A calculus for intuitionistic fuzzy values

Enes Yavuz ${ }^{1}$
${ }^{1}$ Department of Mathematics, Manisa Celal Bayar University

March 24, 2023

Abstract

We introduce ${ }^{\oplus}$ calculus and ${ }^{\otimes}$ calculus for intuitionistic fuzzy values and prove some basic theorems by using multiplicative calculus which has useful tools to represent the concepts of introduced calculi. Besides, we construct some isomorphic mappings to interpret the relationships between ${ }^{\oplus}$ calculus and ${ }^{\otimes}$ calculus. This paper reveals also new calculi for fuzzy sets in particular.

A calculus for intuitionistic fuzzy values

Enes Yavuz
Department of Mathematics, Manisa Celal Bayar University, Manisa, Türkiye
E-mail: enes.yavuz@cbu.edu.tr

Abstract

We introduce ${ }^{\oplus}$ calculus and ${ }^{\otimes}$ calculus for intuitionistic fuzzy values and prove some basic theorems by using multiplicative calculus which has useful tools to represent the concepts of introduced calculi. Besides, we construct some isomorphic mappings to interpret the relationships between ${ }^{\oplus}$ calculus and ${ }^{\otimes}$ calculus. This paper reveals also new calculi for fuzzy sets in particular.

1 Introduction

Fuzzy set theory [21] is an extension of classical set theory and it provides researchers with tools to handle the elements which are not categorizable by classical sets. Fuzzy sets consider every element in the universe of discourse by assigning a membership value to each of them, while classical sets consider only the elements which are either member or nonmember of the set. In other words, classical sets exclude the partial membership while fuzzy sets include. Fuzzy sets are also extended to intuitionistic fuzzy sets(IFS) by Atanassov [4] in consideration of the partial nonmembership values. Following its introduction, IFSs are studied by many mathematicians from different aspects. In particular, many concepts of intuitionistic fuzzy calculus are introduced and applied to problems having two facets of uncertainty, namely, fuzziness and hesitancy [2,3,10-12, 22].

In [20], we defined the concepts of ${ }^{\oplus}$ convergence and ${ }^{\otimes}$ convergence for sequences of intuitionistic fuzzy values(IFV) and illustrated their advantage over the literature by an example [20, Example 4.3]. To be more precise, while the convergence types in the literature are either inapplicable to many sequences of IFVs or they assign multiple limits to a sequence, ${ }^{\oplus}$ convergence and ${ }^{\otimes}$ convergence are applicable to almost every sequence of IFVs and reveal a unique limit provided that the limit exists. In [20], there are also methods to recover the convergence of sequences of IFVs which do not ${ }^{\oplus}$ converge(or ${ }^{\otimes}$ converge) ordinarily. In the light of these results, now there is a need to define the concepts of ${ }^{\oplus}$ limit and ${ }^{\otimes}$ limit for intuitionistic fuzzy valued functions(IFVF) in order to extend the aforementioned advantages to intuitionistic fuzzy calculus, and a need to construct corresponding calculi. The aim of this paper is to define ${ }^{\oplus}$ limit and ${ }^{\otimes}$ limit for IFVFs and construct corresponding intuitionistic fuzzy calculi by utilizing the tools of multiplicative calculus $[8,17]$ which has close relation with the new calculi. The constructed calculi reveals also a new calculi for fuzzy sets in the absence of hesitancy.

Before to continue with main results, we give some preliminaries concerning IFSs and multiplicative calculus. Let X be a non-empty set. Then, an Atanassov's intuitionistic fuzzy set [4] has the following form: $A=$ $\left\{\left\langle x, \mu_{A}(x), \nu_{A}(x)\right\rangle \mid x \in X\right\}$ where $\mu: X \rightarrow[0,1]$ is called membership function and $\nu: X \rightarrow[0,1]$ is called non-membership function. For any $x \in X, 0 \leq \mu_{A}(x)+\nu_{A}(x) \leq 1$. In special case $\mu_{A}(x)+\nu_{A}(x)=1$, A-IFS degenerates to fuzzy set [21]. Following [6,7,19], we use the notation $\alpha=\left(\alpha_{1}, \alpha_{2}\right)$ for an IFV where $\alpha_{1} \in[0,1], \alpha_{2} \in[0,1]$, and $0 \leq \alpha_{1}+\alpha_{2} \leq 1$. We denote the set of all IFVs by \mathcal{L}. Besides, by an IFVF we mean $F: I \subseteq \mathbb{R} \rightarrow \mathcal{L}$ where $F(t)=\left(f_{1}(t), f_{2}(t)\right)$. In this case, $f_{1}, f_{2}: I \rightarrow[0,1]$ and $0 \leq f_{1}(t)+f_{2}(t) \leq 1$ for each $t \in I$.

Definition 1.1. [7] Let $\alpha=\left(\alpha_{1}, \alpha_{2}\right)$ and $\beta=\left(\beta_{1}, \beta_{2}\right)$ be two IFVs. Then
Keywords: Intuitionistic fuzzy sets, fuzzy sets, multiplicative calculus
(i) If $\alpha_{1} \geq \beta_{1}$ and $\alpha_{2} \leq \beta_{2}$, then $\alpha \geq_{L} \beta$
(ii) If $\alpha_{1} \leq \beta_{1}$ and $\alpha_{2} \geq \beta_{2}$, then $\alpha \leq_{L} \beta$
(iii) If $\alpha_{1}=\beta_{1}$ and $\alpha_{2}=\beta_{2}$, then $\alpha=\beta$

Remark 1.2. Definition of strict order $<_{L}$ can also be given similar to Definition 1.1 via replacing \leq_{L} and \leq by $<_{L}$ and $<$, respectively.

Definition 1.3. [10, 18, 19] Let $\alpha=\left(\alpha_{1}, \alpha_{2}\right)$ and $\beta=\left(\beta_{1}, \beta_{2}\right)$ be two IFVs and $\lambda \geq 0$. Then,
(i) $\alpha \oplus \beta=\left(1-\left(1-\alpha_{1}\right)\left(1-\beta_{1}\right), \alpha_{2} \beta_{2}\right)$
(ii) $\alpha \otimes \beta=\left(\alpha_{1} \beta_{1}, 1-\left(1-\alpha_{2}\right)\left(1-\beta_{2}\right)\right)$
(iii) Assuming $\beta<_{L}(1,0)$,

$$
\alpha \ominus \beta= \begin{cases}\left(\frac{\alpha_{1}-\beta_{1}}{1-\beta_{1}}, \frac{\alpha_{2}}{\beta_{2}}\right), & \text { if } \alpha_{1} \geq \beta_{1}, \alpha_{2} \leq \beta_{2}, \text { and } \\ \alpha_{2} \pi_{\beta} \leq \pi_{\alpha} \beta_{2} \\ (0,1), & \text { otherwise }\end{cases}
$$

where $\pi_{\alpha}=1-\alpha_{1}-\alpha_{2}$ and $\pi_{\beta}=1-\beta_{1}-\beta_{2}$
(iv) Assuming $\beta>_{L}(0,1)$,

$$
\alpha \oslash \beta= \begin{cases}\left(\frac{\alpha_{1}}{\beta_{1}}, \frac{\alpha_{2}-\beta_{2}}{1-\beta_{2}}\right), & \text { if } \alpha_{1} \leq \beta_{1}, \alpha_{2} \geq \beta_{2}, \text { and } \\ (1,0), & \alpha_{1} \pi_{\beta} \leq \pi_{\alpha} \beta_{1} \\ \text { otherwise }\end{cases}
$$

(v) $\lambda \alpha=\left(1-\left(1-\alpha_{1}\right)^{\lambda}, \alpha_{2}^{\lambda}\right)$, where $\alpha<_{L}(1,0)$
(vi) $\alpha^{\lambda}=\left(\alpha_{1}^{\lambda}, 1-\left(1-\alpha_{2}\right)^{\lambda}\right)$, where $\alpha>_{L}(0,1)$

Definition 1.4. [12] Let $F:(a, b) \rightarrow \mathcal{L}$ and $t_{1}, t_{2} \in(a, b)$. Then,
(i) F is increasing on I if $F\left(t_{1}\right)<_{L} F\left(t_{2}\right)$ whenever $t_{1}<t_{2}$,
(ii) F is nondecreasing on I if $F\left(t_{1}\right) \leq_{L} F\left(t_{2}\right)$ whenever $t_{1}<t_{2}$,
(iii) F is decreasing on I if $F\left(t_{2}\right)<_{L} F\left(t_{1}\right)$ whenever $t_{1}<t_{2}$,
(ii) F is nonincreasing on I if $F\left(t_{2}\right) \leq_{L} F\left(t_{1}\right)$ whenever $t_{1}<t_{2}$.

Remark 1.5. For the local monotonicity, a function F is nondecreasing at a point $t_{0} \in(a, b)$ if there is a $\delta>0$ such that $F(u) \leq_{L} F\left(t_{0}\right) \leq_{L} F(v)$ for all $u \in\left(t_{0}-\delta, t_{0}\right)$ and $v \in\left(t_{0}, t_{0}+\delta\right)$. F is nondecreasing on (a, b) if and only if F is nondecreasing at every $t \in(a, b)$. The other types of local monotonicities are similar(see [9], [16, pp. 125]).

Note that operations $\oplus, \otimes, \ominus, \oslash$ of IFVs implement multiplication and division on membership and nonmembership degrees of IFVs. Besides, many other operations on IFVs such as integrals [1, 13], intuitionistic fuzzy aggregation operators [18, 19], convergence methods [20], infinite series and products [22] include again multiplication and division of membership-nonmemberships. On the other hand, multiplication and division operations are also crucial in multiplicative calculus and the tools of multiplicative calculus are useful to represent and to handle some intuitionistic fuzzy concepts. For this reason, we here give some basic concepts of multiplicative calculus [5, 8, 17] which will be used in Sections 2-4.

Definition 1.6. Let $f: \mathbb{R} \rightarrow \mathbb{R}^{+}$. The *derivative of the function f is given by:

$$
f^{*}(t)=\lim _{h \rightarrow 0}\left(\frac{f(t+h)}{f(t)}\right)^{\frac{1}{h}}
$$

Theorem 1.7. If $f: \mathbb{R} \rightarrow \mathbb{R}^{+}$is differentiable at t_{0}, then it is also $*$ differentiable at t_{0}, and

$$
f^{*}\left(t_{0}\right)=\exp \left(\frac{f^{\prime}\left(t_{0}\right)}{f\left(t_{0}\right)}\right)
$$

Theorem 1.8. If $f: \mathbb{R} \rightarrow \mathbb{R}^{+}$is *differentiable at t_{0}, and if $f^{*}\left(t_{0}\right) \neq 0$, then it is also differentiable at t_{0}, and

$$
f^{\prime}\left(t_{0}\right)=f(t) \ln \left(f^{*}\left(t_{0}\right)\right) .
$$

Theorem 1.9. Let $f, g: \mathbb{R} \rightarrow \mathbb{R}^{+}$be *differentiable, $h: \mathbb{R} \rightarrow \mathbb{R}$ is differentiable and $\lambda>0$. Then,
(i) $(\lambda f)^{*}(t)=f^{*}(t)$
(ii) $(f g)^{*}(t)=f^{*}(t) g^{*}(t)$
(iii) $(f / g)^{*}(t)=f^{*}(t) / g^{*}(t)$
(iv) $\left(f^{h}\right)^{*}(t)=f^{*}(t)^{h(t)} \cdot f(t)^{h^{\prime}(t)}$

Theorem 1.10 (Multiplicative test for monotonicity). Let $f:(a, b) \rightarrow \mathbb{R}^{+}$be *differentiable.
(i) $f^{*}(t)>1$ for every $t \in(a, b)$, then f is increasing
(ii) $f^{*}(t)<1$ for every $t \in(a, b)$, then f is decreasing
(iii) $f^{*}(t) \geq 1$ for every $t \in(a, b)$, then f is nondecreasing
(iv) $f^{*}(t) \leq 1$ for every $t \in(a, b)$, then f is nonincreasing

