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Abstract

We introduce ⊕calculus and ⊗calculus for intuitionistic fuzzy values and prove some basic theorems by using multiplicative

calculus which has useful tools to represent the concepts of introduced calculi. Besides, we construct some isomorphic mappings

to interpret the relationships between ⊕calculus and ⊗calculus. This paper reveals also new calculi for fuzzy sets in particular.
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Abstract: We introduce ⊕calculus and ⊗calculus for intuitionistic fuzzy values and prove some basic theorems by
using multiplicative calculus which has useful tools to represent the concepts of introduced calculi. Besides, we
construct some isomorphic mappings to interpret the relationships between ⊕calculus and ⊗calculus. This paper
reveals also new calculi for fuzzy sets in particular.

1 Introduction

Fuzzy set theory [21] is an extension of classical set theory and it provides researchers with tools to handle the
elements which are not categorizable by classical sets. Fuzzy sets consider every element in the universe of dis-
course by assigning a membership value to each of them, while classical sets consider only the elements which are
either member or nonmember of the set. In other words, classical sets exclude the partial membership while fuzzy
sets include. Fuzzy sets are also extended to intuitionistic fuzzy sets(IFS) by Atanassov [4] in consideration of the
partial nonmembership values. Following its introduction, IFSs are studied by many mathematicians from different
aspects. In particular, many concepts of intuitionistic fuzzy calculus are introduced and applied to problems having
two facets of uncertainty, namely, fuzziness and hesitancy [2, 3, 10–12, 22].

In [20], we defined the concepts of ⊕convergence and ⊗convergence for sequences of intuitionistic fuzzy val-
ues(IFV) and illustrated their advantage over the literature by an example [20, Example 4.3]. To be more precise,
while the convergence types in the literature are either inapplicable to many sequences of IFVs or they assign mul-
tiple limits to a sequence, ⊕convergence and ⊗convergence are applicable to almost every sequence of IFVs and
reveal a unique limit provided that the limit exists. In [20], there are also methods to recover the convergence of
sequences of IFVs which do not ⊕converge(or ⊗converge) ordinarily. In the light of these results, now there is a
need to define the concepts of ⊕limit and ⊗limit for intuitionistic fuzzy valued functions(IFVF) in order to extend
the aforementioned advantages to intuitionistic fuzzy calculus, and a need to construct corresponding calculi. The
aim of this paper is to define ⊕limit and ⊗limit for IFVFs and construct corresponding intuitionistic fuzzy calculi by
utilizing the tools of multiplicative calculus [8, 17] which has close relation with the new calculi. The constructed
calculi reveals also a new calculi for fuzzy sets in the absence of hesitancy.

Before to continue with main results, we give some preliminaries concerning IFSs and multiplicative calculus.
Let X be a non-empty set. Then, an Atanassov’s intuitionistic fuzzy set [4] has the following form: A =
{〈x, µA(x), νA(x)〉|x ∈ X} where µ : X → [0, 1] is called membership function and ν : X → [0, 1] is called
non-membership function. For any x ∈ X , 0 ≤ µA(x) + νA(x) ≤ 1. In special case µA(x) + νA(x) = 1,
A-IFS degenerates to fuzzy set [21]. Following [6, 7, 19], we use the notation α = (α1, α2) for an IFV where
α1 ∈ [0, 1], α2 ∈ [0, 1], and 0 ≤ α1 + α2 ≤ 1. We denote the set of all IFVs by L. Besides, by an IFVF we mean
F : I ⊆ R→ L where F (t) = (f1(t), f2(t)). In this case, f1, f2 : I → [0, 1] and 0 ≤ f1(t) + f2(t) ≤ 1 for each
t ∈ I .

Definition 1.1. [7] Let α = (α1, α2) and β = (β1, β2) be two IFVs. Then

Keywords: Intuitionistic fuzzy sets, fuzzy sets, multiplicative calculus
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(i) If α1 ≥ β1 and α2 ≤ β2, then α ≥L β

(ii) If α1 ≤ β1 and α2 ≥ β2, then α ≤L β

(iii) If α1 = β1 and α2 = β2, then α = β

Remark 1.2. Definition of strict order <L can also be given similar to Definition 1.1 via replacing ≤L and ≤ by
<L and <, respectively.

Definition 1.3. [10, 18, 19] Let α = (α1, α2) and β = (β1, β2) be two IFVs and λ ≥ 0. Then,

(i) α⊕ β = (1− (1− α1)(1− β1), α2β2)

(ii) α⊗ β = (α1β1, 1− (1− α2)(1− β2))

(iii) Assuming β <L (1, 0),

α	 β =


(
α1 − β1

1− β1
,
α2

β2

)
, if α1 ≥ β1, α2 ≤ β2, and

α2πβ ≤ παβ2

(0, 1), otherwise

where πα = 1− α1 − α2 and πβ = 1− β1 − β2

(iv) Assuming β >L (0, 1),

α� β =


(
α1

β1
,
α2 − β2

1− β2

)
, if α1 ≤ β1, α2 ≥ β2, and

α1πβ ≤ παβ1

(1, 0), otherwise

(v) λα = (1− (1− α1)λ, αλ2), where α <L (1, 0)

(vi) αλ = (αλ1 , 1− (1− α2)λ), where α >L (0, 1)

Definition 1.4. [12] Let F : (a, b)→ L and t1, t2 ∈ (a, b). Then,

(i) F is increasing on I if F (t1) <L F (t2) whenever t1 < t2,

(ii) F is nondecreasing on I if F (t1) ≤L F (t2) whenever t1 < t2,

(iii) F is decreasing on I if F (t2) <L F (t1) whenever t1 < t2,

(ii) F is nonincreasing on I if F (t2) ≤L F (t1) whenever t1 < t2.

Remark 1.5. For the local monotonicity, a function F is nondecreasing at a point t0 ∈ (a, b) if there is a δ > 0
such that F (u) ≤L F (t0) ≤L F (v) for all u ∈ (t0− δ, t0) and v ∈ (t0, t0 + δ). F is nondecreasing on (a, b) if and
only if F is nondecreasing at every t ∈ (a, b). The other types of local monotonicities are similar(see [9], [16, pp.
125]).

Note that operations ⊕,⊗,	,� of IFVs implement multiplication and division on membership and nonmem-
bership degrees of IFVs. Besides, many other operations on IFVs such as integrals [1, 13], intuitionistic fuzzy
aggregation operators [18, 19], convergence methods [20], infinite series and products [22] include again multi-
plication and division of membership-nonmemberships. On the other hand, multiplication and division operations
are also crucial in multiplicative calculus and the tools of multiplicative calculus are useful to represent and to
handle some intuitionistic fuzzy concepts. For this reason, we here give some basic concepts of multiplicative
calculus [5, 8, 17] which will be used in Sections 2–4.
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Definition 1.6. Let f : R→ R+. The *derivative of the function f is given by:

f∗(t) = lim
h→0

(
f(t+ h)

f(t)

) 1
h

.

Theorem 1.7. If f : R→ R+ is differentiable at t0, then it is also *differentiable at t0, and

f∗(t0) = exp

(
f ′(t0)

f(t0)

)
.

Theorem 1.8. If f : R→ R+ is *differentiable at t0, and if f∗(t0) 6= 0, then it is also differentiable at t0, and

f ′(t0) = f(t) ln (f∗(t0)) .

