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Abstract

Beamforming technique can effectively improve the spectrum utilization of multi-antenna systems, while the dirty-paper coding

(DPC) technique can reduce inter-user interference. In this letter, we aim to maximize the weighted sum-rate under power

constraint in a multiple-input-single-output (MISO) system with the DPC. However, the existing methods of beamforming

optimization mainly rely on customized iterative algorithms, which have high computational complexity. To address this issue,

by utilizing the deep learning technique and the uplink-downlink duality, and carefully exploring the optimal solution structure,

we devise a beamforming neural network (BFNNet), which includes a deep neural network module and a signal processing

module. Besides, we use the modulus of the channel coefficients as the input of deep neural network, which reduces the

input size. Simulation results show that a well-trained BFNNet can achieve near-optimal solutions, while significantly reducing

computational complexity
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Deep Learning Based Beamforming for MISO
Systems with Dirty-Paper Coding

Xingliang Lou, Wenchao Xia, Wanli Wen, Haitao Zhao�,
Xiaohui Li and Bin Wang�

Beamforming technique can effectively improve the spectrum utilization
of multi-antenna systems, while the dirty-paper coding (DPC) technique
can reduce inter-user interference. In this letter, we aim to maximize the
weighted sum-rate under power constraint in a multiple-input-single-
output (MISO) system with the DPC. However, the existing methods
of beamforming optimization mainly rely on customized iterative
algorithms, which have high computational complexity. To address this
issue, by utilizing the deep learning technique and the uplink-downlink
duality, and carefully exploring the optimal solution structure, we devise
a beamforming neural network (BFNNet), which includes a deep neural
network module and a signal processing module. Besides, we use the
modulus of the channel coefficients as the input of deep neural network,
which reduces the input size. Simulation results show that a well-
trained BFNNet can achieve near-optimal solutions, while significantly
reducing computational complexity.

Introduction: Beamforming technique can improve the spectrum
efficiency of multi-antenna systems while the dirty-paper coding (DPC)
technique [1] can reduce inter-user interference. Thus, beamforming
strategies using the DPC technique are a potential way to maximize the
weighted sum-rate under power constraint in a multi-antenna system.
However, finding the optimal beamforming to maximize the weighted
sum-rate is a non-convex problem. There have been some methods
of beamforming design studied in existing literature. For example,
the weighted minimum mean square error (WMMSE) algorithm was
proposed in [2, 3]. Since the uplink-downlink duality was proved in
[4], the downlink sum-rate maximization problem can be solved by
considering the dual uplink problem. [5] has found the achievable rate
of multi-antenna downlink, and [6, 7] have established the conversion
relationship between the uplink and downlink transmission. [8] used
iterative water-filling (IWF) algorithm to find the optimal solution of the
uplink transmission, then with which the optimal solution of downlink
transmission was inferred. Nevertheless, these algorithms are iterative
algorithms in general, which leads to high computational complexity,
especially when the problem size is huge. The delay caused by the
iterative process also makes the beamforming scheme unable to adapt to
high-reliability and low-latency scenarios in 5G/B5G wireless networks.

Deep learning (DL) is regarded as a promising technique which can
balance system delay and performance. This is because DL trains the
neural network model offline, which includes the most computational
complexity, and then predicts the beamforming matrix online with some
linear and nonlinear calculations. [9] used the DL technique to predict
the pilot sequence in a quantized codebook. Different from finding
the optimal solution in a limited space, [9, 10, 11] directly used deep
neural network to predict the beamforming vector, which may cause
significantly high complexity as the numbers of transmitting antennas and
users increase. In [12], the authors proposed a DL framework to solve
three kinds of beamforming optimization problems. This framework
exploits the uplink-downlink duality and the existing optimal solution
structure to reduce the prediction complexity. Using the power budget as
side information, [13] investigated the influence of power constraint on
beamforming optimization. However, these works mentioned above did
not consider the DPC technique which can reduce inter-user interference
and enables better performance.

In this letter, we consider a MISO system with the DPC technique
and formulate a sum-rate maximization problem under a total power
constraint. By utilizing the DL technique and the uplink-downlink
duality, we devise a beamforming neural network (BFNNet), which
includes a deep neural network module that predicts key feature
vectors and a signal processing module that uses expert knowledge to
recover beamforming solutions. Note that the signal processing module
is designed based on the optimal solution structure of the sum-rate
maximization problem. Finally, simulation results show that a well-
trained BFNNet can find near-optimal solutions with a significantly lower
computational complexity.

System Model: We consider a downlink transmission scenario, where
there is a BS with M antennas and K single-antenna users. The channel
between user i and BS is expressed as hi ∈CM×1. Then, the received
signal at user i is given by

yi = hH
i

K∑
k=1

ukxk + ni, (1)

where ui represents the beamforming vector for user i, xi ∼CN (0, 1)
is the transmitted symbol from the BS to user i, and ni ∼CN (0, σ2)

denotes the additive Gaussian white noise (AWGN) with zero mean and
variance σ2.