Definition 1.11. Let f is a positive function. Then, *antiderivative of f is given by

$$
\phi(t)=\lambda \exp \left(\int \ln (f(t)) d t\right)
$$

where λ is a positive constant.
Definition 1.12 (Definite *integral). Let $f:[a, b] \rightarrow \mathbb{R}^{+} . f$ is said to be *integrable on $[a, b]$ if there exists L such that for any partition $\mathcal{P}=\left\{x_{0}, x_{1}, \cdots, x_{n}\right\}$ of $[a, b]$ and for any points $c_{k} \in\left[x_{k}, x_{k+1}\right]$, we have

$$
\lim _{\|\mathcal{P}\| \rightarrow 0} \prod_{k=0}^{n-1} f\left(c_{k}\right)^{\Delta x_{k}}=L
$$

In that case, we write $L=\int_{a}^{b} f(t)^{d t}$.
Theorem 1.13. If $f:[a, b] \rightarrow \mathbb{R}^{+}$is *integrable, then

$$
\int_{a}^{b} f(t)^{d t}=\exp \left(\int_{a}^{b} \ln (f(t)) d t\right)
$$

Theorem 1.14 (Fundamental theorem of *calculus). Let $f:[a, b] \rightarrow \mathbb{R}^{+}$be continuous. Then,
(i) The function ϕ defined by

$$
\phi(t)=\int_{a}^{t} f(u)^{d u}
$$

is *differentiable on $[a, b]$ and $\phi^{*}(t)=f(t)$.
(ii) If ϕ is any *antiderivative of f, then

$$
\int_{a}^{b} f(t)^{d t}=\frac{\phi(b)}{\phi(a)} .
$$

Theorem 1.15. Let $f, g:[a, b] \rightarrow \mathbb{R}^{+}$be *integrable functions. Then,
(i) $\int_{a}^{b}\left(f(t)^{\lambda}\right)^{d t}=\left(\int_{a}^{b} f(t)^{d t}\right)^{\lambda}$
(ii) $\int_{a}^{b}(f(t) g(t))^{d t}=\int_{a}^{b} f(t)^{d t} \cdot \int_{a}^{b} g(t)^{d t}$
(iii) $\int_{a}^{b}\left(\frac{f(t)}{g(t)}\right)^{d t}=\frac{\int_{a}^{b} f(t)^{d t}}{\int_{a}^{b} g(t)^{d t}}$
(iv) $\int_{a}^{b} f(t)^{d t}=\int_{a}^{c} f(t)^{d t} \cdot \int_{c}^{b} f(t)^{d t}$
(v) $f \leq g$ on $[a, b] \Longrightarrow \int_{a}^{b} f(t)^{d t} \leq \int_{a}^{b} g(t)^{d t}$
where $\lambda \in \mathbb{R}$ and $a \leq c \leq b$.
Theorem 1.16 (*Integration by parts). Let $f, g:[a, b] \rightarrow \mathbb{R}^{+}$be *differentiable so the f^{g} is *integrable. Then,

$$
\int_{a}^{b}\left(f^{*}(t)^{g(t)}\right)^{d t}=\frac{f(b)^{g(b)}}{f(a)^{g(a)}} \cdot \frac{1}{\int_{a}^{b}\left(f(t)^{g^{\prime}(t)}\right)^{d t}} .
$$

Theorem 1.17. $[14,15]$ If $f:[a, b] \rightarrow[c, d]$ is Riemann integrable and g is a continuous function on $[c, d]$, then $g \circ f$ is Riemann integrable on $[a, b]$.

$2{ }^{\oplus}$ Calculus for intuitionistic fuzzy sets

We define ${ }^{\oplus}$ limit for IFVFs as the following.
Definition 2.1. Let $F: I \subseteq \mathbb{R} \rightarrow \mathcal{L}$ and c is a cluster point of I. We say that the ${ }^{\oplus}$ limit of F, as t approaches c, is $\operatorname{IFV} \xi$ if for any IFV $\bar{\varepsilon}=(\varepsilon, 1-\varepsilon)>_{L}(0,1)$ there exists $\delta>0$ such that

$$
\begin{equation*}
F(t) \leq_{L} \xi \oplus \bar{\varepsilon} \quad \text { and } \quad \xi \leq_{L} F(t) \oplus \bar{\varepsilon} \tag{2.1}
\end{equation*}
$$

holds whenever $t \in I$ and $0<|t-c|<\delta$. In this case, we write $\lim _{t \rightarrow c} F(t)=\xi$.
The concept of ${ }^{\oplus}$ limit works with any IFV α, but in case $\alpha=(1,0)$ many of the other concepts in ${ }^{\oplus}$ calculus do not work. Hence, from now on we will omit the element $(1,0)$ in ${ }^{\oplus}$ calculus. We will use the set $\mathcal{L}^{\oplus}=$ $\left\{\alpha \in \mathcal{L}: \alpha<_{L}(1,0)\right\}$. We note that if we had used the strict order $<_{L}$ instead of \leq_{L} to define ${ }^{\oplus}$ limit, then the element (1,0) would automatically be omitted throughout ${ }^{\oplus}$ calculus. See Definition 4.4. in [20].

Theorem 2.2. Let $F: I \subseteq \mathbb{R} \rightarrow \mathcal{L}^{\oplus}, F=\left(f_{1}, f_{2}\right)$ and $\xi \in \mathcal{L}^{\oplus}$. $\oplus_{t \rightarrow c} F(t)=\xi$ if and only if $\lim _{t \rightarrow c} f_{1}(t)=\xi_{1}$ and $\lim _{t \rightarrow c} f_{2}(t)=\xi_{2}$.

Proof. Necessity. Suppose $\lim _{t \rightarrow c} F(t)=\xi$. Then, for any given $\bar{\varepsilon}=(\varepsilon, 1-\varepsilon)>_{L}(0,1)$ there is $\delta>0$ such that

$$
\left.\begin{array}{l}
f_{1}(t) \leq 1-\left(1-\xi_{1}\right)(1-\varepsilon)=\xi_{1}+\varepsilon-\varepsilon \xi_{1} \leq \xi_{1}+\varepsilon \\
\xi_{1} \leq 1-\left(1-f_{1}(t)\right)(1-\varepsilon)=f_{1}(t)+\varepsilon-\varepsilon f_{1}(t) \leq f_{1}(t)+\varepsilon
\end{array}\right\} \Rightarrow \xi_{1}-\varepsilon \leq f_{1}(t) \leq \xi_{1}+\varepsilon
$$

and

$$
\left.\begin{array}{l}
f_{2}(t) \geq \xi_{2}(1-\varepsilon)=\xi_{2}-\varepsilon \xi_{2} \geq \xi_{2}-\varepsilon \\
\xi_{2} \geq f_{2}(t)(1-\varepsilon)=f_{2}(t)-\varepsilon f_{2}(t) \geq f_{2}(t)-\varepsilon
\end{array}\right\} \Rightarrow \xi_{2}-\varepsilon \leq f_{2}(t) \leq \xi_{2}+\varepsilon
$$

whenever $t \in I$ and $0<|t-c|<\delta$. This implies $\lim _{t \rightarrow c} f_{1}(t)=\xi_{1}$ and $\lim _{t \rightarrow c} f_{2}(t)=\xi_{2}$.
Sufficiency. Let $\lim _{t \rightarrow c} f_{1}(t)=\xi_{1}$ and $\lim _{t \rightarrow c} f_{2}(t)=\xi_{2}$. For given $\varepsilon>0$ followings hold:
(i) There exists $\delta_{1}>0$ such that $f_{1}(t)-\xi_{1} \leq \varepsilon\left(1-\xi_{1}\right)$ and $\xi_{2}-f_{2}(t) \leq \varepsilon \xi_{2}$ whenever $t \in I, 0<|t-c|<\delta_{1}$ and these imply $f_{1}(t) \leq 1-\left(1-\xi_{1}\right)(1-\varepsilon)$ and $\xi_{2}(1-\varepsilon) \leq f_{2}(t)$, respectively. Hence, we have $F(t) \leq_{L} \xi \oplus \bar{\varepsilon}$ whenever $t \in I$ and $0<|t-c|<\delta_{1}$.
(ii) By the assumption $\xi<_{L}(1,0)$ we have $\xi_{1} \neq 1$ and $\xi_{2} \neq 0$ and so there exists $\delta_{2}>0$ such that $f_{1}(t) \leq$ $\xi_{1}+\frac{1-\xi_{1}}{2}=\frac{\xi_{1}+1}{2}$ and $f_{2}(t) \geq \xi_{2}-\frac{\xi_{2}}{2}=\frac{\xi_{2}}{2}$ whenever $t \in I, 0<|t-c|<\delta_{2}$. Besides, there is $\delta_{3}>0$ such that $\xi_{1}-f_{1}(t) \leq \varepsilon\left(1-\frac{\xi_{1}+1}{2}\right)$ and $f_{2}(t)-\xi_{2} \leq \varepsilon \frac{\xi_{2}}{2}$ whenever $t \in I, 0<|t-c|<\delta_{3}$. These imply $\xi_{1}-f_{1}(t) \leq \varepsilon\left(1-f_{1}(t)\right)$ and $f_{2}(t)-\xi_{2} \leq \varepsilon f_{2}(t)$ whenever $t \in I, 0<|t-c|<\min \left\{\delta_{2}, \delta_{3}\right\}$. Hence, we have $\xi_{1} \leq 1-\left(1-f_{1}(t)\right)(1-\varepsilon)$ and $f_{2}(t)(1-\varepsilon) \leq \xi_{2}$ which implies $\xi \leq_{L} F(t) \oplus \bar{\varepsilon}$.

From (i) and (ii), we conclude that

$$
F(t) \leq_{L} \xi \oplus \bar{\varepsilon} \quad \text { and } \quad \xi \leq_{L} F(t) \oplus \bar{\varepsilon}
$$

whenever $t \in I$ and $0<|t-c|<\delta=\min \left\{\delta_{1}, \delta_{2}, \delta_{3}\right\}$ which completes the proof.
Remark 2.3. If $\lim _{t \rightarrow c} F(t)=(1,0)$, then there exists $\delta>0$ such that $F(t)=(1,0)$ for any $t \in(c-\delta, c+\delta) /\{c\}$. On the other hand, if $F(d)=(1,0)$ for a number $d \in(c-\delta, c+\delta) /\{c\}$, then $\xi=(1,0)$.

Example 2.4. Let $F:(0,2) \rightarrow \mathcal{L}^{\oplus}$ be defined by $F(t)=\left(\frac{1}{2}-\frac{1}{4+t}, \frac{1}{3}-\frac{1}{4+t}\right)$. Then, $\oplus_{t \rightarrow 1} F(t)=$ $\left(\frac{3}{10}, \frac{2}{15}\right)$.

Definition 2.5. Let $F: I \subseteq \mathbb{R} \rightarrow \mathcal{L}^{\oplus}$ and $\xi \in \mathcal{L}^{\oplus} .{ }_{t \rightarrow c^{-}} \lim F(t)=\xi$ iffor any $I F V \bar{\varepsilon}>_{L}(0,1)$ there exists $\delta>0$ such that (2.1) holds whenever $t \in(c-\delta, c)$. Similarly, ${ }_{t \rightarrow c^{+}} \lim _{m} F(t)=\xi$ if there is $\delta>0$ such that (2.1) holds whenever $t \in(c, c+\delta)$.

If I is a closed interval, then ${ }^{\oplus}$ limit, ${ }^{\oplus}$ continuity, ${ }^{\oplus}$ derivative at endpoints of I are meant in the one-sided sense throughout the paper.