Theorem 1.9. Let f, g : R→ R+ be *differentiable, h : R→ R is differentiable and λ > 0. Then,

(i) (λf)∗(t) = f∗(t)

(ii) (fg)∗(t) = f∗(t)g∗(t)

(iii) (f/g)∗(t) = f∗(t)/g∗(t)

(iv) (fh)∗(t) = f∗(t)h(t) · f(t)h
′(t)

Theorem 1.10 (Multiplicative test for monotonicity). Let f : (a, b)→ R+ be *differentiable.

(i) f∗(t) > 1 for every t ∈ (a, b), then f is increasing

(ii) f∗(t) < 1 for every t ∈ (a, b), then f is decreasing

(iii) f∗(t) ≥ 1 for every t ∈ (a, b), then f is nondecreasing

(iv) f∗(t) ≤ 1 for every t ∈ (a, b), then f is nonincreasing

Definition 1.11. Let f is a positive function. Then, *antiderivative of f is given by

φ(t) = λ exp

(∫
ln (f(t)) dt

)
where λ is a positive constant.

Definition 1.12 (Definite *integral). Let f : [a, b]→ R+. f is said to be *integrable on [a, b] if there exists L such
that for any partition P = {x0, x1, · · · , xn} of [a, b] and for any points ck ∈ [xk, xk+1], we have

lim
‖P‖→0

n−1∏
k=0

f(ck)
∆xk = L.

In that case, we write L =

∫ b

a
f(t)dt.

Theorem 1.13. If f : [a, b]→ R+ is *integrable, then∫ b

a
f(t)dt = exp

(∫ b

a
ln (f(t)) dt

)
.
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Theorem 1.14 (Fundamental theorem of *calculus). Let f : [a, b]→ R+ be continuous. Then,
(i) The function φ defined by

φ(t) =

∫ t

a
f(u)du

is *differentiable on [a, b] and φ∗(t) = f(t).
(ii) If φ is any *antiderivative of f , then∫ b

a
f(t)dt =

φ(b)

φ(a)
·

Theorem 1.15. Let f, g : [a, b]→ R+ be *integrable functions. Then,

(i)
∫ b

a
(f(t)λ)dt =

(∫ b

a
f(t)dt

)λ

(ii)
∫ b

a
(f(t)g(t))dt =

∫ b

a
f(t)dt ·

∫ b

a
g(t)dt

(iii)
∫ b

a

(
f(t)

g(t)

)dt
=

∫ b
a f(t)dt∫ b
a g(t)dt

(iv)
∫ b

a
f(t)dt =

∫ c

a
f(t)dt ·

∫ b

c
f(t)dt

(v) f ≤ g on [a, b] =⇒
∫ b

a
f(t)dt ≤

∫ b

a
g(t)dt

where λ ∈ R and a ≤ c ≤ b.

Theorem 1.16 (*Integration by parts). Let f, g : [a, b]→ R+ be *differentiable so the fg is *integrable. Then,∫ b

a

(
f∗(t)g(t)

)dt
=
f(b)g(b)

f(a)g(a)
· 1∫ b

a

(
f(t)g′(t)

)dt ·
Theorem 1.17. [14, 15] If f : [a, b] → [c, d] is Riemann integrable and g is a continuous function on [c, d], then
g ◦ f is Riemann integrable on [a, b].

2 ⊕Calculus for intuitionistic fuzzy sets

We define ⊕limit for IFVFs as the following.

Definition 2.1. Let F : I ⊆ R→ L and c is a cluster point of I . We say that the ⊕limit of F , as t approaches c, is
IFV ξ if for any IFV ε̄ = (ε, 1− ε) >L (0, 1) there exists δ > 0 such that

F (t) ≤L ξ ⊕ ε̄ and ξ ≤L F (t)⊕ ε̄ (2.1)

holds whenever t ∈ I and 0 < |t− c| < δ. In this case, we write ⊕lim
t→c

F (t) = ξ.

The concept of ⊕limit works with any IFV α, but in case α = (1, 0) many of the other concepts in ⊕calculus
do not work. Hence, from now on we will omit the element (1, 0) in ⊕calculus. We will use the set L⊕ =
{α ∈ L : α <L (1, 0)}. We note that if we had used the strict order <L instead of ≤L to define ⊕limit, then the
element (1, 0) would automatically be omitted throughout ⊕calculus. See Definition 4.4. in [20].
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Theorem 2.2. Let F : I ⊆ R → L⊕, F = (f1, f2) and ξ ∈ L⊕. ⊕lim
t→c

F (t) = ξ if and only if limt→c f1(t) = ξ1

and lim
t→c

f2(t) = ξ2.

Proof. Necessity. Suppose ⊕lim
t→c

F (t) = ξ. Then, for any given ε̄ = (ε, 1− ε) >L (0, 1) there is δ > 0 such that

f1(t) ≤ 1− (1− ξ1)(1− ε) = ξ1 + ε− εξ1 ≤ ξ1 + ε

ξ1 ≤ 1− (1− f1(t))(1− ε) = f1(t) + ε− εf1(t) ≤ f1(t) + ε

}
⇒ ξ1 − ε ≤ f1(t) ≤ ξ1 + ε

and

f2(t) ≥ ξ2(1− ε) = ξ2 − εξ2 ≥ ξ2 − ε

ξ2 ≥ f2(t)(1− ε) = f2(t)− εf2(t) ≥ f2(t)− ε

}
⇒ ξ2 − ε ≤ f2(t) ≤ ξ2 + ε

whenever t ∈ I and 0 < |t− c| < δ. This implies limt→c f1(t) = ξ1 and limt→c f2(t) = ξ2.
Sufficiency. Let limt→c f1(t) = ξ1 and limt→c f2(t) = ξ2. For given ε > 0 followings hold:
(i) There exists δ1 > 0 such that f1(t)− ξ1 ≤ ε(1− ξ1) and ξ2− f2(t) ≤ εξ2 whenever t ∈ I, 0 < |t− c| < δ1

and these imply f1(t) ≤ 1− (1− ξ1)(1− ε) and ξ2(1− ε) ≤ f2(t), respectively. Hence, we have F (t) ≤L ξ ⊕ ε̄
whenever t ∈ I and 0 < |t− c| < δ1.

(ii) By the assumption ξ <L (1, 0) we have ξ1 6= 1 and ξ2 6= 0 and so there exists δ2 > 0 such that f1(t) ≤
ξ1 + 1−ξ1

2 = ξ1+1
2 and f2(t) ≥ ξ2 − ξ2

2 = ξ2
2 whenever t ∈ I, 0 < |t − c| < δ2. Besides, there is δ3 > 0

such that ξ1 − f1(t) ≤ ε(1 − ξ1+1
2 ) and f2(t) − ξ2 ≤ ε ξ22 whenever t ∈ I, 0 < |t − c| < δ3. These imply

ξ1 − f1(t) ≤ ε(1 − f1(t)) and f2(t) − ξ2 ≤ εf2(t) whenever t ∈ I, 0 < |t − c| < min{δ2, δ3}. Hence, we have
ξ1 ≤ 1− (1− f1(t))(1− ε) and f2(t)(1− ε) ≤ ξ2 which implies ξ ≤L F (t)⊕ ε̄.

From (i) and (ii), we conclude that

F (t) ≤L ξ ⊕ ε̄ and ξ ≤L F (t)⊕ ε̄

whenever t ∈ I and 0 < |t− c| < δ = min{δ1, δ2, δ3} which completes the proof.

