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Abstract

Decreased serotonin (5-HT) has long been linked to increased aggressive behavior. Tryptophan hydroxylase (TPH) is an enzyme

involved in 5-HT synthesis and para-chlorophenylalanine (pCPA) inhibits its activity. TPH2 mRNA expression presence has

been mainly described in the raphe complex rodent’s brain. 5-HT-producing neurons in the raphe project their axons to olfactory

bulb, considered to be a relevant structure in rodents for establishing social interactions, including aggressive behavior. However,

the relationship between olfactory bulb and aggression in a pCPA 5-HT depletion model has not been studied. Moreover,

receptor subunit GABA α1 has been found in the olfactory bulb and 5-HT depletion could affect GABAA receptor expression

in different brain areas. Thus, our aim was to evaluate aggressive behavior, serotonergic activity, the TPH2 and GABAA

α1 mRNA expression, in the olfactory bulb, after a single pCPA (300mg/kg) or vehicle i.p. administration in male rats.

Aggression was tested using a resident intruder test. Sequentially, the olfactory bulb was obtained, and neurochemical and

molecular techniques were used to measure 5-HT, 5-HIAA, TPH2, and GABAA α1 mRNA expression respectively. pCPA

administration increased aggressive behavior parameters, without affecting locomotion, nonsocial or social interaction. 5-HT

levels were decreased after pCPA administration, as well as its turnover rate, although there were no significant changes in

5-HIAA. TPH2 mRNA expression was increased. GABAA α1 mRNA expression was increased in the olfactory bulb. Our

results apport evidence to the serotonergic deficiency hypothesis of aggression and highlight olfactory bulb role as an important

structure for understanding aggressive behavior neurobiological complexity.

Introduction

Aggressiveness is considered a social behavior since it requires at least two subjects, and it can be either
defensive or offensive. Among primates, humans and rodents there are similarities in aggressive neurobiology
(Takahashi et al., 2011; Niederkofler et al., 2016). The aggressive spectrum displayed depends on the specie,
the sex, the stimuli, and the contextual contingency (Niederkofler et al., 2016; Takahashi et al., 2011;
Takahashi & Miczek, 2014). According to the qualitative and quantitative features aggressiveness in rodents,
could be considered as adaptive or maladaptive (Muroy et al., 2016). In their natural environment, rodents
are strongly aggressive to defend their food resources, reproductive possibilities and territory (Takahashi et
al., 2012). The resident vs. intruder test (RVI) is the most validated paradigm to measure this kind of
interaction (Takahashi & Miczek, 2014).

Serotonin (5-HT) plays an important role in social behavior. Among others, modulates several behaviors,
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such as copula, postnatal care, adolescent social playing, maternal and territorial aggressiveness (Berger
et al., 2009; Buhot et al., 2000; Mittal et al., 2017; Strüder & Weicker, 2001; Takahashi et al., 2012).
Many systems are involved in aggressive behavior (Chamero et al., 2011; Carrillo et al., 2009; Duke at al.,
2013) Although, serotonergic deficiency hypothesis establish an inverse relationship between the serotonergic
system activity and aggressive behavior (Cervantes & Delville, 2009; Kravitz & Huber, 2003; Miczek et al.,
2004; Mongillo et al., 2014; Takahashi et al., 2011; Niederkofler et al., 2016; van Erp & Miczek; 2000). In
rodent models, there are several ways to generate aggressiveness by decreasing 5-HT: neurotoxicity, olfactory
bulbectomy, social isolation, and pharmacological depletion (Hritcu et al., 2007; Jéquier et al., 1967; Koe
& Weissman, 1966; Vergnes et al., 1988). Para-chlorophenylalanine (pCPA) is an irreversible TPH enzyme
inhibitor. An intraperitoneal pCPA administration causes an acute decrease within the central serotonergic
system (Jáquier, 1967; Hritcu et al., 2007) and it has been used to generate aggression models (Jáquier,
1967; Keleta et al., 2007; Kubala et al., 2008).