Theorem 2.6. Let $F, G: I \subseteq \mathbb{R} \rightarrow \mathcal{L}^{\oplus}$ be two IFVFs, $\xi, \eta \in \mathcal{L}^{\oplus}$ be two IFVs; and $\lambda \geq 0$. If $\lim _{t \rightarrow c} F(t)=\xi$ and $\lim _{t \rightarrow c} G(t)=\eta$, then followings hold:
(i) $\lim _{t \rightarrow c}(F(t) \oplus G(t))=\xi \oplus \eta$
(ii) $\lim _{t \rightarrow c}(F(t) \ominus G(t))=\xi \ominus \eta$ where $F(t) \ominus G(t) \in \mathcal{L}^{\oplus}$
(iii) $\operatorname{\operatorname {lim}}_{t \rightarrow c} \lambda F(t)=\lambda \xi$

Proof. Let $F, G: I \subseteq \mathbb{R} \rightarrow \mathcal{L}^{\oplus}$ be two IFVFs such that $F=\left(f_{1}, f_{2}\right), G=\left(g_{1}, g_{2}\right)$ and $\lim _{t \rightarrow c} F(t)=\xi$ and $\lim _{t \rightarrow c} G(t)=\eta$ where $\xi, \eta \in \mathcal{L}^{\oplus}$. Then, we have:
(i)

$$
\begin{aligned}
\oplus_{t \rightarrow c}(F(t) \oplus G(t)) & =\left(\lim _{t \rightarrow c} 1-\left(1-f_{1}(t)\right)\left(1-g_{1}(t)\right), \lim _{t \rightarrow c} f_{2}(t) g_{2}(t)\right) \\
& =\left(\lim _{t \rightarrow c} f_{1}(t), \lim _{t \rightarrow c} f_{2}(t)\right) \oplus\left(\lim _{t \rightarrow c} g_{1}(t), \lim _{t \rightarrow c} g_{2}(t)\right) \\
& =\lim _{t \rightarrow c} F(t) \oplus \lim _{t \rightarrow c} G(t) \\
& =\xi \oplus \eta
\end{aligned}
$$

by virtue of Theorem 2.2.
(ii) Suppose $F(t) \ominus G(t)=\left(1-\frac{1-f_{1}(t)}{1-g_{1}(t)}, \frac{f_{2}(t)}{g_{2}(t)}\right) \in \mathcal{L}^{\oplus}$. Then, we have

$$
f_{1}(t) \geq g_{1}(t), \quad f_{2}(t) \leq g_{2}(t), \quad \frac{f_{2}(t)}{g_{2}(t)} \leq \frac{1-f_{1}(t)}{1-g_{1}(t)}
$$

and, as t approaching c,

$$
\xi_{1} \geq \eta_{1}, \quad \xi_{2} \leq \eta_{2} \quad \frac{\xi_{2}}{\eta_{2}} \leq \frac{1-\xi_{1}}{1-\eta_{1}}
$$

implying $\xi \ominus \eta=\left(1-\frac{1-\xi_{1}}{1-\eta_{1}}, \frac{\xi_{2}}{\eta_{2}}\right) \in \mathcal{L}^{\oplus}$. Hence, we get

$$
\begin{aligned}
\oplus_{t \rightarrow c}(F(t) \ominus G(t)) & =\left(\lim _{t \rightarrow c} 1-\frac{1-f_{1}(t)}{1-g_{1}(t)}, \lim _{t \rightarrow c} \frac{f_{2}(t)}{g_{2}(t)}\right) \\
& =\left(1-\frac{1-\lim _{t \rightarrow c} f_{1}(t)}{1-\lim _{t \rightarrow c} g_{1}(t)}, \frac{\lim _{t \rightarrow c} f_{2}(t)}{\lim _{t \rightarrow c} g_{2}(t)}\right) \\
& =\left(\lim _{t \rightarrow c} f_{1}(t), \lim _{t \rightarrow c} f_{2}(t)\right) \ominus\left(\lim _{t \rightarrow c} g_{1}(t), \lim _{t \rightarrow c} g_{2}(t)\right) \\
& =\oplus_{t \rightarrow c} F(t) \ominus \oplus_{t \rightarrow c} G(t) \\
& =\xi \ominus \eta
\end{aligned}
$$

by virtue of Theorem 2.2.
(iii) The proof can be done similarly by using Theorem 2.2, hence omitted.

Definition 2.7. Let $F: I \subseteq \mathbb{R} \rightarrow \mathcal{L}^{\oplus}$ and $t_{0} \in I$. F is said to be ${ }^{\oplus}$ continuous at t_{0} iffor any IFV $\bar{\varepsilon}=(\varepsilon, 1-\varepsilon)>_{L}$ $(0,1)$ there exists $\delta>0$ such that

$$
F(t) \leq_{L} F\left(t_{0}\right) \oplus \bar{\varepsilon} \quad \text { and } \quad F\left(t_{0}\right) \leq_{L} F(t) \oplus \bar{\varepsilon}
$$

holds whenever $t \in I$ and $\left|t-t_{0}\right|<\delta$.
Theorem 2.8. Let $F:(a, b) \rightarrow \mathcal{L}^{\oplus}$ and $t_{0} \in(a, b)$. F is ${ }^{\oplus}$ continuous at t_{0} if and only if $\lim _{t \rightarrow t_{0}} F(t)=F\left(t_{0}\right)$.
Proof. Since $t_{0} \in(a, b)$ is a cluster point, the proof is straightforward from Definition 2.1 by taking $c=t_{0}$ and $\xi=F\left(t_{0}\right)$.

Definition 2.9. Let $F:(a, b) \rightarrow \mathcal{L}^{\oplus}$ and $t_{0} \in(a, b)$. F is said to be right ${ }^{\oplus}$ continuous at t_{0} if $\lim _{t \rightarrow t_{0}^{+}} F(t)=F\left(t_{0}\right)$, and said to be left- ${ }^{\oplus}$ continuous at t_{0} if ${ }^{\oplus} \lim _{t \rightarrow t_{0}^{-}} F(t)=F\left(t_{0}\right)$.

Definition 2.10. $F:[a, b] \rightarrow \mathcal{L}^{\oplus}$ is said to be ${ }^{\oplus}$ continuous on $[a, b]$ if F is right $-{ }^{\oplus}$ continuous at a, left- ${ }^{\oplus}$ continuous at b and ${ }^{\oplus}$ continuous at all interior points of $[a, b]$.

Theorem 2.11. Let $F:[a, b] \rightarrow \mathcal{L}^{\oplus}$ and $F=\left(f_{1}, f_{2}\right)$. F is ${ }^{\oplus}$ continuous on $[a, b]$ if and only if f_{1} and f_{2} are continuous on $[a, b]$.

Proof. In view of Theorem 2.2, the proof is straightforward.
Definition 2.12. Let $F:(a, b) \rightarrow \mathcal{L}^{\oplus}$ and $t_{0} \in(a, b)$. F is said to be ${ }^{\oplus}$ differentiable at t_{0} if $F\left(t_{0}+h\right) \ominus F\left(t_{0}\right)$ and $F\left(t_{0}\right) \ominus F\left(t_{0}-h\right)$ exist in \mathcal{L}^{\oplus} for sufficiently small h and there is an $I F V \xi \in \mathcal{L}^{\oplus}$ such that

$$
\oplus_{h \rightarrow 0^{+}} \frac{F\left(t_{0}+h\right) \ominus F\left(t_{0}\right)}{h}={ }^{\oplus} \lim _{h \rightarrow 0^{+}} \frac{F\left(t_{0}\right) \ominus F\left(t_{0}-h\right)}{h}=\xi .
$$

In this case, we write $\xi=F^{\oplus}\left(t_{0}\right)$.

Figure 1: Regions where $F\left(t_{0}+h\right) \ominus F\left(t_{0}\right)$ and $F\left(t_{0}\right) \ominus F\left(t_{0}-h\right)$ exist in \mathcal{L}^{\oplus}
Figure 1 illustrates addition and subtraction regions of $F\left(t_{0}\right)$. For more information we refer to [10, 11].
Theorem 2.13. Let $F:(a, b) \rightarrow \mathcal{L}^{\oplus}$ and $F=\left(f_{1}, f_{2}\right)$. F is ${ }^{\oplus}$ differentiable at t_{0} if and only if $f_{1}^{\prime}\left(t_{0}\right), f_{2}^{\prime}\left(t_{0}\right)$ exist, F is nondecreasing at t_{0} and $\frac{f_{2}}{1-f_{1}}$ is nonincreasing at t_{0}. Furthermore,

$$
F^{\oplus}\left(t_{0}\right)=\left(1-\exp \left(\frac{\left(1-f_{1}\right)^{\prime}\left(t_{0}\right)}{\left(1-f_{1}\right)\left(t_{0}\right)}\right), \exp \left(\frac{f_{2}^{\prime}\left(t_{0}\right)}{f_{2}\left(t_{0}\right)}\right)\right) .
$$

Proof. Necessity. Let $F:(a, b) \rightarrow \mathcal{L}^{\oplus}$ be ${ }^{\oplus}$ differentiable at t_{0}. Then, in view of the facts that

$$
\begin{aligned}
& F^{\oplus}\left(t_{0}^{+}\right)={ }_{h \rightarrow 0^{+}} \frac{F\left(t_{0}+h\right) \ominus F\left(t_{0}\right)}{h}=\left(\lim _{h \rightarrow 0^{+}}\left[1-\left(\frac{1-f_{1}\left(t_{0}+h\right)}{1-f_{1}\left(t_{0}\right)}\right)^{1 / h}\right], \lim _{h \rightarrow 0^{+}}\left(\frac{f_{2}\left(t_{0}+h\right)}{f_{2}\left(t_{0}\right)}\right)^{1 / h}\right) \\
&=\left(1-\exp \left(\frac{\left(1-f_{1}\right)^{\prime}\left(t_{0}^{+}\right)}{\left(1-f_{1}\right)\left(t_{0}\right)}\right), \exp \left(\frac{f_{2}^{\prime}\left(t_{0}^{+}\right)}{f_{2}\left(t_{0}\right)}\right)\right), \\
& F^{\oplus}\left(t_{0}^{-}\right)=\left(1-\exp \left(\frac{\left(1-f_{1}\right)^{\prime}\left(t_{0}^{-}\right)}{\left(1-f_{1}\right)\left(t_{0}\right)}\right), \exp \left(\frac{f_{2}^{\prime}\left(t_{0}^{-}\right)}{f_{2}\left(t_{0}\right)}\right)\right)
\end{aligned}
$$

we conclude $f_{1}^{\prime}\left(t_{0}\right), f_{2}^{\prime}\left(t_{0}\right)$ exist. Besides, since $F\left(t_{0}+h\right) \ominus F\left(t_{0}\right)$ and $F\left(t_{0}\right) \ominus F\left(t_{0}-h\right)$ exist, we have

$$
f_{1}\left(t_{0}-h\right) \leq f_{1}\left(t_{0}\right) \leq f_{1}\left(t_{0}+h\right) \quad \text { and } \quad f_{2}\left(t_{0}-h\right) \geq f_{2}\left(t_{0}\right) \geq f_{2}\left(t_{0}+h\right)
$$

by the property of subtraction operation and this implies F is nondecreasing at t_{0}.
On the other hand, since $F\left(t_{0}+h\right) \ominus F\left(t_{0}\right)$ exists we have $f_{2}\left(t_{0}+h\right) \pi_{F\left(t_{0}\right)} \leq f_{2}\left(t_{0}\right) \pi_{F\left(t_{0}+h\right)}$ by the property of subtraction operation implying

$$
f_{2}\left(t_{0}+h\right)\left[1-f_{1}\left(t_{0}\right)-f_{2}\left(t_{0}\right)\right] \leq f_{2}\left(t_{0}\right)\left[1-f_{1}\left(t_{0}+h\right)-f_{2}\left(t_{0}+h\right)\right] .
$$