Remark 2.3. If ⊕lim
t→c

F (t) = (1, 0), then there exists δ > 0 such that F (t) = (1, 0) for any t ∈ (c− δ, c+ δ)/{c}.
On the other hand, if F (d) = (1, 0) for a number d ∈ (c− δ, c+ δ)/{c}, then ξ = (1, 0).

Example 2.4. Let F : (0, 2) → L⊕ be defined by F (t) =

(
1

2
− 1

4 + t
, 1

3
− 1

4 + t

)
. Then, ⊕lim

t→1
F (t) =(

3

10
, 2

15

)
.

Definition 2.5. Let F : I ⊆ R → L⊕ and ξ ∈ L⊕. ⊕ lim
t→c−

F (t) = ξ if for any IFV ε̄ >L (0, 1) there exists δ > 0

such that (2.1) holds whenever t ∈ (c − δ, c). Similarly, ⊕ lim
t→c+

F (t) = ξ if there is δ > 0 such that (2.1) holds

whenever t ∈ (c, c+ δ).

If I is a closed interval, then ⊕limit, ⊕continuity, ⊕derivative at endpoints of I are meant in the one-sided sense
throughout the paper.

Theorem 2.6. Let F,G : I ⊆ R → L⊕ be two IFVFs, ξ, η ∈ L⊕ be two IFVs; and λ ≥ 0. If ⊕lim
t→c

F (t) = ξ and
⊕lim
t→c

G(t) = η, then followings hold:

(i) ⊕lim
t→c

(F (t)⊕G(t)) = ξ ⊕ η

(ii) ⊕lim
t→c

(F (t)	G(t)) = ξ 	 η where F (t)	G(t) ∈ L⊕

(iii) ⊕lim
t→c

λF (t) = λξ

5
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Proof. Let F,G : I ⊆ R → L⊕ be two IFVFs such that F = (f1, f2), G = (g1, g2) and ⊕lim
t→c

F (t) = ξ and
⊕lim
t→c

G(t) = η where ξ, η ∈ L⊕. Then, we have:

(i)

⊕lim
t→c

(F (t)⊕G(t)) =
(

lim
t→c

1− (1− f1(t))(1− g1(t)), lim
t→c

f2(t)g2(t)
)

=
(

lim
t→c

f1(t), lim
t→c

f2(t)
)
⊕
(

lim
t→c

g1(t), lim
t→c

g2(t)
)

= ⊕lim
t→c

F (t)⊕ ⊕lim
t→c

G(t)

= ξ ⊕ η

by virtue of Theorem 2.2.

(ii) Suppose F (t)	G(t) =

(
1− 1− f1(t)

1− g1(t)
,
f2(t)

g2(t)

)
∈ L⊕. Then, we have

f1(t) ≥ g1(t), f2(t) ≤ g2(t),
f2(t)

g2(t)
≤ 1− f1(t)

1− g1(t)

and, as t approaching c,

ξ1 ≥ η1, ξ2 ≤ η2
ξ2

η2
≤ 1− ξ1

1− η1

implying ξ 	 η =

(
1− 1− ξ1

1− η1
,
ξ2

η2

)
∈ L⊕. Hence, we get

⊕lim
t→c

(F (t)	G(t)) =

(
lim
t→c

1− 1− f1(t)

1− g1(t)
, lim
t→c

f2(t)

g2(t)

)

=

(
1−

1− lim
t→c

f1(t)

1− lim
t→c

g1(t)
,

lim
t→c

f2(t)

lim
t→c

g2(t)

)

=
(

lim
t→c

f1(t), lim
t→c

f2(t)
)
	
(

lim
t→c

g1(t), lim
t→c

g2(t)
)

= ⊕lim
t→c

F (t)	 ⊕lim
t→c

G(t)

= ξ 	 η

by virtue of Theorem 2.2.
(iii) The proof can be done similarly by using Theorem 2.2, hence omitted.

Definition 2.7. Let F : I ⊆ R→ L⊕ and t0 ∈ I . F is said to be ⊕continuous at t0 if for any IFV ε̄ = (ε, 1−ε) >L

(0, 1) there exists δ > 0 such that

F (t) ≤L F (t0)⊕ ε̄ and F (t0) ≤L F (t)⊕ ε̄

holds whenever t ∈ I and |t− t0| < δ.

Theorem 2.8. Let F : (a, b)→ L⊕ and t0 ∈ (a, b). F is ⊕continuous at t0 if and only if ⊕lim
t→t0

F (t) = F (t0).

Proof. Since t0 ∈ (a, b) is a cluster point, the proof is straightforward from Definition 2.1 by taking c = t0 and
ξ = F (t0).

Definition 2.9. Let F : (a, b)→ L⊕ and t0 ∈ (a, b). F is said to be right-⊕continuous at t0 if ⊕ lim
t→t+0

F (t) = F (t0),

and said to be left-⊕continuous at t0 if ⊕ lim
t→t−0

F (t) = F (t0).
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Definition 2.10. F : [a, b]→ L⊕ is said to be ⊕continuous on [a, b] if F is right-⊕continuous at a, left-⊕continuous
at b and ⊕continuous at all interior points of [a, b].

Theorem 2.11. Let F : [a, b] → L⊕ and F = (f1, f2). F is ⊕continuous on [a, b] if and only if f1 and f2 are
continuous on [a, b].

Proof. In view of Theorem 2.2, the proof is straightforward.

Definition 2.12. Let F : (a, b) → L⊕ and t0 ∈ (a, b). F is said to be ⊕differentiable at t0 if F (t0 + h) 	 F (t0)
and F (t0)	 F (t0 − h) exist in L⊕ for sufficiently small h and there is an IFV ξ ∈ L⊕ such that

⊕ lim
h→0+

F (t0 + h)	 F (t0)

h
= ⊕ lim

h→0+

F (t0)	 F (t0 − h)

h
= ξ·

In this case, we write ξ = F⊕(t0).

Figure 1: Regions where F (t0 + h)	 F (t0) and F (t0)	 F (t0 − h) exist in L⊕

Figure 1 illustrates addition and subtraction regions of F (t0). For more information we refer to [10, 11].

Theorem 2.13. Let F : (a, b)→ L⊕ and F = (f1, f2). F is ⊕differentiable at t0 if and only if f ′1(t0), f ′2(t0) exist,
F is nondecreasing at t0 and f2

1−f1 is nonincreasing at t0. Furthermore,

F⊕(t0) =

(
1− exp

(
(1− f1)′(t0)

(1− f1)(t0)

)
, exp

(
f ′2(t0)

f2(t0)

))
.

