̂)m−1α+ zl| ≥ ε
. (45)

Similar to the processing of Item 1), we have

m >
lnε− ln|α+ zl|

ln(1− b̂)

m ≤ lnε− ln|α+ zl|
ln(1− b̂)

+ 1

. (46)

Naturally, m = ⌈ lnε−ln|α+zl|
ln(1−b̂)

⌉.

IV. NUMERICAL EXAMPLES

In this section, we will give several examples to observe
the evolution of the systems state in order to verify our
conclusions.

Example 1: Consider a social network ℑ0 with four follow-
ers, and the associated adjacency matrix W is given by:

W =


1 0 0 0
0.6 0.4 0 0
−0.4 0 0.6 0
0 −0.8 0 0.2

 .

Obviously, G(W ) has a spanning tree and is structurally
balanced. Individuals 1 and 2 belong to set V ′

, and indi-
viduals 3 and 4 belong to set V ′′

. At this time, through
simple calculation, we can obtain that the corresponding left
eigenvector is l = [1, 0, 0, 0]T when the eigenvalue of matrix
ΓWΓ is 1. Assume that the initial value of the four followers
is z(0) = [0.2, 0.6,−0.7, 0.32]T . Naturally, when the leader is
absent, each follower’s opinion is α = 0.2 or −α = −0.2.

After that, we construct a leader-follower network ℑ1 by in-
troducing the leader into network ℑ0. Suppose the leader main-
tains a cooperative relationship with the follower in the set V ′

and its opinion is zl = 1. Suppose b = [0.3, 0.3,−0.3,−0.3]T .
At this time, all the conditions of Theorem 1 are satisfied.

k 1 2 3 4
y(k) 0.24 0.204 0.1752 0.152

TABLE I

According to the conclusion of Theorem 1, the modulus of
each follower’s opinion is

|1− (0.7)k + (0.7)k × 0.2|.

When the number of broadcasts k = 1 and k = 2, the modulus
of each follower’s opinion is 0.44 and 0.608, respectively.
When the number of broadcasts k is 3 and 4, the modulus of
each follower’s opinion is 0.7256 and 0.80792, respectively.
These results are shown in Fig. 1. In Fig. 1, the black lines
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-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

z
 (

k
)

Fig. 1. The opinion evolution for four followers in Example 1.

represent the evolution of followers’ opinions when no leader
is involved (α and −α), and the green lines represent the
evolution of followers’ opinions when the leader continues
to influence followers (zl and −zl). The red lines, the cyan
lines, the pink lines, and the blue lines represent the evolution
of the followers’ opinions when the leader broadcasts 1, 2, 3,
and 4 times, respectively. It is not difficult to see that with the
increase of the number of broadcasts, the opinions of followers
in V ′

gradually tend to 1, while those of followers in V ′′

gradually tend to −1. Next, we consider the marginal revenue
per broadcast in network ℑ1. When the number of broadcasts
is 1, 2, 3, and 4, the corresponding marginal revenue is clearly
represented in Table I. Obviously, the marginal revenue per
broadcast decreases gradually as the number of broadcasts
increases.

Example 2: Consider a network ℑ2 with four followers, and
the adjacency matrix associated with it is as follows:

W =


0.2 0 −0.2 0.6
0.3 0.4 0 −0.3
0 0.5 0.5 0
0 0 0.3 0.7

 .

Clearly, G(W ) is strongly connected and aperiodic and struc-
turally unbalanced. After that, we introduce three leaders into
the network ℑ2 to construct a leader-follower network ℑ3.
b1 = [−0.1, 0.1, 0.1, 0.1]T , b2 = [−0.2, 0.2,−0.2, 0.2]T ,
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b3 = [0.3, 0.3,−0.3, 0.3]T . At this time, all the conditions
of Theorem 3 are satisfied. When the number of broadcasts
k = 1, 2, 3, 4, the evolution of the followers’ opinions is shown
in Fig. 2. The red lines, the cyan lines, the pink lines, and the
blue lines represent the evolution of the followers’ opinions
when the leader broadcasts 1, 2, 3, and 4 times, respectively. In
Fig. 2, regardless of the number of broadcasts (the number of
broadcasts is finite), the four individuals end up being neutral
on the topic.
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0.6

z
 (

k
)

Fig. 2. The opinion evolution for four followers in Example 2.

V. CONCLUSIONS

This paper investigates the influence of intermittent-
influence leaders on followers’ opinions in a signed social
network. First, for a structurally balanced network, we analyze
the relationship between the followers’ final opinions and the
number of broadcasts, and extend the single-leader case to
the multiple-leader case. Second, in a structurally unbalanced
network, it is concluded that all followers remain neutral on
the topic regardless of the number of broadcasts. Finally, by
analyzing the cost-performance function for a structurally
balanced network, the fact that the marginal revenue per
broadcast decreases gradually as the number of broadcasts
increases is obtained. Therefore, the concept of assimilation
is introduced to solve the problem of how to weigh the costs
and benefits, and the minimum number of broadcasts required
by leaders to assimilate followers has been calculated. Finally,
two examples are used to verify our conclusions.
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