So, we have

$$
\begin{aligned}
0 & \geq\left(1-f_{1}\left(t_{0}\right)\right)\left[f_{2}\left(t_{0}+h\right)-f_{2}\left(t_{0}\right)\right]-f_{2}\left(t_{0}\right)\left[1-f_{1}\left(t_{0}+h\right)-\left(1-f_{1}\left(t_{0}\right)\right)\right] \\
& \geq \frac{\left(1-f_{1}\left(t_{0}\right)\right)\left[f_{2}\left(t_{0}+h\right)-f_{2}\left(t_{0}\right)\right]-f_{2}\left(t_{0}\right)\left[1-f_{1}\left(t_{0}+h\right)-\left(1-f_{1}\left(t_{0}\right)\right)\right]}{\left.\left[1-f_{1}\left(t_{0}\right)\right)\right]\left[1-f_{1}\left(t_{0}+h\right)\right]} \\
& =\Delta_{h}\left(\frac{f_{2}\left(t_{0}\right)}{1-f_{1}\left(t_{0}\right)}\right)
\end{aligned}
$$

where Δ_{h} is the forward difference operator with step h. Similary, since $F\left(t_{0}\right) \ominus F\left(t_{0}-h\right)$ exists we have $f_{2}\left(t_{0}\right) \pi_{F\left(t_{0}-h\right)} \leq f_{2}\left(t_{0}-h\right) \pi_{F\left(t_{0}\right)}$ which reveals

$$
\nabla_{h}\left(\frac{f_{2}\left(t_{0}\right)}{1-f_{1}\left(t_{0}\right)}\right) \leq 0
$$

where ∇_{h} is the backward difference operator with step h. These imply $\frac{f_{2}}{1-f_{1}}$ is nonincreasing at t_{0}.
Sufficiency. Let $f_{1}^{\prime}\left(t_{0}\right), f_{2}^{\prime}\left(t_{0}\right)$ exist, F be nondecreasing at t_{0} and $\frac{f_{2}}{1-f_{1}}$ be nonincreasing at t_{0}. Since, F is nondecreasing at t_{0} and $\frac{f_{2}}{1-f_{1}}$ is nonincreasing at t_{0} we guarantee, by following above calculation steps reversely, the existence of $F\left(t_{0}+h\right) \ominus F\left(t_{0}\right)$ and $F\left(t_{0}\right) \ominus F\left(t_{0}-h\right)$ for sufficiently small h. Besides, existence of $f_{1}^{\prime}\left(t_{0}\right), f_{2}^{\prime}\left(t_{0}\right)$ guarantee the existence of $F^{\oplus}\left(t_{0}\right)$.

Definition 2.14. $F:(a, b) \rightarrow \mathcal{L}^{\oplus}$ is said to be ${ }^{\oplus}$ differentiable on (a, b) if F is ${ }^{\oplus}$ differentiable for each $t_{0} \in(a, b)$.
Theorem 2.15. Let $F:(a, b) \rightarrow \mathcal{L}^{\oplus}$ and $F=\left(f_{1}, f_{2}\right)$. F is ${ }^{\oplus}$ differentiable on (a, b) if and only if F is nondecreasing on $(a, b), f_{1}, f_{2}$ are differentiable on (a, b) and $\left(\frac{f_{2}}{1-f_{1}}\right)^{\prime} \leq 0$. Furthermore,

$$
\begin{equation*}
F^{\oplus}=\left(1-\exp \left(\frac{\left(1-f_{1}\right)^{\prime}}{\left(1-f_{1}\right)}\right), \exp \left(\frac{f_{2}^{\prime}}{f_{2}}\right)\right) . \tag{2.2}
\end{equation*}
$$

Proof. In view of Theorem 2.13 and Remark 1.5, the proof is straightforward.
Example 2.16. Let $F:(3,4) \rightarrow \mathcal{L}^{\oplus}$ be defined by

$$
F(t)=\left(1-\frac{1}{t}, \exp \left(-t^{2}\right)\right)
$$

Then,

$$
F^{\oplus}(t)=\left(1-\exp \left(-\frac{1}{t}\right), \exp (-2 t)\right)
$$

which is also an IFVF.
Here, the tools of multiplicative calculus $[8,17]$ may be useful to represent (2.2). Besides, we have

$$
\left(\frac{f_{2}}{1-f_{1}}\right)^{\prime} \leq 0 \Longleftrightarrow \frac{f_{2}^{\prime}}{f_{2}} \leq \frac{\left(1-f_{1}\right)^{\prime}}{1-f_{1}} \Longleftrightarrow f_{2}^{\prime} \leq\left(1-f_{1}\right)^{\prime}
$$

which means that the condition $\left(\frac{f_{2}}{1-f_{1}}\right)^{\prime} \leq 0$ in Theorem 2.15 is related directly to relative rate of changes of $\left(1-f_{1}\right)$ and f_{2} rather than the rate of changes of $\left(1-f_{1}\right)$ and f_{2}. At this point multiplicative *derivative, which has a close relation with relative rate of changes, may also be useful. In fact, we have

$$
\left(\frac{f_{2}}{1-f_{1}}\right)^{\prime} \leq 0 \Longleftrightarrow \frac{f_{2}^{\prime}}{f_{2}} \leq \frac{\left(1-f_{1}\right)^{\prime}}{1-f_{1}} \Longleftrightarrow f_{2}^{*} \leq\left(1-f_{1}\right)^{*}
$$

We give following two theorems as the representation of Theorem 2.13 and Theorem 2.15 by means of the concept of *derivative. The results are straightforward in view of Theorem 1.7 and Theorem 1.10, and hence the proofs are omitted.

Theorem 2.17. Let $F:(a, b) \rightarrow \mathcal{L}^{\oplus}$ and $F=\left(f_{1}, f_{2}\right) . F$ is ${ }^{\oplus}$ differentiable at t_{0} if and only if $\left(1-f_{1}\right)^{*}\left(t_{0}\right), f_{2}^{*}\left(t_{0}\right)$ exists, F is nondecreasing at t_{0} and $\frac{f_{2}}{1-f_{1}}$ nonincreasing at t_{0}. Furthermore,

$$
F^{\oplus}\left(t_{0}\right)=\left(1-\left(1-f_{1}\right)^{*}\left(t_{0}\right), f_{2}^{*}\left(t_{0}\right)\right) .
$$

Theorem 2.18. Let $F:(a, b) \rightarrow \mathcal{L}^{\oplus}$ and $F=\left(f_{1}, f_{2}\right)$. F is ${ }^{\oplus}$ differentiable on (a, b) if and only if F is nondecreasing on $(a, b),\left(1-f_{1}\right), f_{2}$ are $*$ differentiable on (a, b) and $\left(\frac{f_{2}}{1-f_{1}}\right)^{*} \leq 1$. Furthermore,

$$
\begin{equation*}
F^{\oplus}=\left(1-\left(1-f_{1}\right)^{*}, f_{2}^{*}\right) . \tag{2.3}
\end{equation*}
$$

Theorem 2.19. Let $F, G:(a, b) \rightarrow \mathcal{L}^{\oplus}$ be ${ }^{\oplus}$ differentiable IFVFs, $h:(a, b) \rightarrow \mathbb{R}^{+} \cup\{0\}$ be differentiable and nondecreasing real valued function and $\lambda \geq 0$. Then,
(i) $(F \oplus G)^{\oplus}(t)=F^{\oplus}(t) \oplus G^{\oplus}(t)$
(ii) $(\lambda F)^{\oplus}(t)=\lambda F^{\oplus}(t)$
(iii) $(h F)^{\oplus}(t)=\left(h F^{\oplus}(t)\right) \oplus\left(h^{\prime} F(t)\right)$

Moreover, if $(F \ominus G)^{\oplus}(t)$ exists then
(iv) $(F \ominus G)^{\oplus}(t)=F^{\oplus}(t) \ominus G^{\oplus}(t)$.

Proof. Let $F, G:(a, b) \rightarrow \mathcal{L}^{\oplus}$ be ${ }^{\oplus}$ differentiable IFVFs such that $F=\left(f_{1}, f_{2}\right), G=\left(g_{1}, g_{2}\right)$ and $\lambda \geq 0$. Then, by Theorem 2.18 we have f_{1}, g_{1} are nondecreasing, f_{2}, g_{2} are nonincreasing, $\left(1-f_{1}\right)^{*}, f_{2}^{*},\left(1-g_{1}\right)^{*}, g_{2}^{*}$ exist and $\left(\frac{f_{2}}{1-f_{1}}\right)^{*} \leq 1,\left(\frac{g_{2}}{1-g_{1}}\right)^{*} \leq 1$ hold.
(i) $F \oplus G=\left(1-\left(1-f_{1}\right)\left(1-g_{1}\right), f_{2} g_{2}\right)$. We apply Theorem 2.18. $1-\left(1-f_{1}\right)\left(1-g_{1}\right)$ is nondecreasing and $f_{2} g_{2}$ is nonincreasing. Hence, $F \oplus G$ is nondecreasing. Besides, we know the existence of $\left(\left(1-f_{1}\right)\left(1-g_{1}\right)\right)^{*}$, $\left(f_{2} g_{2}\right)^{*}$ and $\left(\frac{f_{2} g_{2}}{\left(1-f_{1}\right)\left(1-g_{1}\right)}\right)^{*} \leq 1$. This implies $(F \oplus G)^{\oplus}$ exist and

$$
\begin{aligned}
(F \oplus G)^{\oplus} & =\left(1-\left(\left(1-f_{1}\right)\left(1-g_{1}\right)\right)^{*},\left(f_{2} g_{2}\right)^{*}\right) \\
& =\left(1-\left(1-f_{1}\right)^{*}\left(1-g_{1}\right)^{*}, f_{2}^{*} g_{2}^{*}\right) \\
& =\left(1-\left(1-f_{1}\right)^{*}, f_{2}^{*}\right) \oplus\left(1-\left(1-g_{1}\right)^{*}, g_{2}^{*}\right) \\
& =F^{\oplus} \oplus G^{\oplus} .
\end{aligned}
$$

(ii) $\lambda F=\left(1-\left(1-f_{1}\right)^{\lambda}, f_{2}^{\lambda}\right)$. We apply Theorem 2.18. $1-\left(1-f_{1}\right)^{\lambda}$ is nondecreasing and f_{2}^{λ} is nonincreasing. Hence, λF is nondecreasing. Besides, we know that $\left(1-f_{1}\right)^{\lambda}$, f_{2}^{λ} are $*$ differentiable and $\left(\left(\frac{f_{2}}{1-f_{1}}\right)^{\lambda}\right)^{*} \leq 1$. This implies $(\lambda F)^{\oplus}$ exists and

$$
(\lambda F)^{\oplus}=\left(1-\left(\left(1-f_{1}\right)^{\lambda}\right)^{*},\left(f_{2}^{\lambda}\right)^{*}\right)=\left(1-\left(\left(1-f_{1}\right)^{*}\right)^{\lambda},\left(f_{2}^{*}\right)^{\lambda}\right)=\lambda\left(1-\left(1-f_{1}\right)^{*}, f_{2}^{*}\right)=\lambda F^{\oplus} .
$$

(iii) Let $h:(a, b) \rightarrow \mathbb{R}^{+} \cup\{0\}$ be differentiable and nondecreasing on (a, b). Hence, $h F=\left(1-\left(1-f_{1}\right)^{h}, f_{2}^{h}\right)$ is nondecreasing. Besides, we have

$$
\left(\frac{f_{2}^{h}}{\left(1-f_{1}\right)^{h}}\right)^{*}=\left(\left(\frac{f_{2}}{1-f_{1}}\right)^{h}\right)^{*}=\left(\left(\frac{f_{2}}{1-f_{1}}\right)^{*}\right)^{h}\left(\frac{f_{2}}{1-f_{1}}\right)^{h^{\prime}} \leq 1
$$

in view of the facts $\left(\frac{f_{2}}{1-f_{1}}\right)^{*} \leq 1, \frac{f_{2}}{1-f_{1}} \leq 1$ and $h^{\prime} \geq 0$. Hence, $h F$ is ${ }^{\oplus}$ differentiable by Theorem 2.18 and

$$
(h F)^{\oplus}=\left(1-\left(\left(1-f_{1}\right)^{h}\right)^{*},\left(f_{2}^{h}\right)^{*}\right)
$$

$$
\begin{aligned}
& =\left(1-\left(\left(1-f_{1}\right)^{*}\right)^{h}\left(1-f_{1}\right)^{h^{\prime}},\left(f_{2}^{*}\right)^{h} f_{2}^{h^{\prime}}\right) \\
& =\left(1-\left(\left(1-f_{1}\right)^{*}\right)^{h},\left(f_{2}^{*}\right)^{h}\right) \oplus\left(1-\left(1-f_{1}\right)^{h^{\prime}}, f_{2}^{h^{\prime}}\right) \\
& =\left(h F^{\oplus}\right) \oplus\left(h^{\prime} F\right) .
\end{aligned}
$$