Proof. Necessity. Let F : (a, b)→ L⊕ be ⊕differentiable at t0. Then, in view of the facts that

F⊕(t+0 ) = ⊕ lim
h→0+

F (t0 + h)	 F (t0)

h
=

(
lim
h→0+

[
1−

(
1− f1(t0 + h)

1− f1(t0)

)1/h
]
, lim
h→0+

(
f2(t0 + h)

f2(t0)

)1/h
)

=

(
1− exp

(
(1− f1)′(t+0 )

(1− f1)(t0)

)
, exp

(
f ′2(t+0 )

f2(t0)

))
,

F⊕(t−0 ) =

(
1− exp

(
(1− f1)′(t−0 )

(1− f1)(t0)

)
, exp

(
f ′2(t−0 )

f2(t0)

))
we conclude f ′1(t0), f ′2(t0) exist. Besides, since F (t0 + h)	 F (t0) and F (t0)	 F (t0 − h) exist, we have

f1(t0 − h) ≤ f1(t0) ≤ f1(t0 + h) and f2(t0 − h) ≥ f2(t0) ≥ f2(t0 + h)

by the property of subtraction operation and this implies F is nondecreasing at t0.
On the other hand, since F (t0 + h)	F (t0) exists we have f2(t0 + h)πF (t0) ≤ f2(t0)πF (t0+h) by the property

of subtraction operation implying

f2(t0 + h)[1− f1(t0)− f2(t0)] ≤ f2(t0)[1− f1(t0 + h)− f2(t0 + h)].
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So, we have

0 ≥ (1− f1(t0))[f2(t0 + h)− f2(t0)]− f2(t0)[1− f1(t0 + h)− (1− f1(t0))]

≥ (1− f1(t0))[f2(t0 + h)− f2(t0)]− f2(t0)[1− f1(t0 + h)− (1− f1(t0))]

[1− f1(t0)][1− f1(t0 + h)]

= ∆h

(
f2(t0)

1− f1(t0)

)
where ∆h is the forward difference operator with step h. Similary, since F (t0) 	 F (t0 − h) exists we have
f2(t0)πF (t0−h) ≤ f2(t0 − h)πF (t0) which reveals

∇h
(

f2(t0)

1− f1(t0)

)
≤ 0

where∇h is the backward difference operator with step h. These imply f2
1−f1 is nonincreasing at t0.

Sufficiency. Let f ′1(t0), f ′2(t0) exist, F be nondecreasing at t0 and f2
1−f1 be nonincreasing at t0. Since, F is

nondecreasing at t0 and f2
1−f1 is nonincreasing at t0 we guarantee, by following above calculation steps reversely,

the existence of F (t0+h)	F (t0) and F (t0)	F (t0−h) for sufficiently small h. Besides, existence of f ′1(t0), f ′2(t0)
guarantee the existence of F⊕(t0).

Definition 2.14. F : (a, b)→ L⊕ is said to be ⊕differentiable on (a, b) if F is ⊕differentiable for each t0 ∈ (a, b).

Theorem 2.15. Let F : (a, b) → L⊕ and F = (f1, f2). F is ⊕differentiable on (a, b) if and only if F is

nondecreasing on (a, b), f1, f2 are differentiable on (a, b) and
(

f2
1−f1

)′
≤ 0. Furthermore,

F⊕ =

(
1− exp

(
(1− f1)′

(1− f1)

)
, exp

(
f ′2
f2

))
. (2.2)

Proof. In view of Theorem 2.13 and Remark 1.5, the proof is straightforward.

Example 2.16. Let F : (3, 4)→ L⊕ be defined by

F (t) =

(
1− 1

t
, exp

(
−t2
))

.

Then,

F⊕(t) =

(
1− exp

(
−1

t

)
, exp (−2t)

)
which is also an IFVF.

Here, the tools of multiplicative calculus [8, 17] may be useful to represent (2.2). Besides, we have(
f2

1− f1

)′
≤ 0⇐⇒ f ′2

f2
≤ (1− f1)′

1− f1
6⇐⇒ f ′2 ≤ (1− f1)′

which means that the condition
(

f2
1−f1

)′
≤ 0 in Theorem 2.15 is related directly to relative rate of changes of

(1 − f1) and f2 rather than the rate of changes of (1 − f1) and f2. At this point multiplicative *derivative, which
has a close relation with relative rate of changes, may also be useful. In fact, we have(

f2

1− f1

)′
≤ 0⇐⇒ f ′2

f2
≤ (1− f1)′

1− f1
⇐⇒ f∗2 ≤ (1− f1)∗.

We give following two theorems as the representation of Theorem 2.13 and Theorem 2.15 by means of the
concept of *derivative. The results are straightforward in view of Theorem 1.7 and Theorem 1.10, and hence the
proofs are omitted.
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Theorem 2.17. Let F : (a, b)→ L⊕ and F = (f1, f2). F is ⊕differentiable at t0 if and only if (1−f1)∗(t0), f∗2 (t0)
exists, F is nondecreasing at t0 and f2

1−f1 nonincreasing at t0. Furthermore,

F⊕(t0) = (1− (1− f1)∗ (t0), f∗2 (t0)) .

Theorem 2.18. Let F : (a, b) → L⊕ and F = (f1, f2). F is ⊕differentiable on (a, b) if and only if F is

nondecreasing on (a, b), (1− f1), f2 are *differentiable on (a, b) and
(

f2
1−f1

)∗
≤ 1. Furthermore,

F⊕ = (1− (1− f1)∗ , f∗2 ) . (2.3)

Theorem 2.19. Let F,G : (a, b) → L⊕ be ⊕differentiable IFVFs, h : (a, b) → R+ ∪ {0} be differentiable and
nondecreasing real valued function and λ ≥ 0. Then,

(i) (F ⊕G)⊕ (t) = F⊕(t)⊕G⊕(t)

(ii) (λF )⊕ (t) = λF⊕(t)

(iii) (hF )⊕ (t) =
(
hF⊕(t)

)
⊕
(
h′F (t)

)
Moreover, if (F 	G)⊕ (t) exists then

(iv) (F 	G)⊕ (t) = F⊕(t)	G⊕(t).

Proof. Let F,G : (a, b) → L⊕ be ⊕differentiable IFVFs such that F = (f1, f2), G = (g1, g2) and λ ≥ 0. Then,
by Theorem 2.18 we have f1, g1 are nondecreasing, f2, g2 are nonincreasing, (1− f1)∗, f∗2 , (1− g1)∗, g∗2 exist and(

f2
1−f1

)∗
≤ 1,

(
g2

1−g1

)∗
≤ 1 hold.

(i) F ⊕G = (1− (1− f1)(1− g1), f2g2). We apply Theorem 2.18. 1− (1−f1)(1−g1) is nondecreasing and
f2g2 is nonincreasing. Hence, F ⊕ G is nondecreasing. Besides, we know the existence of ((1− f1)(1− g1))∗,

(f2g2)∗ and
(

f2g2
(1−f1)(1−g1)

)∗
≤ 1. This implies (F ⊕G)⊕ exist and

(F ⊕G)⊕ = (1− ((1− f1)(1− g1))∗ , (f2g2)∗)

= (1− (1− f1)∗(1− g1)∗, f∗2 g
∗
2)

= (1− (1− f1)∗, f∗2 )⊕ (1− (1− g1)∗, g∗2)

= F⊕ ⊕G⊕.

(ii) λF =
(

1− (1− f1)λ, fλ2

)
. We apply Theorem 2.18. 1− (1− f1)λ is nondecreasing and fλ2 is nonincreasing.

Hence, λF is nondecreasing. Besides, we know that (1− f1)λ, fλ2 are *differentiable and
((

f2
1−f1

)λ)∗
≤ 1. This

implies (λF )⊕ exists and

(λF )⊕ =
(

1−
(

(1− f1)λ
)∗
, (fλ2 )∗

)
=
(

1− ((1− f1)∗)λ , (f∗2 )λ
)

= λ (1− (1− f1)∗, f∗2 ) = λF⊕.