5-HT producing neurons in the raphe complex project their axons to the cortex, amygdala, hippocampus,
basal ganglia, thalamus, hypothalamus, and olfactory bulb (OB) (Lesch & Waider, 2012; Mazerolle et al.,
2016). OB is an important serotonergic innervated structure (Huang et al., 2017; McLean & Shipley, 1987;
Steinfeld et al., 2015) and the main sensory information used by rodents to start social interactions, such
as aggressive behavior, is olfaction (Guillot & Chapouthier, 1996). Moreover, Lucki (1998) showed that
5-HT synthesis inhibition in OB rats caused increased aggressiveness, whereas enhancement transmission
suppressed aggressive behavior. First sensory center that processes odor information is the OB, a structure
that has been considered when studying territorial aggression (Bester-Meredith et al., 2022). Nonetheless,
the relationship between OB and aggression in a pCPA 5-HT depletion model has not been studied.

5-HT is synthesized through the tryptophan hydroxylase (TPH) enzyme (Khan & Thomas, 2004). TPH gene
has two isoforms (Walther et al., 2003), while the TPH1 isoform is mostly expressed outside the blood-brain
barrier, the TPH2 isoform is expressed in the cerebral tissue and its mRNA expression has so far been mostly
described in raphe complex neurons (Malek et al., 2005; Patel et al., 2004; Pelosi et al., 2015; Walther et al.,
2003). A human brain post-mortem study, showed TPH2 expression in the cortex, thalamus, hypothalamus,
hippocampus, amygdala, cerebellum, and raphe nuclei (Zill et al., 2007). A study using catfishes (Raghuveer
et al.; 2011) reported TPH2 mRNA expression in OB. Furthermore, Patel et at., (2004) showed that TPH2
mRNA expression in rat brain revealed a very weak signal in the OB.

Principal neurons and local interneurons in OB have GABAA receptors with different subunit components
(Panzanelli, 2005). Particularly, the presence of GABAA receptor subunit α1 mRNA in the OB has been
described (Zhang et al., 1991) and is the most common GABAA α subunit in adult rodent neurons (Bosman
et al., 2002). In addition, it has been reported that 5-HT depletion could affect GABAA receptor expression
in different brain areas (Si et al., 2022; Wang et al., 2020).

Our aim was to evaluate aggressive behavior, serotonergic activity in the OB, TPH2, and GABAA α1 mRNA
expression in the OB, after a single pCPA i.p administration in male rats.

Methods and Materials

Subjects and housing

Animals were housed in a temperature-controlled animal room (22 +/- 2 °C) on a 12 h light/dark cycle (light
on from 07:00 to 19:00), with artificial light (60-70 lumens). Food and water were available ad libitum.

RVI test requires a resident subject and an intruder. Residents were Sprague-Dawley male rats of 60 days
and 350 g (average weight). Intruders were Sprague-Dawley male rats of 50 days and 280 g (average weight).
Resident subjects were divided into 2 groups (n=10). Experimental subjects were injected with pCPA and
returned to their home cage for 6 days; control subjects were injected with a vehicle and returned to their
home cage, at the same time. After the RVI test residents were euthanized and OB were removed for posterior
analysis (Koolhaas et al., 2013). Intruder subjects remained housed in groups of 3 until the test and they
were euthanized after it.
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Experimental Design

Between 15:00h and 18:00h animals from the experimental groups received a single pCPA (Sigma Aldrich,
2015) i.p. injection (dose 300 mg/kg), solved in sterile saline. After pCPA administration residents were
housed individually in their homecages until RVI test day, which was performed six days later. Then animals
were euthanised and OB were obtained for neurochemical and genetic analysis.

Behavioral Testing

To assess aggressive behaviors, RVI was used. RVI test was applied according to Koolhaas et al. (2013)
with modifications. Briefly, the RVI test consists of the interaction of two subjects: the experimental animal,
named the resident, and the interaction animal, named the intruder. RVI test was performed 6 days after
pCPA administration, between 15:00h and 18:00h (Corthell et al., 2013). In order to verify that residents
were heavier than intruders, the animals were weight before the test. The test was carried out in a wood
box with the wood chips from the resident home cage. The box was cleaned after each test, with ethanol
(10%) (Casas et al., 2011). All the tests were recorded with the Everio G-series GZ-MG330 JVC camera,
from above the field. Behavioral analysis was hand scored watching the videos in blind.