(iv) Let $(F \ominus G)^{\oplus}$ exist. Then,

$$
F \ominus G=\left(\frac{f_{1}-g_{1}}{1-g_{1}}, \frac{f_{2}}{g_{2}}\right)=\left(1-\frac{1-f_{1}}{1-g_{1}}, \frac{f_{2}}{g_{2}}\right)
$$

exists and

$$
\left(\frac{1-f_{1}}{1-g_{1}}\right)^{*} \leq 1, \quad\left(\frac{f_{2}}{g_{2}}\right)^{*} \leq 1, \quad\left(\frac{f_{2}\left(1-g_{1}\right)}{g_{2}\left(1-f_{1}\right)}\right)^{*} \leq 1
$$

hold by Theorem 2.18 and Theorem 1.10. Hence, we have

$$
\left(1-f_{1}\right)^{*} \leq\left(1-g_{1}\right)^{*}, \quad f_{2}^{*} \leq g_{2}^{*}, \quad 1-\left(\frac{1-f_{1}}{1-g_{1}}\right)^{*}+\left(\frac{f_{2}}{g_{2}}\right)^{*} \leq 1
$$

which implies the existence of $F^{\oplus} \ominus G^{\oplus}$ by the property of subtraction operation. Then, we conclude

$$
\begin{aligned}
(F \ominus G)^{\oplus} & =\left(1-\left(\frac{1-f_{1}}{1-g_{1}}\right)^{*},\left(\frac{f_{2}}{g_{2}}\right)^{*}\right) \\
& =\left(1-\frac{\left(1-f_{1}\right)^{*}}{\left(1-g_{1}\right)^{*}}, \frac{f_{2}^{*}}{g_{2}^{*}}\right) \\
& =\left(1-\left(1-f_{1}\right)^{*}, f_{2}^{*}\right) \ominus\left(1-\left(1-g_{1}\right)^{*}, g_{2}^{*}\right) \\
& =F^{\oplus} \ominus G^{\oplus} .
\end{aligned}
$$

Definition 2.20. Let $F:(a, b) \rightarrow \mathcal{L}^{\oplus}$ and $F=\left(f_{1}, f_{2}\right)$. The ${ }^{\oplus}$ antiderivative Φ of F is defined by

$$
\Phi(t)=\left(1-\lambda_{1} \exp \left(\int \ln \left(1-f_{1}\right) d t\right), \lambda_{2} \exp \left(\int \ln \left(f_{2}\right) d t\right)\right)
$$

where $\lambda_{1}, \lambda_{2}>0$ are arbitrary constants such that Φ is an IFV.
In view of the definition above and the concept of *integral, we give following theorem.
Theorem 2.21. Let $F:(a, b) \rightarrow \mathcal{L}^{\oplus}$ and $F=\left(f_{1}, f_{2}\right)$. If Φ is ${ }^{\oplus}$ antiderivative of F, then

$$
\begin{equation*}
\Phi(t)=\left(1-\lambda_{1} \int\left(1-f_{1}\right)^{d t}, \lambda_{2} \int\left(f_{2}\right)^{d t}\right) \tag{2.4}
\end{equation*}
$$

where $\lambda_{1}, \lambda_{2}>0$ are arbitrary constants such that Φ is an IFV.
We note that ${ }^{\oplus}$ antiderivative $\Phi(t)$ of $F=\left(f_{1}, f_{2}\right)$ is an IFV if and only if

$$
0<\lambda_{1} \leq \frac{1}{\int\left(1-f_{1}\right)^{d t}}, \quad 0<\lambda_{2} \leq \frac{1}{\int\left(f_{2}\right)^{d t}}, \quad \int\left(\frac{f_{2}}{1-f_{1}}\right)^{d t} \leq \frac{\lambda_{1}}{\lambda_{2}}
$$

Theorem 2.22. If $F:(a, b) \rightarrow \mathcal{L}^{\oplus}$ is ${ }^{\oplus}$ continuous, then ${ }^{\oplus}$ antiderivative $\Phi(t)$ exists and $\Phi^{\oplus}(t)=F(t)$.

Proof. Let $F:(a, b) \rightarrow \mathcal{L}^{\oplus}, F(t)=\left(f_{1}(t), f_{2}(t)\right)$ be ${ }^{\oplus}$ continuous. Then, f_{1} and f_{2} are continuous which implies the existence of *antiderivatives

$$
\lambda_{1} \int\left(1-f_{1}(t)\right)^{d t} \quad \text { and } \quad \lambda_{2} \int f_{2}(t)^{d t}
$$

where

$$
0<\lambda_{1} \leq \frac{1}{\int\left(1-f_{1}\right)^{d t}}, \quad 0<\lambda_{2} \leq \frac{1}{\int\left(f_{2}\right)^{d t}}, \quad \int\left(\frac{f_{2}}{1-f_{1}}\right)^{d t} \leq \frac{\lambda_{1}}{\lambda_{2}}
$$

Hence, ${ }^{\oplus}$ antiderivative $\Phi(t)$ in (2.4) exists.
Now, we check the conditions of Theorem 2.18 for ${ }^{\oplus}$ differentiability of $\Phi(t) . \Phi(t)$ is nondecreasing in view of the facts that

$$
\left(\lambda_{1} \int\left(1-f_{1}\right)^{d t}\right)^{*}=1-f_{1} \leq 1 \quad \text { and } \quad\left(\lambda_{2} \int f_{2}(t)^{d t}\right)^{*}=f_{2} \leq 1
$$

and in view of Theorem 1.10. Besides,

$$
\left(\frac{\lambda_{2} \int f_{2}(t)^{d t}}{\lambda_{1} \int\left(1-f_{1}\right)^{d t}}\right)^{*}=\frac{f_{2}(t)}{1-f_{1}(t)} \leq 1
$$

by virtue of the properties of *derivative and *integral. Hence, $\Phi(t)$ satisfies Theorem 2.18 which means that $\Phi(t)$ is ${ }^{\oplus}$ differentiable. Furthermore, we have

$$
\begin{aligned}
\Phi^{\oplus}(t) & =\left(1-\left(\lambda_{1} \int\left(1-f_{1}\right)^{d t}\right)^{*},\left(\lambda_{2} \int f_{2}(t)^{d t}\right)^{*}\right) \\
& =\left(f_{1}(t), f_{2}(t)\right) \\
& =F(t)
\end{aligned}
$$

which completes the proof.
Definition 2.23 (Definite ${ }^{\oplus}$ integral). $F:[a, b] \rightarrow \mathcal{L}^{\oplus}$ is said to be ${ }^{\oplus}$ integrable on $[a, b]$ if there exists an IFV $\xi \in \mathcal{L}^{\oplus}$ such that for any partition $\mathcal{P}=\left\{x_{0}, x_{1}, \cdots, x_{n}\right\}$ of $[a, b]$ and for any points $c_{k} \in\left[x_{k}, x_{k+1}\right]$, we have

$$
\underset{\|\mathcal{P}\| \rightarrow 0}{\oplus} \lim _{k=0}^{n-1} F\left(c_{k}\right) \Delta x_{k}=\xi .
$$

In that case, we write $\xi=\int_{a}^{\oplus} F(t) d t$.
Theorem 2.24. Let $F:[a, b] \rightarrow \mathcal{L}^{\oplus}$ and $F=\left(f_{1}, f_{2}\right)$. F is ${ }^{\oplus}$ integrable on $[a, b]$ if and only if f_{1} and f_{2} are integrable on $[a, b]$. Furthermore,

$$
\begin{equation*}
\int_{a}^{\oplus} F(t) d t=\left(1-\exp \left(\int_{a}^{b} \ln \left(1-f_{1}\right) d t\right), \exp \left(\int_{a}^{b} \ln \left(f_{2}\right) d t\right)\right) . \tag{2.5}
\end{equation*}
$$

Proof. Let $F:[a, b] \rightarrow \mathcal{L}^{\oplus}$ and $F=\left(f_{1}, f_{2}\right) . F$ is ${ }^{\oplus}$ integrable on $[a, b]$ if and only if f_{1} and f_{2} are integrable on $[a, b]$ in view of the fact

$$
\begin{aligned}
\int_{a}^{\oplus} F(t) d t & =\lim _{\|\mathcal{P}\| \rightarrow 0} \bigoplus_{k=0}^{n-1} F\left(c_{k}\right) \Delta x_{k} \\
& =\left(1-\lim _{\|\mathcal{P}\| \rightarrow 0} \prod_{k=0}^{n-1}\left(1-f_{1}\left(c_{k}\right)\right)^{\Delta x_{k}}, \prod_{k=0}^{n-1}\left(f_{2}\left(c_{k}\right)\right)^{\Delta x_{k}}\right)
\end{aligned}
$$

$$
\begin{aligned}
& =\left(1-\exp \left(\lim _{\|\mathcal{P}\| \rightarrow 0} \sum_{k=0}^{n-1} \Delta x_{k} \ln \left(1-f_{1}\left(c_{k}\right)\right)\right), \exp \left(\lim _{\|\mathcal{P}\| \rightarrow 0} \sum_{k=0}^{n-1} \Delta x_{k} \ln \left(f_{2}\left(c_{k}\right)\right)\right)\right) \\
& =\left(1-\exp \left(\int_{a}^{b} \ln \left(1-f_{1}\right) d t\right), \exp \left(\int_{a}^{b} \ln \left(f_{2}\right) d t\right)\right)
\end{aligned}
$$

by Theorem 2.2 and Theorem 1.17.
Theorem 2.25. Let $F:[a, b] \rightarrow \mathcal{L}^{\oplus}$ and $F=\left(f_{1}, f_{2}\right)$. If F is ${ }^{\oplus}$ integrable on $[a, b]$, then

$$
\begin{equation*}
\int_{a}^{\oplus} F(t) d t=\left(1-\int_{a}^{b}\left(1-f_{1}\right)^{d t}, \int_{a}^{b}\left(f_{2}\right)^{d t}\right) \tag{2.6}
\end{equation*}
$$

Proof. In view of (2.5) and the concept of *integral, the proof is straightforward.
Theorem 2.26 (Fundamental theorem of ${ }^{\oplus}$ calculus). Let $F:[a, b] \rightarrow \mathcal{L}^{\oplus}$ be a continuous. Then, following statements hold:
(i) The function ψ defined by

$$
\psi(t)=\int_{a}^{\oplus} F(u) d u
$$

is ${ }^{\oplus}$ differentiable on $[a, b]$ and $\psi^{\oplus}(t)=F(t)$.
(ii) If Φ is any ${ }^{\oplus}$ antiderivative of F, then

$$
\int_{a}^{\oplus} F(t) d t=\Phi(b) \ominus \Phi(a) .
$$

Proof. Let $F:[a, b] \rightarrow \mathcal{L}^{\oplus}$ be continuous.
(i)

$$
\psi(t)=\left(1-\int_{a}^{t}\left(1-f_{1}\right)^{d u}, \int_{a}^{t}\left(f_{2}\right)^{d u}\right)
$$

In view of $0<1-f_{1} \leq 1,0<f_{2} \leq 1$ and Theorem 1.10 we have ψ is nondecreasing. Besides, since $f_{1}+f_{2} \leq 1$ we have

$$
\left(\frac{\int_{a}^{t}\left(f_{2}\right)^{d u}}{\int_{a}^{t}\left(1-f_{1}\right)^{d u}}\right)^{*}=\frac{f_{2}}{1-f_{1}} \leq 1
$$

by Theorem 1.14 and we conclude ψ is ${ }^{\oplus}$ differentiable on $[a, b]$ in view of Theorem 2.18. Besides,

$$
\psi^{\oplus}(t)=\left(f_{1}(t), f_{2}(t)\right)=F(t)
$$

in view of (2.3) and Theorem 1.14.
(ii) Let Φ be an ${ }^{\oplus}$ antiderivative of F and $\left.\widetilde{\left(1-f_{1}\right.}\right)(t)=\lambda_{1} \int\left(1-f_{1}\right)^{d t}$ and $\tilde{f}_{2}(t)=\lambda_{2} \int\left(f_{2}\right)^{d t}$ are *antiderivatives of $\left(1-f_{1}\right)$ and f_{2}, respectively. Then, we have

$$
\begin{aligned}
\int_{a}^{\oplus} F(t) d t & =\left(1-\int_{a}^{b}\left(1-f_{1}\right)^{d t}, \int_{a}^{b}\left(f_{2}\right)^{d t}\right) \\
& =\left(1-\frac{\left(\widetilde{\left(1-f_{1}\right.}\right)(b)}{\left(\widetilde{1-f_{1}}\right)(a)}, \frac{\tilde{f}_{2}(b)}{\tilde{f_{2}}(a)}\right) \\
& =\left(1-\left(\widetilde{1-f_{1}}\right)(b), \tilde{f}_{2}(b)\right) \ominus\left(1-\left(\widetilde{1-f_{1}}\right)(a), \tilde{f}_{2}(a)\right) \\
& =\Phi(b) \ominus \Phi(a)
\end{aligned}
$$

in view of (2.4), (2.6) and Theorem 1.14.