(iii) Let h : (a, b) → R+ ∪ {0} be differentiable and nondecreasing on (a, b). Hence, hF =
(
1− (1− f1)h, fh2

)
is nondecreasing. Besides, we have(

fh2
(1− f1)h

)∗
=

((
f2

1− f1

)h)∗
=

((
f2

1− f1

)∗)h( f2

1− f1

)h′
≤ 1

in view of the facts
(

f2
1−f1

)∗
≤ 1, f2

1−f1 ≤ 1 and h′ ≥ 0. Hence, hF is ⊕differentiable by Theorem 2.18 and

(hF )⊕ =
(

1−
(

(1− f1)h
)∗
,
(
fh2

)∗)

9
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=
(

1− ((1− f1)∗)h (1− f1)h
′
, (f∗2 )h fh

′
2

)
=

(
1− ((1− f1)∗)h , (f∗2 )h

)
⊕
(

1− (1− f1)h
′
, fh

′
2

)
=

(
hF⊕

)
⊕
(
h′F

)
.

(iv) Let (F 	G)⊕ exist. Then,

F 	G =

(
f1 − g1

1− g1
,
f2

g2

)
=

(
1− 1− f1

1− g1
,
f2

g2

)
exists and (

1− f1

1− g1

)∗
≤ 1,

(
f2

g2

)∗
≤ 1,

(
f2(1− g1)

g2(1− f1)

)∗
≤ 1

hold by Theorem 2.18 and Theorem 1.10. Hence, we have

(1− f1)∗ ≤ (1− g1)∗, f∗2 ≤ g∗2, 1−
(

1− f1

1− g1

)∗
+

(
f2

g2

)∗
≤ 1

which implies the existence of F⊕ 	G⊕ by the property of subtraction operation. Then, we conclude

(F 	G)⊕ =

(
1−

(
1− f1

1− g1

)∗
,

(
f2

g2

)∗)
=

(
1− (1− f1)∗

(1− g1)∗
,
f∗2
g∗2

)
= (1− (1− f1)∗, f∗2 )	 (1− (1− g1)∗, g∗2)

= F⊕ 	G⊕.

Definition 2.20. Let F : (a, b)→ L⊕ and F = (f1, f2). The ⊕antiderivative Φ of F is defined by

Φ(t) =

(
1− λ1 exp

(∫
ln(1− f1)dt

)
, λ2 exp

(∫
ln(f2)dt

))
where λ1, λ2 > 0 are arbitrary constants such that Φ is an IFV.

In view of the definition above and the concept of *integral, we give following theorem.

Theorem 2.21. Let F : (a, b)→ L⊕ and F = (f1, f2). If Φ is ⊕antiderivative of F , then

Φ(t) =

(
1− λ1

∫
(1− f1)dt, λ2

∫
(f2)dt

)
(2.4)

where λ1, λ2 > 0 are arbitrary constants such that Φ is an IFV.

We note that ⊕antiderivative Φ(t) of F = (f1, f2) is an IFV if and only if

0 < λ1 ≤
1∫

(1− f1)dt
, 0 < λ2 ≤

1∫
(f2)dt

,
∫ (

f2

1− f1

)dt
≤ λ1

λ2
·

Theorem 2.22. If F : (a, b)→ L⊕ is ⊕continuous, then ⊕antiderivative Φ(t) exists and Φ⊕(t) = F (t).

10
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Proof. Let F : (a, b)→ L⊕, F (t) = (f1(t), f2(t)) be ⊕continuous. Then, f1 and f2 are continuous which implies
the existence of *antiderivatives

λ1

∫
(1− f1(t))dt and λ2

∫
f2(t)dt

where

0 < λ1 ≤
1∫

(1− f1)dt
, 0 < λ2 ≤

1∫
(f2)dt

,
∫ (

f2

1− f1

)dt
≤ λ1

λ2
·

Hence, ⊕antiderivative Φ(t) in (2.4) exists.
Now, we check the conditions of Theorem 2.18 for ⊕differentiability of Φ(t). Φ(t) is nondecreasing in view of

the facts that(
λ1

∫
(1− f1)dt

)∗
= 1− f1 ≤ 1 and

(
λ2

∫
f2(t)dt

)∗
= f2 ≤ 1

and in view of Theorem 1.10. Besides,(
λ2

∫
f2(t)dt

λ1

∫
(1− f1)dt

)∗
=

f2(t)

1− f1(t)
≤ 1.

by virtue of the properties of *derivative and *integral. Hence, Φ(t) satisfies Theorem 2.18 which means that Φ(t)
is ⊕differentiable. Furthermore, we have

Φ⊕(t) =

(
1−

(
λ1

∫
(1− f1)dt

)∗
,

(
λ2

∫
f2(t)dt

)∗)
= (f1(t), f2(t))

= F (t).

which completes the proof.

Definition 2.23 (Definite ⊕integral). F : [a, b] → L⊕ is said to be ⊕integrable on [a, b] if there exists an IFV
ξ ∈ L⊕ such that for any partition P = {x0, x1, · · · , xn} of [a, b] and for any points ck ∈ [xk, xk+1], we have

⊕ lim
‖P‖→0

n−1⊕
k=0

F (ck)∆xk = ξ.

In that case, we write ξ =
⊕∫ b

a
F (t)dt.

Theorem 2.24. Let F : [a, b] → L⊕ and F = (f1, f2). F is ⊕integrable on [a, b] if and only if f1 and f2 are
integrable on [a, b]. Furthermore,

⊕∫ b

a
F (t)dt =

(
1− exp

(∫ b

a
ln(1− f1)dt

)
, exp

(∫ b

a
ln(f2)dt

))
. (2.5)

Proof. Let F : [a, b] → L⊕ and F = (f1, f2). F is ⊕integrable on [a, b] if and only if f1 and f2 are integrable on
[a, b] in view of the fact

⊕∫ b

a
F (t)dt = ⊕ lim

‖P‖→0

n−1⊕
k=0

F (ck)∆xk

=

(
1− lim

‖P‖→0

n−1∏
k=0

(1− f1(ck))
∆xk ,

n−1∏
k=0

(f2(ck))
∆xk

)

11
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=

(
1− exp

(
lim
‖P‖→0

n−1∑
k=0

∆xk ln (1− f1(ck))

)
, exp

(
lim
‖P‖→0

n−1∑
k=0

∆xk ln (f2(ck))

))

=

(
1− exp

(∫ b

a
ln(1− f1)dt

)
, exp

(∫ b

a
ln(f2)dt

))
by Theorem 2.2 and Theorem 1.17.

Theorem 2.25. Let F : [a, b]→ L⊕ and F = (f1, f2). If F is ⊕integrable on [a, b], then

⊕∫ b

a
F (t)dt =

(
1−

∫ b

a
(1− f1)dt,

∫ b

a
(f2)dt

)
. (2.6)

Proof. In view of (2.5) and the concept of *integral, the proof is straightforward.

Theorem 2.26 (Fundamental theorem of ⊕calculus). Let F : [a, b] → L⊕ be a continuous. Then, following
statements hold:

(i) The function ψ defined by

ψ(t) =
⊕∫ t

a
F (u)du

is ⊕differentiable on [a, b] and ψ⊕(t) = F (t).
(ii) If Φ is any ⊕antiderivative of F , then

⊕∫ b

a
F (t)dt = Φ(b)	 Φ(a).