RVI test total time was 900 seconds. RVI test total time was divided into two phases, the adaptation
phase, and the interaction phase. The first 300 seconds were considered the resident adaptation phase to
the environment. 600 seconds remaining were considered the interaction phase. At the beginning of the
interaction phases, an intruder was placed on the opposite side of the resident at the end of the adaptation
phase and the interaction behaviors were measured. We evaluated the animal locomotor activity as the travel
distance during the adaptation phase. In the interaction phase, we evaluated four main groups of behaviors:
1-nonsocial activity, as time grooming, sniffing, and sitting; 2-social activity as the time of heterogrooming
and heterosniffing; 3-aggressive behavior, as an event of the chase, moving towards, upright posture and
false mount, bite, clinch, clinch attack, lateral threat and keep down were evaluated in the resident during
interaction phase; and 4-aggressive latency, as the time preceding the first aggressive behavior. The criteria
to discontinue resident interactions with the intruders were bite to delicate body parts e.g. belly, throat and
paws.

RNA extraction and Real Time PCR analysis

Total RNA from all left and right OB tissue was extracted using the TRIzol reagent, according to the man-
ufacturer specifications (Invitrogen-Life Technologies, Buenos Aires, Argentina.). mRNA integrity samples
were confirmed by 1% agarose gel electrophoresis and staining with Sybr Gold (Invitrogen-Life Technologies,
Buenos Aires, Argentina). 10 μg

The mRNA levels of TPH2 and GABAA α1 were estimated by RT real-time PCR with a Corbett Rotor-Gene
6000 Real-Time Thermocycler (Corbett Research Pty Ltd (Sydney, Australia) using rat-specific primers and
reaction conditions described in Table 1. The PCR reactions were performed using a Corbett Rotor-Gene
6000 Real-Time Thermocycler using Eva-GreenTM (Biotium, Hayward, CA) in a final volume of 20 μL.
The reaction mixture consisted of 2 μL of 10×PCR Buffer, 1 μL of 50 mM MgCl2, 0.4 μL of 10 mM dNTP
Mix (Invitrogen), 1 μL of 20× Eva Green, 0.25 μL of 5 U/μL Taq DNA Polymerase (Invitrogen) 0.1 μL
of each 2.5 mM primer (forward and reverse primers) and 10 μL of diluted cDNA. The PCR reactions
were performed under the conditions described in Table 1. Melt curve analysis was used to check that a
single specific amplified product was generated. Real-time quantification was monitored by measuring the
increase in fluorescence caused by the binding of EvaGreen dye to double-strand DNA at the end of each
amplification cycle. According to the manufacturer protocol, the relative expression was determined using
the Comparative Quantitation method of normalized samples about the expression of a calibrator sample
(Pfaffl, 2001). Each PCR run included a no-template control and a sample without reverse transcriptase.
All measurements were performed in duplicate. The reaction conditions and quantities of cDNA added were
calibrated such that the assay response was linear concerning the amount of input cDNA for each pair of
primers. RNA samples were assayed for DNA contamination by performing the different PCR reactions
without prior reverse transcription. Relative levels of mRNA were normalized to the S16 reference gene.
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The real-time PCR products were analyzed on 2% agarose gels containing 0.5 mg/mL ethidium bromide
and a unique band of the approximately correct molecular weight corresponded with a unique peak in melt
curve analysis.

The Real-Time PCR reactions were carried out for 40 cycles with an initial step of 5 min at 95 ºC followed
by a three-step scheme: 30 s at 95 ºC, 30 s at the annealing temperature shown above for each primer pair,
and a final step at 72 ºC for 30 s. Primer’s design was done with Beacon Designer 7.9 software.

5-HT and 5-HIAA content determination by HPLC in the olfactory bulb

All OB tissue homogenization was performed according to Chi et al., 1999. Briefly, the tissue was collected
in 400 μl of 0.2 N perchloric acid and then homogenized in a glass-glass homogenizer. The homogenate
was centrifuged at 12000×g for 15min at 4°C (Hermle LaborTechnik GmbH, model Z233MK-2) and the
supernatant was injected into a high-performance liquid chromatography (HPLC) instrument coupled to
electrochemical detection, to measure 5-HT, 5-HIAA. The pellet was resuspended in 1N NaOH for protein
quantification by the Bio-Rad Protein Assay (Bio-Rad Laboratories, Inc., Richmond, CA, USA) using bovine
serum albumin as standard. The contents of 5-HT and 5-HIAA were expressed as picograms per milligram
of total protein. 10 μl of each supernatant were injected into the HPLC system with the following setting:
A isocratic pump, (model PU-2080 Plus, Jasco Co. Ltd., Tokyo, Japan), a UniJet microbore column (MF-
8912, BAS, West Lafayette, IN, USA), and an amperometric detector (set at 650 mV, 0.5 nA; model LC-4C,
BAS, West Lafayette, IN, USA). The mobile phase, containing 0.05 M NaH2PO4, 1.0 mM 1-octane sulfonic
acid, 0.27 mM EDTA, 1.0% (v/v) tetrahydrofuran, and 4.0% (v/v) acetonitrile (CH3CN) (pH adjusted to
2.6) was pumped at a flow rate of 100μl/min. The level of neurotransmitters and metabolites was assessed
by comparing the respective peak area and elution time of the sample with a reference standard. The
quantification was performed using a calibration curve for each neurotransmitter (Program ChromPass,
Jasco Co. Ltd., Tokyo, Japan). Under these experimental conditions, retention times were 33.3 for 5-HT
and 25.6 for 5-HIAA. Standards, EDTA, and 1-octane sulfonic acid were purchased from Sigma-Aldrich, Inc.
(St Louis, MO, USA), and all other reagents were of analytical grade.