Theorem 2.27. Let $F, G:[a, b] \rightarrow \mathcal{L}^{\oplus}$ are ${ }^{\oplus}$ integrable on $[a, b]$ and $\lambda \geq 0$. Then,
(i) $\int_{a}^{\oplus} \lambda F(t) d t=\lambda \int_{a}^{\oplus} F(t) d t$
(ii) $\int_{a}^{\oplus}(F(t) \oplus G(t)) d t=\left(\int_{a}^{\oplus} F(t) d t\right) \oplus\left(\int_{a}^{b} G(t) d t\right)$
(iii) $\int_{a}^{\oplus} F(t) d t=\int_{a}^{\oplus} F(t) d t \oplus \int_{c}^{\oplus} F(t) d t, \quad a \leq c \leq b$.

Moreover, if $F \ominus G$ exists then
(iv) $\int_{a}^{\oplus}(F(t) \ominus G(t)) d t=\left(\int_{a}^{\oplus} F(t) d t\right) \ominus\left(\int_{a}^{\oplus} G(t) d t\right)$.

Proof. The proofs of $(i),(i i)$ and (iii) are straightforward from (2.6) and Theorem 1.15.
(iv) Let $F=\left(f_{1}, f_{2}\right)$ and $G=\left(g_{1}, g_{2}\right)$ are ${ }^{\oplus}$ integrable IFVFs on $[a, b]$ and $F \ominus G$ exists. So, we have

$$
f_{1} \geq g_{1}, \quad f_{2} \leq g_{2}, \quad \frac{f_{2}}{g_{2}} \leq \frac{1-f_{1}}{1-g_{1}}
$$

which implies

$$
\int_{a}^{b}\left(1-f_{1}\right)^{d t} \leq \int_{a}^{b}\left(1-g_{1}\right)^{d t}, \quad \int_{a}^{b}\left(f_{2}\right)^{d t} \leq \int_{a}^{b}\left(g_{2}\right)^{d t}, \quad \int_{a}^{b}\left(\frac{f_{2}}{g_{2}}\right)^{d t} \leq \int_{a}^{b}\left(\frac{1-f_{1}}{1-g_{1}}\right)^{d t}
$$

Hence, $\left(\int_{a}^{\oplus} F d t\right) \ominus\left(\int_{a}^{b} G d t\right)$ exists and

$$
\begin{aligned}
\int_{a}^{\oplus}(F \ominus G) d t & =\left(1-\int_{a}^{b}\left(\frac{1-f_{1}}{1-g_{1}}\right)^{d t}, \int_{a}^{b}\left(\frac{f_{2}}{g_{2}}\right)^{d t}\right) \\
& =\left(1-\frac{\int_{a}^{b}\left(1-f_{1}\right)^{d t}}{\int_{a}^{b}\left(1-g_{1}\right)^{d t}}, \frac{\int_{a}^{b}\left(f_{2}\right)^{d t}}{\int_{a}^{b}\left(g_{2}\right)^{d t}}\right) \\
& =\left(1-\int_{a}^{b}\left(1-f_{1}\right)^{d t}, \int_{a}^{b}\left(f_{2}\right)^{d t}\right) \ominus\left(1-\int_{a}^{b}\left(1-g_{1}\right)^{d t}, \int_{a}^{b}\left(g_{2}\right)^{d t}\right) \\
& =\left(\int_{a}^{b} F d t\right) \ominus\left(\int_{a}^{b} G d t\right) .
\end{aligned}
$$

in view of (2.6) and Theorem 1.15.
Theorem $2.28\left({ }^{\oplus}\right.$ Integration by parts). Let $F:[a, b] \rightarrow \mathcal{L}^{\oplus}$ be ${ }^{\oplus}$ differentiable and let $h:[a, b] \rightarrow \mathbb{R}^{+}$be differentiable and nondecreasing. Then,

$$
\int_{a}^{\oplus} h(t) F^{\oplus}(t) d t=(h(b) F(b) \ominus h(a) F(a)) \ominus \int_{a}^{\oplus} F(t) h^{\prime}(t) d t
$$

Proof. The proof is straightforward from Theorem 1.16.

$3{ }^{\otimes}$ Calculus for intuitionistic fuzzy sets

We define ${ }^{\otimes}$ limit for IFVFs as the following.
Definition 3.1. Let $F: I \subseteq \mathbb{R} \rightarrow \mathcal{L}$ and c is a cluster point of I. We say that the ${ }^{\otimes}$ limit of F, as t approaches c, is $\operatorname{IFV} \xi$ if for any $\operatorname{IFV} \bar{\varepsilon}=(1-\varepsilon, \varepsilon)<_{L}(1,0)$ there exists $\delta>0$ such that

$$
\begin{equation*}
\xi \geq_{L} F(t) \otimes \bar{\varepsilon} \quad \text { and } \quad F(t) \geq_{L} \xi \otimes \bar{\varepsilon} \tag{3.1}
\end{equation*}
$$

holds whenever $0<|t-c|<\delta, t \in I$. In this case, we write $\otimes_{t \rightarrow c} \lim _{t \rightarrow 0} F(t)=\xi$.
${ }^{\otimes}$ Limit works with any IFV, but we will omit the element $(0,1)$ in ${ }^{\otimes}$ calculus since the other concepts of ${ }^{\otimes}$ calculus do not work properly with $(0,1)$. We will use the set $\mathcal{L}^{\otimes}=\left\{\alpha \in \mathcal{L}: \alpha>_{L}(0,1)\right\}$.

Theorem 3.2. Let $F: I \subseteq \rightarrow \mathcal{L}^{\otimes}, F=\left(f_{1}, f_{2}\right)$ and $\xi \in \mathcal{L}^{\otimes}$. ${ }_{t \rightarrow c} \lim _{t \rightarrow c} F(t)=\xi$ if and only if $\lim _{t \rightarrow c} f_{1}(t)=\xi_{1}$ and $\lim _{t \rightarrow c} f_{2}(t)=\xi_{2}$.

Proof. Necessity. Suppose ${ }^{\otimes} \lim _{t \rightarrow c} F(t)=\xi$. Then, for any given $\bar{\varepsilon}=(1-\varepsilon, \varepsilon)<_{L}(1,0)$ there is $\delta>0$ such that

$$
\left.\begin{array}{l}
\xi_{1} \geq f_{1}(t)(1-\varepsilon)=f_{1}(t)-\varepsilon f_{1}(t) \geq f_{1}(t)-\varepsilon \\
f_{1}(t) \geq \xi_{1}(1-\varepsilon)=\xi_{1}-\varepsilon \xi_{1} \geq \xi_{1}-\varepsilon
\end{array}\right\} \Rightarrow \xi_{1}-\varepsilon \leq f_{1}(t) \leq \xi_{1}+\varepsilon
$$

and

$$
\left.\begin{array}{l}
\xi_{2} \leq 1-\left(1-f_{2}(t)\right)(1-\varepsilon)=f_{2}(t)+\varepsilon-\varepsilon f_{2}(t) \leq f_{2}(t)+\varepsilon \\
f_{2}(t) \leq 1-\left(1-\xi_{2}\right)(1-\varepsilon)=\xi_{2}+\varepsilon-\varepsilon \xi_{2} \leq \xi_{2}+\varepsilon
\end{array}\right\} \Rightarrow \xi_{2}-\varepsilon \leq f_{2}(t) \leq \xi_{2}+\varepsilon
$$

whenever $t \in I$ and $0<|t-c|<\delta$. This implies $\lim _{t \rightarrow c} f_{1}(t)=\xi_{1}$ and $\lim _{t \rightarrow c} f_{2}(t)=\xi_{2}$.
Sufficiency. This part can be done by replacing \oplus with \otimes and changing the roles of f_{1}, f_{2} in the sufficiency part of the proof of Theorem 2.2.

Remark 3.3. If $\lim _{t \rightarrow c} F(t)=(0,1)$, then there exists $\delta>0$ such that $F(t)=(0,1)$ for any $t \in(c-\delta, c+\delta) /\{c\}$. On the other hand, if $F(d)=(0,1)$ for a number $d \in(c-\delta, c+\delta) /\{c\}$, then $\xi=(0,1)$.

The proofs of the other theorems in this section can be done in a similar way to those of Section 2 by replacing \oplus with \otimes and changing the roles of f_{1}, f_{2}. Hence, the proofs are omitted.

Definition 3.4. Let $F: I \subseteq \mathbb{R} \rightarrow \mathcal{L}^{\otimes}$ and $\xi \in \mathcal{L}^{\otimes}$. ${ }_{t \rightarrow c^{-}} \lim F(t)=\xi$ iffor any IFV $\bar{\varepsilon}<_{L}(1,0)$ there exists $\delta>0$ such that (3.1) holds whenever $t \in(c-\delta, c)$. Similarly, ${ }_{t \rightarrow c^{+}} \lim F(t)=\xi$ if there is $\delta>0$ such that (3.1) holds whenever $t \in(c, c+\delta)$.

If I is a closed interval, then ${ }^{\otimes}$ limit, ${ }^{\otimes}$ continuity, ${ }^{\otimes}$ derivative at endpoints of I are meant in the one-sided sense throughout the paper.

Theorem 3.5. Let $F, G: I \subseteq \mathbb{R} \rightarrow \mathcal{L}^{\otimes}$ be two IFVFs; $\xi, \eta \in \mathcal{L}^{\otimes}$ be two IFVs; and $\lambda \geq 0$. If $\lim _{t \rightarrow c} F(t)=\xi$ and ${ }^{8} \lim _{t \rightarrow c} G(t)=\eta$, then followings hold:
(i) ${ }^{\otimes} \lim _{t \rightarrow c}(F(t) \otimes G(t))=\xi \otimes \eta$
(ii) ${ }^{8} \lim _{t \rightarrow c}(F(t) \oslash G(t))=\xi \oslash \eta$ where $F(t) \oslash G(t) \in \mathcal{L}^{\otimes}$
(iii) ${ }^{\otimes} \lim _{t \rightarrow c}(F(t))^{\lambda}=\xi^{\lambda}$

Definition 3.6. Let $F: I \subseteq \mathbb{R} \rightarrow \mathcal{L}^{\otimes}$ and $t_{0} \in I$. F is said to be ${ }^{\otimes}$ continuous at t_{0} iffor any IFV $\bar{\varepsilon}=(1-\varepsilon, \varepsilon)<_{L}$ $(1,0)$ there exists $\delta>0$ such that

$$
F\left(t_{0}\right) \geq_{L} F(t) \otimes \bar{\varepsilon} \quad \text { and } \quad F(t) \geq_{L} F\left(t_{0}\right) \otimes \bar{\varepsilon}
$$

holds whenever $t \in I$ and $\left|t-t_{0}\right|<\delta$.
Theorem 3.7. Let $F:(a, b) \rightarrow \mathcal{L}^{\otimes}$ and $t_{0} \in(a, b)$. F is ${ }^{\otimes}$ continuous at t_{0} if and only if ${ }^{\otimes} \lim _{t \rightarrow t_{0}} F(t)=F\left(t_{0}\right)$.
Definition 3.8. Let $F:(a, b) \rightarrow \mathcal{L}^{\otimes}$ and $t_{0} \in(a, b)$. F is right- ${ }^{\otimes}$ continuous at t_{0} if ${ }^{\otimes} \lim _{t \rightarrow t_{0}^{+}} F(t)=F\left(t_{0}\right)$, and left ${ }^{\otimes}$ continuous at t_{0} if ${ }^{\otimes} \lim _{t \rightarrow t_{0}^{-}} F(t)=F\left(t_{0}\right)$.