Proof. Let F : [a, b]→ L⊕ be continuous.
(i)

ψ(t) =

(
1−

∫ t

a
(1− f1)du,

∫ t

a
(f2)du

)
.

In view of 0 < 1− f1 ≤ 1, 0 < f2 ≤ 1 and Theorem 1.10 we have ψ is nondecreasing. Besides, since f1 + f2 ≤ 1
we have( ∫ t

a(f2)du∫ t
a(1− f1)du

)∗
=

f2

1− f1
≤ 1

by Theorem 1.14 and we conclude ψ is ⊕differentiable on [a, b] in view of Theorem 2.18. Besides,

ψ⊕(t) = (f1(t), f2(t)) = F (t)

in view of (2.3) and Theorem 1.14.
(ii) Let Φ be an ⊕antiderivative of F and ˜(1− f1)(t) = λ1

∫
(1−f1)dt and f̃2(t) = λ2

∫
(f2)dt are *antideriva-

tives of (1− f1) and f2, respectively. Then, we have
⊕∫ b

a
F (t)dt =

(
1−

∫ b

a
(1− f1)dt,

∫ b

a
(f2)dt

)
=

(
1−

˜(1− f1)(b)

˜(1− f1)(a)
,
f̃2(b)

f̃2(a)

)
=

(
1− ˜(1− f1)(b), f̃2(b)

)
	
(

1− ˜(1− f1)(a), f̃2(a)
)

= Φ(b)	 Φ(a)

in view of (2.4), (2.6) and Theorem 1.14.
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Theorem 2.27. Let F,G : [a, b]→ L⊕ are ⊕integrable on [a, b] and λ ≥ 0. Then,

(i)
⊕∫ b

a
λF (t)dt = λ

⊕∫ b

a
F (t)dt

(ii)
⊕∫ b

a
(F (t)⊕G(t)) dt =

(⊕∫ b

a
F (t)dt

)
⊕
(⊕∫ b

a
G(t)dt

)

(iii)
⊕∫ b

a
F (t)dt =

⊕∫ c

a
F (t)dt⊕

⊕∫ b

c
F (t)dt, a ≤ c ≤ b.

Moreover, if F 	G exists then

(iv)
⊕∫ b

a
(F (t)	G(t)) dt =

(⊕∫ b

a
F (t)dt

)
	
(⊕∫ b

a
G(t)dt

)
.

Proof. The proofs of (i), (ii) and (iii) are straightforward from (2.6) and Theorem 1.15.
(iv) Let F = (f1, f2) and G = (g1, g2) are ⊕integrable IFVFs on [a, b] and F 	G exists. So, we have

f1 ≥ g1, f2 ≤ g2,
f2

g2
≤ 1− f1

1− g1

which implies∫ b

a
(1− f1)dt ≤

∫ b

a
(1− g1)dt,

∫ b

a
(f2)dt ≤

∫ b

a
(g2)dt,

∫ b

a

(
f2

g2

)dt
≤
∫ b

a

(
1− f1

1− g1

)dt
·

Hence,
(⊕∫ b

a
Fdt

)
	
(⊕∫ b

a
Gdt

)
exists and

⊕∫ b

a
(F 	G) dt =

(
1−

∫ b

a

(
1− f1

1− g1

)dt
,

∫ b

a

(
f2

g2

)dt)

=

(
1−

∫ b
a (1− f1)dt∫ b
a (1− g1)dt

,

∫ b
a (f2)dt∫ b
a (g2)dt

)

=

(
1−

∫ b

a
(1− f1)dt ,

∫ b

a
(f2)dt

)
	
(

1−
∫ b

a
(1− g1)dt ,

∫ b

a
(g2)dt

)
=

(⊕∫ b

a
Fdt

)
	
(⊕∫ b

a
Gdt

)
.

in view of (2.6) and Theorem 1.15.

Theorem 2.28 (⊕Integration by parts). Let F : [a, b] → L⊕ be ⊕differentiable and let h : [a, b] → R+ be
differentiable and nondecreasing. Then,

⊕∫ b

a
h(t)F⊕(t)dt = (h(b)F (b)	 h(a)F (a))	

⊕∫ b

a
F (t)h′(t)dt.

Proof. The proof is straightforward from Theorem 1.16.
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3 ⊗Calculus for intuitionistic fuzzy sets

We define ⊗limit for IFVFs as the following.

Definition 3.1. Let F : I ⊆ R→ L and c is a cluster point of I . We say that the ⊗limit of F , as t approaches c, is
IFV ξ if for any IFV ε̄ = (1− ε, ε) <L (1, 0) there exists δ > 0 such that

ξ ≥L F (t)⊗ ε̄ and F (t) ≥L ξ ⊗ ε̄ (3.1)

holds whenever 0 < |t− c| < δ, t ∈ I . In this case, we write ⊗lim
t→c

F (t) = ξ.

⊗Limit works with any IFV, but we will omit the element (0, 1) in ⊗calculus since the other concepts of
⊗calculus do not work properly with (0, 1). We will use the set L⊗ = {α ∈ L : α >L (0, 1)}.

Theorem 3.2. Let F : I ⊆→ L⊗, F = (f1, f2) and ξ ∈ L⊗. ⊗lim
t→c

F (t) = ξ if and only if limt→c f1(t) = ξ1 and

lim
t→c

f2(t) = ξ2.

Proof. Necessity. Suppose ⊗lim
t→c

F (t) = ξ. Then, for any given ε̄ = (1− ε, ε) <L (1, 0) there is δ > 0 such that

ξ1 ≥ f1(t)(1− ε) = f1(t)− εf1(t) ≥ f1(t)− ε

f1(t) ≥ ξ1(1− ε) = ξ1 − εξ1 ≥ ξ1 − ε

}
⇒ ξ1 − ε ≤ f1(t) ≤ ξ1 + ε

and

ξ2 ≤ 1− (1− f2(t))(1− ε) = f2(t) + ε− εf2(t) ≤ f2(t) + ε

f2(t) ≤ 1− (1− ξ2)(1− ε) = ξ2 + ε− εξ2 ≤ ξ2 + ε

}
⇒ ξ2 − ε ≤ f2(t) ≤ ξ2 + ε

whenever t ∈ I and 0 < |t− c| < δ. This implies limt→c f1(t) = ξ1 and limt→c f2(t) = ξ2.
Sufficiency. This part can be done by replacing⊕ with⊗ and changing the roles of f1, f2 in the sufficiency part

of the proof of Theorem 2.2.

Remark 3.3. If ⊗lim
t→c

F (t) = (0, 1), then there exists δ > 0 such that F (t) = (0, 1) for any t ∈ (c− δ, c+ δ)/{c}.
On the other hand, if F (d) = (0, 1) for a number d ∈ (c− δ, c+ δ)/{c}, then ξ = (0, 1).

The proofs of the other theorems in this section can be done in a similar way to those of Section 2 by replacing
⊕ with ⊗ and changing the roles of f1, f2. Hence, the proofs are omitted.

Definition 3.4. Let F : I ⊆ R → L⊗ and ξ ∈ L⊗. ⊗ lim
t→c−

F (t) = ξ if for any IFV ε̄ <L (1, 0) there exists δ > 0

such that (3.1) holds whenever t ∈ (c − δ, c). Similarly, ⊗ lim
t→c+

F (t) = ξ if there is δ > 0 such that (3.1) holds

whenever t ∈ (c, c+ δ).