Assume a pre-coding order K...1 when using the DPC. Because
decoding/encoding is performed in sequence, the interference of user k

(k > i) has no effect on the demodulated received SINR of user i. Thus,
the received SINR at user i can be expressed as

SINRDL
i =

|hH
i ui|2∑i−1

k=1 |h
H
i uk|2 + σ2

. (2)

Define U= [u1,u2, ...,uK ], then the downlink sum-rate maximization
problem under power constraint is formulated as

P1:max
U

K∑
i=1

log2(1 + SINRDL
i )

s.t.

K∑
i=1

||ui||2 ≤ Pm,

(3)

where Pm is the power budget. Note that, P1 is a challenging non-
convex problem, which can be solved using the WMMSE algorithm
or the uplink-downlink duality based algorithms [6, 7]. But these
algorithms relying on iterative processes are difficult to meet the
implementation requirements. Thus, we propose to solve it using a DL-
based beamforming framework, which will be described in next Sections.

Expert Knowledge: Before giving the DL based beamforming
framework, we first establish a concept of expert knowledge [4]
for the purpose of reducing prediction complexity.

Lemma 1: The achievable uplink sum-rate is equal to the achievable
downlink sum-rate, i.e.,

CDL
sum =CUL

sum, (4)

where

CDL
sum =max

Ũ,p

K∑
i=1

log2(1 + SINRDL
i )

s.t. ||p||1 ≤ Pm,

||ũi||2 = 1,∀i,

(5)

and

CUL
sum =max

Ũ,q

K∑
i=1

log2(1 + SINRUL
i )

s.t. ||q||1 ≤ Pm,

||ũi||2 = 1,∀i,

(6)

with

SINRDL
i =

pi|hH
i ũi|2∑i−1

k=1 pk|h
H
i ũk|2 + σ2

, (7)

and

SINRUL
i =

qi|ũH
i hi|2∑K

k=i+1 qk|ũ
H
i hk|2 + σ2

, (8)

in which Ũ= [ũ1, ũ2, . . . , ũK ] is the normalized beamforming, p=

[p1, ..., pK ]T and q= [q1, ..., qK ]T are downlink and uplink power
allocation vectors, respectively.

Proof: The proof is similar to the proof of Theorem 2 in [4] and thus
is omitted here. In addition, [4] also proves that the optimal normalized
beamforming of the uplink is also optimal for the downlink. ■
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Note that the problem in (5) equals to P1 with U= Ũ
√
P, where P=

diag(p). It is well known the uplink problem in (6) is easier to handle.
Therefore, we can first obtain the optimal uplink power vector q∗ and the
normalized beamforming matrix Ũ∗ of the uplink problem in (6), then
with which infer the optimal downlink power vector p∗, finally obtain
the optimal beamforming matrix U∗ of problem P1.

To find solutions to (6), we first simplify (6) as

CUL
sum = max

Ũ,||q||≤Pm,

K∑
i=1

log2(1 + SINRUL
i )

= max
||q||≤Pm

log2 |I+
1

σ2

K∑
k=1

qkhkh
H
k |, (9)

where the second equation is obtained due to ||ũi||2 = 1, ∀i. The problem
in (9) can be solved using the IWF algorithm [8] until convergence.
Knowing the optimal q∗, the optimal beamforming vectors are given as
the MMSE solutions [3], i.e.,

ũ∗
i =

(σ2I+
∑K

k=i+1 q
∗
khkh

H
k )−1hi

||(σ2I+
∑K

k=i+1 q
∗
khkh

H
k )−1hi||2

. (10)

Then, we can find the optimal power allocation vector p∗ of the
downlink problem in (5) according to the following lemma.

Lemma 2: Given the optimal transmit power vector q∗ and beamforming
matrix Ũ∗ of the uplink problem in (6), then we can obtain the optimal
transmit power vector p∗ of the downlink problem in (5) as

p∗1 =B
−1/2
1 q∗1B

−1/2
1 ,

...

p∗i =B
−1/2
i A

1/2
i q∗i A

1/2
i B

−1/2
i ,

...

p∗K =A
1/2
K q∗KA

1/2
K .

(11)

where Bi = σ2 +
∑K

k=i+1 q
∗
kũ

∗H
i hkh

H
k ũ∗

i and Ai = σ2 +∑i−1
k=1 p

∗
kh

H
i ũ∗

kũ
∗H
k hi represent the interference experienced by

user i in the uplink and the interference experienced by user i in the
downlinks, respectively.

Proof: The achievable rate of user i in the uplink is given by

RUL
i = log2(1 +B−1

i q∗i ũ
∗H
i hih

H
i ũ∗

i ), (12)

Using matrix knowledge, we have the simplified formula as

RUL
i =

log2(1 +B
−1/2
i ũ∗H

i hiA
−1/2
i A

1/2
i q∗i A

1/2
i A

−1/2
i hH

i ũ∗
iB

−1/2
i ),

(13)
Treating B

−1/2
i ũ∗H

i hiA
−1/2
i as the effective channel of the system, we

flip the channel and get

RUL
i =

log2(1 +A
−1/2
i hH

i ũ∗
iB

−1/2
i A

1/2
i q∗i A

1/2
i B

−1/2
i ũ∗H

i hiA
−1/2
i ).