Statistical Analysis

All data were analyzed by t-test. Shapiro-Wilks test was previously performed on each group to determine
normal distribution. The significance level was set at p <0.05 for all statistical tests. Data were expressed
as means ± S.E.M of 10 rats per experimental group. All data were analyzed using Statistica’s software
application (StatSoft, Krakow, Poland).

Results

Behavioral Assays

The pCPA effect in behavioral evaluation. We found that pCPA single administration, did not affect travel
distance (p= 0.3296; t= 1.004; df=18) (Table 2) when compared to the control group. Moreover, pCPA did
not affect nonsocial activity (p= 0.1746; t= 1.417; df= 18) and social activity (p= 0.1957; t= 1.347; df= 18)
(Table 2). However, pCPA induced a significant increase in aggressive behavior with respect to the control
group (p <0.001) (Figure 1-A); and significantly decreased aggressive latency (p <0.0001) (Figure 1-B).

5-HT and 5-HIAA content determination by HPLC in the olfactory bulb

The pCPA effect in neurochemical assays in the OB. We found that pCPA single administration, decreased
significantly 5-HT concentration (p <0.01) and serotonergic turnover (5-HIAA/5-HT) (p <0.05) in OB;
5-HIAA concentration was not affected (p= 0.7982; t= 0.2591, df= 18) (Table 3).

Real Time PCR analysis

The pCPA effect on TPH2 and GABAAα mRNA expression in the OB. We found that pCPA single admin-
istration significantly increased (p<0.05) TPH2 mRNA expression in OB (Figure 2-A). Also, it significantly
increased GABAAα1 mRNA expression (p<0.05) in OB (Figure 2-B).
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Discussion

The initiation, maintenance, and termination of aggressive behavior activates complex neurobiological cir-
cuits, among which the serotonergic system is strongly involved (Niederkofler et al., 2016; Takahashi &
Miczek 2014). In the current study, using a RVI paradigm, we studied aggression behavior induced by pCPA
and the relation with serotonergic activity, TPH2 and GABAAα1 mRNA expression in the OB.

It is well accepted that when evaluating social interaction, it becomes necessary to discard locomotor activity
alterations. (Miczek et al., 2013; Takahashi & Miczek 2014). A locomotor activity alteration in the resident
could prevent the correct measurement of aggressive behavior, in particular the aggression latency parameter.
Interestingly, 5,7-dihydroxytryptamine lesions, used to deplete central 5-HT did not affect locomotor activity
(Vergner et al., 1988; Hole et al., 1977). Nonetheless, previous works utilizing pCPA 1000 mg/kg doses found
a substantial decrease in locomotor activity (Dringenberg et al., 1995; Matte & Tornow, 1978). Significantly
reduced locomotor activity was also seen following chronic treatment with lower dosage of pCPA (100 mg/kg)
(Keleta et al., 2007 Kubala et al., 2008). Our data show that pCPA i.p. did not change locomotor activity.
It is possible that an acute administration of pCPA at lower doses does not affect this parameter.