If I is a closed interval, then ⊗limit, ⊗continuity, ⊗derivative at endpoints of I are meant in the one-sided sense
throughout the paper.

Theorem 3.5. Let F,G : I ⊆ R → L⊗ be two IFVFs; ξ, η ∈ L⊗ be two IFVs; and λ ≥ 0. If ⊗lim
t→c

F (t) = ξ and
⊗lim
t→c

G(t) = η, then followings hold:

(i) ⊗lim
t→c

(F (t)⊗G(t)) = ξ ⊗ η

(ii) ⊗lim
t→c

(F (t)�G(t)) = ξ � η where F (t)�G(t) ∈ L⊗

(iii) ⊗lim
t→c

(F (t))λ = ξλ

14
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Definition 3.6. Let F : I ⊆ R→ L⊗ and t0 ∈ I . F is said to be ⊗continuous at t0 if for any IFV ε̄ = (1−ε, ε) <L

(1, 0) there exists δ > 0 such that

F (t0) ≥L F (t)⊗ ε̄ and F (t) ≥L F (t0)⊗ ε̄

holds whenever t ∈ I and |t− t0| < δ.

Theorem 3.7. Let F : (a, b)→ L⊗ and t0 ∈ (a, b). F is ⊗continuous at t0 if and only if ⊗lim
t→t0

F (t) = F (t0).

Definition 3.8. Let F : (a, b) → L⊗ and t0 ∈ (a, b). F is right-⊗continuous at t0 if ⊗ lim
t→t+0

F (t) = F (t0), and

left-⊗continuous at t0 if ⊗ lim
t→t−0

F (t) = F (t0).

Definition 3.9. F : [a, b]→ L⊗ is said to be ⊗continuous on [a, b] if F is right-⊗continuous at a, left-⊗continuous
at b and ⊗continuous at all interior points of [a, b].

Theorem 3.10. Let F : [a, b] → L⊗ and F = (f1, f2). F is ⊗continuous on [a, b] if and only if f1 and f2 are
continuous on [a, b].

Definition 3.11. Let F : (a, b) → L⊗ and t0 ∈ (a, b). F is said to be ⊗differentiable at t0 if F (t0 + h) � F (t0)
and F (t0)� F (t0 − h) exist in in L⊗ for sufficiently small h and there is an IFV ξ ∈ L⊗ such that

⊗ lim
h→0+

(F (t0 + h)� F (t0))1/h = ⊗ lim
h→0+

(F (t0)� F (t0 − h))1/h = ξ·

In this case, we write ξ = F⊗(t0).

Figure 2: Regions where F (t0 + h)� F (t0) and F (t0)� F (t0 − h) exist in L⊗

Figure 2 illustrates multiplication and division regions of F (t0). For more information we refer to [10, 11].

Theorem 3.12. Let F : (a, b) → L⊗ and F = (f1, f2). F is ⊗differentiable at t0 if and only if f ′1(t0), f ′2(t0)
exists, F and f1

1−f2 are nonincreasing at t0. Furthermore,

F⊗(t0) =

(
exp

(
f ′1(t0)

f1(t0)

)
, 1− exp

(
(1− f2)′(t0)

(1− f2)(t0)

))
.

Definition 3.13. F : (a, b)→ L⊗ is said to be ⊗differentiable on (a, b) if F is ⊗differentiable for each t0 ∈ (a, b).

Theorem 3.14. Let F : (a, b) → L⊗ and F = (f1, f2). F is ⊗differentiable on (a, b) if and only if F is

nonincreasing on (a, b), f1, f2 are differentiable on (a, b) and
(

f1
1−f2

)′
≤ 0. Furthermore,

F⊗ =

(
exp

(
f ′1
f1

)
, 1− exp

(
(1− f2)′

(1− f2)

))
.
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Theorem 3.15. Let F : (a, b)→ L⊗ and F = (f1, f2). F is ⊗differentiable at t0 if and only if f∗1 (t0), (1−f2)∗(t0)
exists, F and f1

1−f2 are nonincreasing at t0. Furthermore,

F⊗(t0) = (f∗1 (t0), 1− (1− f2)∗ (t0)) .

Theorem 3.16. Let F : (a, b) → L⊗ and F = (f1, f2). F is ⊗differentiable on (a, b) if and only if F is

nonincreasing on (a, b), f1, (1− f2) are *differentiable on (a, b) and
(

f1
1−f2

)∗
≤ 1. Furthermore,

F⊗ = (f∗1 , 1− (1− f2)∗) .

Theorem 3.17. Let F,G : (a, b) → L⊗ be ⊗differentiable IFVFs, h : (a, b) → R+ ∪ {0} be differentiable and
nondecreasing real valued function and λ ≥ 0. Then,

(i) (F ⊗G)⊗ (t) = F⊗(t)⊗G⊗(t)

(ii)
(
F λ
)⊗

(t) =
(
F⊗(t)

)λ
(iii)

(
F h
)⊗

(t) =
(
F⊗(t)

)h(t) ⊗
(
F (t)h

′(t)
)

Moreover, if (F �G)⊗ (t) exists then

(iv) (F �G)⊗ (t) = F⊗(t)�G⊗(t).

Definition 3.18. Let F : (a, b)→ L⊗ and F = (f1, f2). The ⊗antiderivative Φ of F is defined by

Φ(t) =

(
λ1 exp

(∫
ln(f1)dt

)
, 1− λ2 exp

(∫
ln(1− f2)dt

))
where λ1, λ2 > 0 are arbitrary constants such that Φ is an IFV.

Theorem 3.19. Let F : (a, b)→ L⊗ and F = (f1, f2). If Φ is ⊗antiderivative of F , then

Φ(t) =

(
λ1

∫
(f1)dt, 1− λ2

∫
(1− f2)dt

)
where λ1, λ2 > 0 are arbitrary constants such that Φ is an IFV.

We note that ⊗antiderivative Φ(t) of F = (f1, f2) is an IFV if and only if

0 < λ1 ≤
1∫

(f1)dt
, 0 < λ2 ≤

1∫
(1− f2)dt

,
∫ (

f1

1− f2

)dt
≤ λ2

λ1
·

Theorem 3.20. If F : (a, b)→ L⊗ is ⊗continuous, then ⊗antiderivative Φ(t) exists and Φ⊗(t) = F (t)

Definition 3.21 (Definite ⊗integral). F : [a, b] → L⊗ is said to be ⊗integrable on [a, b] if there exists an IFV
ξ ∈ L⊗ such that for any partition P = {x0, x1, · · · , xn} of [a, b] and for any points ck ∈ [xk, xk+1], we have

⊗ lim
‖P‖→0

n−1⊗
k=0

F (ck)
∆xk = ξ.

In that case, we write ξ =
⊗∫ b

a
F (t)dt.

Theorem 3.22. Let F : [a, b] → L⊗ and F = (f1, f2). F is ⊗integrable on [a, b] if and only if f1 and f2 are
integrable on [a, b]. Furthermore,

⊗∫ b

a
F (t)dt =

(
exp

(∫ b

a
ln(f1)dt

)
, 1− exp

(∫ b

a
ln(1− f2)dt

))
.
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Theorem 3.23. Let F : [a, b]→ L⊗ and F = (f1, f2). If F is ⊗integrable on [a, b], then

⊗∫ b

a
F (t)dt =

(∫ b

a
(f1)dt, 1−

∫ b

a
(1− f2)dt

)
.