Definition 3.9. $F:[a, b] \rightarrow \mathcal{L}^{\otimes}$ is said to be ${ }^{\otimes}$ continuous on $[a, b]$ if F is right ${ }^{\otimes}$ continuous at a, left- ${ }^{\otimes}$ continuous at b and ${ }^{\otimes}$ continuous at all interior points of $[a, b]$.

Theorem 3.10. Let $F:[a, b] \rightarrow \mathcal{L}^{\otimes}$ and $F=\left(f_{1}, f_{2}\right) . F$ is ${ }^{\otimes}$ continuous on $[a, b]$ if and only if f_{1} and f_{2} are continuous on $[a, b]$.

Definition 3.11. Let $F:(a, b) \rightarrow \mathcal{L}^{\otimes}$ and $t_{0} \in(a, b) . F$ is said to be ${ }^{\otimes}$ differentiable at t_{0} if $F\left(t_{0}+h\right) \oslash F\left(t_{0}\right)$ and $F\left(t_{0}\right) \oslash F\left(t_{0}-h\right)$ exist in in \mathcal{L}^{\otimes} for sufficiently small h and there is an IFV $\xi \in \mathcal{L}^{\otimes}$ such that

$$
{ }_{h \rightarrow 0^{+}}^{\otimes}\left(F\left(t_{0}+h\right) \oslash F\left(t_{0}\right)\right)^{1 / h}={ }_{h \rightarrow 0^{+}}^{\otimes}\left(F\left(t_{0}\right) \oslash F\left(t_{0}-h\right)\right)^{1 / h}=\xi .
$$

In this case, we write $\xi=F^{\otimes}\left(t_{0}\right)$.

Figure 2: Regions where $F\left(t_{0}+h\right) \oslash F\left(t_{0}\right)$ and $F\left(t_{0}\right) \oslash F\left(t_{0}-h\right)$ exist in \mathcal{L}^{\otimes}
Figure 2 illustrates multiplication and division regions of $F\left(t_{0}\right)$. For more information we refer to [10, 11].
Theorem 3.12. Let $F:(a, b) \rightarrow \mathcal{L}^{\otimes}$ and $F=\left(f_{1}, f_{2}\right) . F$ is ${ }^{\otimes}$ differentiable at t_{0} if and only if $f_{1}^{\prime}\left(t_{0}\right), f_{2}^{\prime}\left(t_{0}\right)$ exists, F and $\frac{f_{1}}{1-f_{2}}$ are nonincreasing at t_{0}. Furthermore,

$$
F^{\otimes}\left(t_{0}\right)=\left(\exp \left(\frac{f_{1}^{\prime}\left(t_{0}\right)}{f_{1}\left(t_{0}\right)}\right), 1-\exp \left(\frac{\left(1-f_{2}\right)^{\prime}\left(t_{0}\right)}{\left(1-f_{2}\right)\left(t_{0}\right)}\right)\right) .
$$

Definition 3.13. $F:(a, b) \rightarrow \mathcal{L}^{\otimes}$ is said to be ${ }^{\otimes}$ differentiable on (a, b) if F is ${ }^{\otimes}$ differentiable for each $t_{0} \in(a, b)$.
Theorem 3.14. Let $F:(a, b) \rightarrow \mathcal{L}^{\otimes}$ and $F=\left(f_{1}, f_{2}\right)$. F is ${ }^{\otimes}$ differentiable on (a, b) if and only if F is nonincreasing on $(a, b), f_{1}, f_{2}$ are differentiable on (a, b) and $\left(\frac{f_{1}}{1-f_{2}}\right)^{\prime} \leq 0$. Furthermore,

$$
F^{\otimes}=\left(\exp \left(\frac{f_{1}^{\prime}}{f_{1}}\right), 1-\exp \left(\frac{\left(1-f_{2}\right)^{\prime}}{\left(1-f_{2}\right)}\right)\right) .
$$

Theorem 3.15. Let $F:(a, b) \rightarrow \mathcal{L}^{\otimes}$ and $F=\left(f_{1}, f_{2}\right)$. F is ${ }^{\otimes}$ differentiable at t_{0} if and only if $f_{1}^{*}\left(t_{0}\right),\left(1-f_{2}\right)^{*}\left(t_{0}\right)$ exists, F and $\frac{f_{1}}{1-f_{2}}$ are nonincreasing at t_{0}. Furthermore,

$$
F^{\otimes}\left(t_{0}\right)=\left(f_{1}^{*}\left(t_{0}\right), 1-\left(1-f_{2}\right)^{*}\left(t_{0}\right)\right) .
$$

Theorem 3.16. Let $F:(a, b) \rightarrow \mathcal{L}^{\otimes}$ and $F=\left(f_{1}, f_{2}\right)$. F is ${ }^{\otimes}$ differentiable on (a, b) if and only if F is nonincreasing on $(a, b), f_{1},\left(1-f_{2}\right)$ are *differentiable on (a, b) and $\left(\frac{f_{1}}{1-f_{2}}\right)^{*} \leq 1$. Furthermore,

$$
F^{\otimes}=\left(f_{1}^{*}, 1-\left(1-f_{2}\right)^{*}\right) .
$$

Theorem 3.17. Let $F, G:(a, b) \rightarrow \mathcal{L}^{\otimes}$ be ${ }^{\otimes}$ differentiable IFVFs, $h:(a, b) \rightarrow \mathbb{R}^{+} \cup\{0\}$ be differentiable and nondecreasing real valued function and $\lambda \geq 0$. Then,
(i) $(F \otimes G)^{\otimes}(t)=F^{\otimes}(t) \otimes G^{\otimes}(t)$
(ii) $\left(F^{\lambda}\right)^{\otimes}(t)=\left(F^{\otimes}(t)\right)^{\lambda}$
(iii) $\left(F^{h}\right)^{\otimes}(t)=\left(F^{\otimes}(t)\right)^{h(t)} \otimes\left(F(t)^{h^{\prime}(t)}\right)$

Moreover, if $(F \oslash G)^{\otimes}(t)$ exists then
(iv) $(F \oslash G)^{\otimes}(t)=F^{\otimes}(t) \oslash G^{\otimes}(t)$.

Definition 3.18. Let $F:(a, b) \rightarrow \mathcal{L}^{\otimes}$ and $F=\left(f_{1}, f_{2}\right)$. The ${ }^{\otimes}$ antiderivative Φ of F is defined by

$$
\Phi(t)=\left(\lambda_{1} \exp \left(\int \ln \left(f_{1}\right) d t\right), 1-\lambda_{2} \exp \left(\int \ln \left(1-f_{2}\right) d t\right)\right)
$$

where $\lambda_{1}, \lambda_{2}>0$ are arbitrary constants such that Φ is an IFV.
Theorem 3.19. Let $F:(a, b) \rightarrow \mathcal{L}^{\otimes}$ and $F=\left(f_{1}, f_{2}\right)$. If Φ is ${ }^{\otimes}$ antiderivative of F, then

$$
\Phi(t)=\left(\lambda_{1} \int\left(f_{1}\right)^{d t}, 1-\lambda_{2} \int\left(1-f_{2}\right)^{d t}\right)
$$

where $\lambda_{1}, \lambda_{2}>0$ are arbitrary constants such that Φ is an IFV.
We note that ${ }^{\otimes}$ antiderivative $\Phi(t)$ of $F=\left(f_{1}, f_{2}\right)$ is an IFV if and only if

$$
0<\lambda_{1} \leq \frac{1}{\int\left(f_{1}\right)^{d t}}, \quad 0<\lambda_{2} \leq \frac{1}{\int\left(1-f_{2}\right)^{d t}}, \quad \int\left(\frac{f_{1}}{1-f_{2}}\right)^{d t} \leq \frac{\lambda_{2}}{\lambda_{1}} .
$$

Theorem 3.20. If $F:(a, b) \rightarrow \mathcal{L}^{\otimes}$ is ${ }^{\otimes}$ continuous, then ${ }^{\otimes}$ antiderivative $\Phi(t)$ exists and $\Phi^{\otimes}(t)=F(t)$
Definition 3.21 (Definite ${ }^{\otimes}$ integral). $F:[a, b] \rightarrow \mathcal{L}^{\otimes}$ is said to be ${ }^{\otimes}$ integrable on $[a, b]$ if there exists an IFV $\xi \in \mathcal{L}^{\otimes}$ such that for any partition $\mathcal{P}=\left\{x_{0}, x_{1}, \cdots, x_{n}\right\}$ of $[a, b]$ and for any points $c_{k} \in\left[x_{k}, x_{k+1}\right]$, we have

$$
{ }_{\|\mathcal{P}\| \rightarrow 0} \lim _{k=0}^{n-1} F\left(c_{k}\right)^{\Delta x_{k}}=\xi
$$

In that case, we write $\xi=\int_{a}^{\otimes} F(t)^{d t}$.
Theorem 3.22. Let $F:[a, b] \rightarrow \mathcal{L}^{\otimes}$ and $F=\left(f_{1}, f_{2}\right)$. F is ${ }^{\otimes}$ integrable on $[a, b]$ if and only if f_{1} and f_{2} are integrable on $[a, b]$. Furthermore,

$$
\int_{a}^{\otimes} F(t)^{d t}=\left(\exp \left(\int_{a}^{b} \ln \left(f_{1}\right) d t\right), 1-\exp \left(\int_{a}^{b} \ln \left(1-f_{2}\right) d t\right)\right) .
$$

Theorem 3.23. Let $F:[a, b] \rightarrow \mathcal{L}^{\otimes}$ and $F=\left(f_{1}, f_{2}\right)$. If F is ${ }^{\otimes}$ integrable on $[a, b]$, then

$$
\int_{a}^{\otimes} F(t)^{d t}=\left(\int_{a}^{b}\left(f_{1}\right)^{d t}, 1-\int_{a}^{b}\left(1-f_{2}\right)^{d t}\right) .
$$

Theorem 3.24 (Fundamental theorem of ${ }^{\otimes}$ calculus). Let $F:[a, b] \rightarrow \mathcal{L}^{\otimes}$ be continuous. Then, following statements hold:
(i) The function ψ defined by

$$
\psi(t)=\int_{a}^{\otimes} F(u)^{d u}
$$

is ${ }^{\otimes}$ differentiable on $[a, b]$ and $\psi^{\otimes}(t)=F(t)$.
(ii) If Φ is any ${ }^{\otimes}$ antiderivative of F, then

$$
\int_{a}^{\otimes} F(t)^{d t}=\Phi(b) \oslash \Phi(a) .
$$

Theorem 3.25. Let $F, G:[a, b] \rightarrow \mathcal{L}^{\otimes}$ are ${ }^{\otimes}$ integrable on $[a, b]$ and $\lambda \geq 0$. Then,
(i) $\int_{a}^{\otimes} F^{\lambda}(t)^{d t}=\left(\int_{a}^{\otimes} F(t)^{d t}\right)^{\lambda}$
(ii) $\int_{a}^{\otimes}(F(t) \otimes G(t))^{d t}=\left(\int_{a}^{\otimes} F(t)^{d t}\right) \otimes\left(\int_{a}^{\otimes} G(t)^{d t}\right)$
(iii) $\int_{a}^{\otimes} F(t)^{d t}=\left(\int_{a}^{\otimes} F(t)^{d t}\right) \otimes\left(\int_{c}^{\otimes} F(t)^{d t}\right), \quad a \leq c \leq b$.