(14)
Now, consider the achievable rate of user i in the downlink and we have

RDL
i = log2(1 +A−1

i hH
i ũ∗

i p
∗
i ũ

∗H
i hi)

= log2(1 +A
−1/2
i hH

i ũ∗
i p

∗
i ũ

∗H
i hiA

−1/2
i ),

(15)

By setting the downlink transmit power as in (11), then we have RUL
i =

RDL
i . [6] has proved that

∑K
i=1 q

∗
i =

∑K
i=1 p

∗
i . ■

Note that p∗i only depends on p∗1, ..., p
∗
i−1, thus the transmit power can

be calculated sequentially in ascending order.

BFNNet Structure: The proposed BFNNet for the sum-rate
maximization problem is shown in Fig. 1, which includes a deep
neural network module and a signal processing module.

The deep neural network module includes an input layer, multiple
hidden layers, and an output layer. The channel coefficients
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Fig. 1. BFNNet for the sum-rate maximization problem.

H= {hT
1 ,hT

2 , ...,hT
K}T ∈CMK×1 is converted to a vector

[ℜ(H),ℑ(H)]T ∈C2×MK as the first layer input, where ℜ(H)
and ℑ(H) contain the real and imaginary parts of each element in h,
respectively. The fully connected layers are used as hidden layers to
perform feature extraction from the input data.

The signal processing module is to restore the beamforming matrix
based on the key features predicted by the output layer. Due to the
existence of output prediction errors, the output of output layer is almost
impossible to guarantee to meet the power constraints. Therefore, the
result q̂ of the output layer is normalized in the power normalization layer
as q̂∗ = Pm

||q̂||1
q̂. Finally, we recovery the downlink beamforming matrix

U using the conversion layer, which includes the following process:

1 Calculate ũ∗
i using (10).

2 Calculate p∗ using (11).
3 Output the downlink beamforming vectors u∗

i =
√

p∗i ũ
∗
i ,∀i, as the

final results.

Simulation Results: In this section, we use the scene in [12] to conduct
some numerical simulations to evaluate the performance of the proposed
BFNNet. In order to train the deep neural network module, we use
the IWF algorithm [8] to generate 20000 training samples and 5000
testing samples, respectively. In our simulations, We use a network with
three hidden layers, one input layer and one output layer for the deep
neural network module. The first hidden layer contains 256 neurons
and the second hidden layer contains 128 neurons and the third hidden
layer contains 64 neurons. For comparison, several baseline solutions
are introduced, including zero-forcing (ZF) beamforming, regularized
ZF (RZF) beamforming [14], and the WMMSE algorithm with the RZF
initialization [2]. Moreover, the DPC used for all the baseline solutions.

0 5 10 15 20 25 30 35 40

P
m
 (dBm)

0

5

10

15

20

25

30

35

40

C
a

p
(b

p
s
/H

z
)

RZF

WMMSE

ZF

IWF

BFNNet

Fig. 2 Sum-rate performance averaged over 5000 samples under
{K = 4,M = 4}.

Fig. 2 shows that with the increase of normalized transmission power,
the sum-rate performance of all solutions are improved. We observe
that the performance of the BFNNet solution is very close to the IWF
algorithm, and better than the WMMSE algorithm which can find the
locally optimal solution to the sum-rate maximization problem. This is
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because that the BFNNet is trained using the samples generated by the
IWF algorithm which can achieve the optimal solution to problem P1.

Fig. 3 shows the sum-rate performance of the five beamforming
solutions, where Pm = 30 dBm and M =K. In Fig. 3(a), as the number
of transmitting antennas increases, the sum-rate performance of the five
schemes increases at the same time and the BFNNet solution outperforms
the other solutions except the IWF algorithm. In addition, as the number
of transmit antennas increases, the performance gap becomes greater.
In Fig. 3(b), the computational complexity, in terms of the execution
time, of the BFNNet solution is higher than that of the ZF beamforming
solution as well as the RZF beamforming solution. The reason is that
ZF beamforming and RZF beamforming solutions do not require any
iterative process, the BFNNet solution needs to perform neural network
operations and conversion processes. The WMMSE algorithm as well
as the IWF algorithm, consumes more time than the BFNNet solution
due to its iterative process. The above observations validate that the
BFNNet solution provides a good balance between system performance
and computational complexity to the sum-rate maximization problems
under a total power constraint.
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Fig. 3 Comparison of five different beamforming solution: (a) sum-rate
performance and (b) execution time of each sample averaged over 5000
samples under {K =M,Pm = 30 dBm}.

Conclusion: In this letter, we considered the MISO system with the
DPC and formulated the problem of sum-rate maximization under a
total power constraint. By utilizing the DL technique and the uplink-
downlink duality, and carefully exploring the optimal solution structure,
we devise the BFNNet to find the near-optimal solutions. The simulation
results showed that, compared with the existing algorithms, the BFNNet

has achieved a good balance between performance and computational
complexity.
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