Theorem 3.24 (Fundamental theorem of ⊗calculus). Let F : [a, b] → L⊗ be continuous. Then, following state-
ments hold:

(i) The function ψ defined by

ψ(t) =
⊗∫ t

a
F (u)du

is ⊗differentiable on [a, b] and ψ⊗(t) = F (t).
(ii) If Φ is any ⊗antiderivative of F , then

⊗∫ b

a
F (t)dt = Φ(b)� Φ(a).

Theorem 3.25. Let F,G : [a, b]→ L⊗ are ⊗integrable on [a, b] and λ ≥ 0. Then,

(i)
⊗∫ b

a
F λ(t)dt =

(⊗∫ b

a
F (t)dt

)λ

(ii)
⊗∫ b

a
(F (t)⊗G(t))dt =

(⊗∫ b

a
F (t)dt

)
⊗
(⊗∫ b

a
G(t)dt

)

(iii)
⊗∫ b

a
F (t)dt =

(⊗∫ c

a
F (t)dt

)
⊗
(⊗∫ b

c
F (t)dt

)
, a ≤ c ≤ b.

Moreover, if F �G exists then

(iv)
⊗∫ b

a
(F (t)�G(t))dt =

(⊗∫ b

a
F (t)dt

)
�
(⊗∫ b

a
G(t)dt

)
.

Theorem 3.26 (⊗Integration by parts). Let F : [a, b] → L⊗ be ⊗differentiable and let h : [a, b] → R+ be
differentiable and nondecreasing. Then,

⊗∫ b

a

(
F⊗(t)h(t)

)dt
=
(
F (b)h(b) � F (a)h(a)

)
�
⊗∫ b

a

(
F (t)h

′(t)
)dt

.

4 Isomorphisms with respect to some basic operations

As seen in Section 2 and Section 3, there are many parallel properties between ⊕calculus and ⊗calculus which
can be explained by the structural analogy of (L⊕,⊕), (L⊗,⊗) and of (L⊕, ?), (L⊗,�) where λ ? α = λα and
λ � α = αλ. In the existing literature of theory of intuitionistic fuzzy calculus, Ai and Xu [1] are the first to
account for the above phenomenon from the knowledge of abstract algebra. They showed that (L,⊕) ∼= (L,⊗)
and (L, ?) ∼= (L,�) by using the isomorphism ϕ : L → L, ϕ(α) = α where α = (α1, α2) = (α2, α1) is the
complement of IFV α. They also showed that (A1,⊕) ∼= (A2,⊕) and (A1, ?) ∼= (A2,�) where A1 is the set of
intuitionistic fuzzy multiple definite integrals(IFMDI) and A2 is the set of multiplicative IFMDIs. Following [1],
one can also show that (L⊕,⊕) ∼= (L⊗,⊗) and (L⊕, ?) ∼= (L⊗,�) by using the isomorphism ϕ : L⊕ → L⊗,
ϕ(α) = α. Furthermore, let

S1 =
{
F⊕

∣∣ F : (a, b)→ L⊕ is ⊕differentiable
}
, S2 =

{
F⊗

∣∣ F : (a, b)→ L⊗ is ⊗differentiable
}

S3 =

{
⊕∫ b

a
F (t)dt

∣∣∣∣∣ F : [a, b]→ L⊕ is ⊕integrable

}
, S4 =

{
⊗∫ b

a
F (t)dt

∣∣∣∣∣ F : [a, b]→ L⊗ is ⊗integrable

}
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and let ϕ1 : S1 → S2 be defined again by ϕ1(F ) = F . Then, we have

ϕ1

(
F⊕ ⊕G⊕

)
= F⊕ ⊕G⊕

= (1− (1− f1)∗ (1− g1)∗ , f∗2 g
∗
2, )

= (f∗2 g
∗
2, 1− (1− f1)∗ (1− g1)∗)

= (f∗2 , 1− (1− f1)∗)⊗ (g∗2, 1− (1− g1)∗)

= (1− (1− f1)∗ , f∗2 )⊗ (1− (1− g1)∗ , g∗2)

= F⊕ ⊗G⊕

= ϕ1

(
F⊕
)
⊗ ϕ1

(
G⊕
)

and

ϕ1

(
λ ? F⊕

)
=

(
1− ((1− f1)∗)λ , (f∗2 )λ

)
=

(
(f∗2 )λ, 1− ((1− f1)∗)λ

)
= λ� (f∗2 , 1− (1− f1)∗)

= λ� (1− (1− f1)∗, f∗2 )

= λ� F⊕

= λ� ϕ1

(
F⊕
)

which imply (S1,⊕) ∼= (S2,⊗) and (S1, ?) ∼= (S2,�). In a similar way, (S3,⊕) ∼= (S4,⊗) and (S3, ?) ∼= (S4,�)
can also be obtained.
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[9] Głąb S. Local and global monotonicity. Real Analysis Exchange 2001; 27 (2): 765-772.
https://doi.org/10.14321/realanalexch.27.2.0765

[10] Lei Q, Xu ZS. Derivative and differential operations of intuitionistic fuzzy numbers. International Journal of
Intelligent Systems 2015; 30: 468-498. https://doi.org/10.1002/int.21696

[11] Lei Q, Xu ZS. Fundamental properties of intuitionistic fuzzy calculus. Knowledge-Based Systems 2015; 76:
1-16. https://doi.org/10.1016/j.knosys.2014.11.019

[12] Lei Q, Xu ZS. Intuitionistic fuzzy calculus. Springer; 2017.

[13] Lei Q, Xu ZS, Bustince H, Burusco A. Definite Integrals of Atanassov’s Intuitionis-
tic Fuzzy Information. IEEE Transactions on Fuzzy Systems 2015; 23 (5): 1519-1533.
https://doi.org/10.1109/TFUZZ.2014.2362559

[14] Lewin J, Lewin M. An Introduiction to Mathematical Analysis. Random House, New York, 1988.

[15] Lu J. Is the composite function integrable? American Mathematical Monthly 1999; 106 (8): 763-766.
https://doi.org/10.2307/2589023

[16] Sohrab HH. Basic real analysis. Springer, 2014.

[17] Stanley D. A multiplicative calculus. PRIMUS: Problems, Resources, and Issues in Mathematics Undergrad-
uate Studies 1999; 9 (4): 310-326. https://doi.org/10.1080/10511979908965937

[18] Xu ZS. Intuitionistic fuzzy aggregation operations. IEEE Transactions on Fuzzy Systems 2007; 15: 1179-
1187. https://doi.org/10.1109/TFUZZ.2006.890678

[19] Xu ZS, Yager RR. Some geometric aggregation operators based on intuitionistic fuzzy sets. International
Journal of General Systems 2006; 35: 417-433. https://doi.org/10.1080/03081070600574353

[20] Yavuz E. On the convergence of sequences in R+ through weighted geometric means via multiplicative cal-
culus and application to intuitionistic fuzzy numbers. Journal of Taibah University for Science 2022; 16 (1):
442-450. https://doi.org/10.1080/16583655.2022.2071046

[21] Zadeh LA. Fuzzy sets. Information and Control 1965; 8: 338-353. https://doi.org/10.1016/S0019-
9958(65)90241-X

[22] Zhang S, Xu ZS. Infinite intuitionistic fuzzy series and product. International Journal of Intelligent Systems
2017; 32 (6): 645-662. https://doi.org/10.1002/int.21870

19