Moreover, if $F \oslash G$ exists then

$$
\text { (iv) } \int_{a}^{\otimes b}(F(t) \oslash G(t))^{d t}=\left(\int_{a}^{\otimes} F(t)^{d t}\right) \oslash\left(\int_{a}^{\otimes} G(t)^{d t}\right) .
$$

Theorem $3.26\left({ }^{\otimes}\right.$ Integration by parts). Let $F:[a, b] \rightarrow \mathcal{L}^{\otimes}$ be ${ }^{\otimes}$ differentiable and let $h:[a, b] \rightarrow \mathbb{R}^{+}$be differentiable and nondecreasing. Then,

$$
\int_{a}^{\otimes}\left(F^{\otimes}(t)^{h(t)}\right)^{d t}=\left(F(b)^{h(b)} \oslash F(a)^{h(a)}\right) \oslash \int_{a}^{\otimes}\left(F(t)^{h^{\prime}(t)}\right)^{d t} .
$$

4 Isomorphisms with respect to some basic operations

As seen in Section 2 and Section 3, there are many parallel properties between ${ }^{\oplus}$ calculus and ${ }^{\otimes}$ calculus which can be explained by the structural analogy of $\left(\mathcal{L}^{\oplus}, \oplus\right),\left(\mathcal{L}^{\otimes}, \otimes\right)$ and of $\left(\mathcal{L}^{\oplus}, \star\right),\left(\mathcal{L}^{\otimes}, \odot\right)$ where $\lambda \star \alpha=\lambda \alpha$ and $\lambda \odot \alpha=\alpha^{\lambda}$. In the existing literature of theory of intuitionistic fuzzy calculus, Ai and Xu [1] are the first to account for the above phenomenon from the knowledge of abstract algebra. They showed that $(\mathcal{L}, \oplus) \cong(\mathcal{L}, \otimes)$ and $(\mathcal{L}, \star) \cong(\mathcal{L}, \odot)$ by using the isomorphism $\varphi: \mathcal{L} \rightarrow \mathcal{L}, \varphi(\alpha)=\bar{\alpha}$ where $\bar{\alpha}=\overline{\left(\alpha_{1}, \alpha_{2}\right)}=\left(\alpha_{2}, \alpha_{1}\right)$ is the complement of IFV α. They also showed that $\left(A_{1}, \oplus\right) \cong\left(A_{2}, \oplus\right)$ and $\left(A_{1}, \star\right) \cong\left(A_{2}, \odot\right)$ where A_{1} is the set of intuitionistic fuzzy multiple definite integrals(IFMDI) and A_{2} is the set of multiplicative IFMDIs. Following [1], one can also show that $\left(\mathcal{L}^{\oplus}, \oplus\right) \cong\left(\mathcal{L}^{\otimes}, \otimes\right)$ and $\left(\mathcal{L}^{\oplus}, \star\right) \cong\left(\mathcal{L}^{\otimes}, \odot\right)$ by using the isomorphism $\varphi: \mathcal{L}^{\oplus} \rightarrow \mathcal{L}^{\otimes}$, $\varphi(\alpha)=\bar{\alpha}$. Furthermore, let

$$
\begin{array}{r}
\mathcal{S}_{1}=\left\{F^{\oplus} \mid F:(a, b) \rightarrow \mathcal{L}^{\oplus} \text { is }{ }^{\oplus} \text { differentiable }\right\}, \quad \mathcal{S}_{2}=\left\{F^{\otimes} \mid F:(a, b) \rightarrow \mathcal{L}^{\otimes} \text { is }{ }^{\otimes} \text { differentiable }\right\} \\
\mathcal{S}_{3}=\left\{\int_{a}^{\oplus} F(t) d t \mid F:[a, b] \rightarrow \mathcal{L}^{\oplus} \text { is }{ }^{\oplus} \text { integrable }\right\}, \quad \mathcal{S}_{4}=\left\{\int_{a}^{\otimes} F(t)^{d t} \mid F:[a, b] \rightarrow \mathcal{L}^{\otimes} \text { is }{ }^{\otimes} \text { integrable }\right\}
\end{array}
$$

and let $\varphi_{1}: \mathcal{S}_{1} \rightarrow \mathcal{S}_{2}$ be defined again by $\varphi_{1}(F)=\bar{F}$. Then, we have

$$
\begin{aligned}
\varphi_{1}\left(F^{\oplus} \oplus G^{\oplus}\right) & =\overline{F^{\oplus} \oplus G^{\oplus}} \\
& =\overline{\left(1-\left(1-f_{1}\right)^{*}\left(1-g_{1}\right)^{*}, f_{2}^{*} g_{2}^{*},\right)} \\
& =\left(f_{2}^{*} g_{2}^{*}, 1-\left(1-f_{1}\right)^{*}\left(1-g_{1}\right)^{*}\right) \\
& =\left(f_{2}^{*}, 1-\left(1-f_{1}\right)^{*}\right) \otimes\left(g_{2}^{*}, 1-\left(1-g_{1}\right)^{*}\right) \\
& =\overline{\left(1-\left(1-f_{1}\right)^{*}, f_{2}^{*}\right)} \otimes \overline{\left(1-\left(1-g_{1}\right)^{*}, g_{2}^{*}\right)} \\
& =\overline{F^{\oplus} \otimes \overline{G^{\oplus}}} \\
& =\varphi_{1}\left(F^{\oplus}\right) \otimes \varphi_{1}\left(G^{\oplus}\right)
\end{aligned}
$$

and

$$
\begin{aligned}
\varphi_{1}\left(\lambda \star F^{\oplus}\right) & =\overline{\left(1-\left(\left(1-f_{1}\right)^{*}\right)^{\lambda},\left(f_{2}^{*}\right)^{\lambda}\right)} \\
& =\left(\left(f_{2}^{*}\right)^{\lambda}, 1-\left(\left(1-f_{1}\right)^{*}\right)^{\lambda}\right) \\
& =\lambda \odot\left(f_{2}^{*}, 1-\left(1-f_{1}\right)^{*}\right) \\
& =\lambda \odot \overline{\left(1-\left(1-f_{1}\right)^{*}, f_{2}^{*}\right)} \\
& =\lambda \odot \overline{F^{\oplus}} \\
& =\lambda \odot \varphi_{1}\left(F^{\oplus}\right)
\end{aligned}
$$

which imply $\left(\mathcal{S}_{1}, \oplus\right) \cong\left(\mathcal{S}_{2}, \otimes\right)$ and $\left(\mathcal{S}_{1}, \star\right) \cong\left(\mathcal{S}_{2}, \odot\right)$. In a similar way, $\left(\mathcal{S}_{3}, \oplus\right) \cong\left(\mathcal{S}_{4}, \otimes\right)$ and $\left(\mathcal{S}_{3}, \star\right) \cong\left(\mathcal{S}_{4}, \odot\right)$ can also be obtained.

Acknowledgement

I would like to thank Assoc. Prof. Özer Talo for his careful reading of the manuscript and his valuable comments and suggestions which helped me to improve its quality. I must thank also to anonymous reviewer for his/her valuable comments and suggestions which inspired the results of Section 4.

References

[1] Ai ZH, Xu ZS. Multiple definite integrals of intuitionistic fuzzy calculus and isomorphic mappings. IEEE Transactions on Fuzzy Systems 2018; 26 (2): 670-680. https://doi.org/10.1109/TFUZZ.2017.2687885
[2] Ai ZH, Xu ZS, Lei Q. Limit properties and derivative operations in the metric space of intuitionistic fuzzy numbers. Fuzzy Optimization and Decision Making 2017; 16: 71-87. https://doi.org/10.1007/s10700-016-9239-7
[3] Ai ZH, Xu ZS, Lei Q. Fundamental properties with respect to the completeness of intuitionistic fuzzy partially ordered set. IEEE Transactions on Fuzzy Systems 2017; 25 (6): 1741-1751. https://doi.org/10.1109/TFUZZ.2016.2633369
[4] Atanassov K. Intuitionistic fuzzy sets. Fuzzy Sets and Systems 1986; 20: 87-96. https://doi.org/10.1016/S0165-0114(86)80034-3
[5] Bashirov AE, Kurpınar EM, Özyapıcı A. Multiplicative calculus and its applications. Journal of Mathematical Analysis and Applications 2008; 337 (1): 36-48. https://doi.org/10.1016/j.jmaa.2007.03.081
[6] Deschrijver G, Cornelis C, Kerre EE. On the representation of intuitionistic fuzzy t-norms and t-conorms. IEEE Transactions on Fuzzy Systems 2004; 12 (1): 45-61. https://doi.org/10.1109/TFUZZ.2003.822678
[7] Deschrijver G, Kerre EE. On the relationship between some extensions of fuzzy set theory. Fuzzy Sets and Systems 2003; 133: 227-235. https://doi.org/10.1016/S0165-0114(02)00127-6
[8] Grossman M, Katz R. Non-Newtonian calculus. Lee Press; 1972.
[9] Głąb S. Local and global monotonicity. Real Analysis Exchange 2001; 27 (2): 765-772. https://doi.org/10.14321/realanalexch.27.2.0765
[10] Lei Q, Xu ZS. Derivative and differential operations of intuitionistic fuzzy numbers. International Journal of Intelligent Systems 2015; 30: 468-498. https://doi.org/10.1002/int. 21696
[11] Lei Q, Xu ZS. Fundamental properties of intuitionistic fuzzy calculus. Knowledge-Based Systems 2015; 76: 1-16. https://doi.org/10.1016/j.knosys.2014.11.019
[12] Lei Q, Xu ZS. Intuitionistic fuzzy calculus. Springer; 2017.
[13] Lei $\mathrm{Q}, \mathrm{Xu} \mathrm{ZS}$, Bustince H , Burusco A. Definite Integrals of Atanassov's Intuitionistic Fuzzy Information. IEEE Transactions on Fuzzy Systems 2015; 23 (5): 1519-1533. https://doi.org/10.1109/TFUZZ.2014.2362559
[14] Lewin J, Lewin M. An Introduiction to Mathematical Analysis. Random House, New York, 1988.
[15] Lu J. Is the composite function integrable? American Mathematical Monthly 1999; 106 (8): 763-766. https://doi.org/10.2307/2589023
[16] Sohrab HH. Basic real analysis. Springer, 2014.
[17] Stanley D. A multiplicative calculus. PRIMUS: Problems, Resources, and Issues in Mathematics Undergraduate Studies 1999; 9 (4): 310-326. https://doi.org/10.1080/10511979908965937
[18] Xu ZS. Intuitionistic fuzzy aggregation operations. IEEE Transactions on Fuzzy Systems 2007; 15: 11791187. https://doi.org/10.1109/TFUZZ.2006.890678
[19] Xu ZS, Yager RR. Some geometric aggregation operators based on intuitionistic fuzzy sets. International Journal of General Systems 2006; 35: 417-433. https://doi.org/10.1080/03081070600574353
[20] Yavuz E. On the convergence of sequences in \mathbb{R}^{+}through weighted geometric means via multiplicative calculus and application to intuitionistic fuzzy numbers. Journal of Taibah University for Science 2022; 16 (1): 442-450. https://doi.org/10.1080/16583655.2022.2071046
[21] Zadeh LA. Fuzzy sets. Information and Control 1965; 8: 338-353. https://doi.org/10.1016/S0019-9958(65)90241-X
[22] Zhang S, Xu ZS. Infinite intuitionistic fuzzy series and product. International Journal of Intelligent Systems 2017; 32 (6): 645-662. https://doi.org/10.1002/int. 21870