According to Koolhaas et al. (2013) and Takahashi & Miczek (2014), to establish an animal aggressive
behavior model, species specific qualitative and quantitative parameters of aggression must be considered.
Therefore, when establishing the behaviors to evaluate, we took into account parameters that reconciled both
characteristics. We measured aggressive behavior as a quantitative parameter and aggressive latency as a
qualitative one (Miczek et al., 2013). Stunder et al. (2015) show decreased aggressive latency, as a parameter
of desadaptative aggression, and nonaggressive behaviors in mice treated with pCPA. Our data show that
the administration of pCPA increased aggressive behavior and decreased aggressive latency. These findings
are consistent with others, in which central 5-HT depletion caused aggression increased (Valzelli et al., 1981;
Vergner et al., 1986). This might indicate that our model, with pCPA, was effective to induce aggression,
both in a qualitative and quantitative sense. Furthermore, we did not find changes in nonsocial activity and
social activity after pCPA administration. 5-HT low-levels might affect social interactions, e.g. in studies
where social isolation is used to produce aggressive behavior models (Goodell et al., 2017) or in maternal
aggression models (Toth et al., 2012). Thus, this result could be explained by our model and experimental
design.

Serotonergic innervation originating in the raphe nuclei towards the different brain structures has one of
its main synaptic center in the OB (Locki 1985; Steinfeld et al., 2015). Our results show that after pCPA
administration, the concentration of 5-HT in the OB was significantly decreased pointing to higher aggressive
behavior. In this way, our model provides evidence to the serotonergic deficiency hypothesis and aggression
(Kravitz & Huber, 2003; Miczek et al., 2004; Mongillo et al., 2014; Takahashi et al., 2011; Niederkofler et al.,
2016). In addition, 5-HT modification has been associated with changes in its major metabolite, 5-HIAA
(Stenfors & Ross, 2004). In humans (Sharma et al., 2021; Stanley et al., 2000) and monkeys (Zajicek et
al., 2000), higher aggressiveness and low cerebrospinal 5-HIAA levels were associated. Furthermore, mutual
decreased 5-HT and 5-HIAA were observed in models of pCPA aggression (Keleta et al., 2007; Kubala
et al., 2008). However, the decrease in 5-HT concentration, following local or systemic administration of
substances that affect its release from nerve terminals, does not always affect 5-HIAA concentration in the
same way (Auerbach et al., 1989; Kalén at al., 1988). In our model, pCPA administration did not cause
significant modifications in the concentration of 5-HIAA. It is possible that systemic depletion did not affect
the metabolite as well as 5-HT, because others (Dringenberg et al., 1995; Matte & Tornow, 1978) administered
higher doses or performed a chronic treatment (Keleta et al., 2007; Kubala et al., 2008). We also showed that
serotonergic metabolism (5-HIAA/5-HT) decreased in treated animals, which is in accordance with previous
reported data (Hritcu et al., 2007; Koe & Weissman, 1966). These findings suggest that pCPA may cause
alterations in the OB serotonergic innervation, enhancing aggression in our model.

Since pCPA animals exhibited increased aggression and 5-HT decreased, we hypothesized that these diffe-
rences are accompanied by differences in a key serotonergic gene, TPH2. TPH2 mRNA expression is fre-
quently found in raphe complex neurons in rodents (Malek et al., 2005; Patel et al., 2004; Pelosi et al., 2015;
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Walther et al., 2003) and a very low expression has been found in other rats’ brain areas, (Patel et al., 2004).
Interestingly, we found that pCPA animals showed increased TPH2 mRNA expression in the OB. Therefore,
our results provide evidence for TPH2 mRNA expression presence in the OB. It has been also found that
after postnatal programming with pCPA, TPH2 mRNA expression decreases in raphe nuclei (Trujillo et al.,
2021). In this way, despite that our results are opposite they could be indicating a compensatory mechanism
in a brain area receiving 5-HT depleted innervation.

In addition, pCPA decreases the protein expression of GABAA α1 receptors (Wang et al., 2020) and
GABAAα1 is expressed in OB (Panzanelli et al., 2005). Interestingly, our results showed a higher ex-
pression of GABAAα1 subunit after pCPA administration. These results may indicate increased levels of
GABAAα1 subunit mRNA in OB, due to its high synthesis demand caused by the serotonergic decrease as
a consequence of pCPA administration.

Conclusion

In this work, we studied aggressive behavior in a rat male model. We concluded that a single and acute
pCPA administration produces an increase in aggressive behavior, without affecting locomotion, nonsocial
and social activity. We study the OB, a highly innervated serotonergic and GABAergic structure. The pCPA
single and acute administration affects the serotonergic activity in OB. We verify TPH2 mRNA expression
presence in OB. Moreover, increased GABAAα1 subunit expression mRNA in the OB, may suggest a high
synthesis demand, as an alterat result in the OB serotonergic function. Thus, our data provide evidence
for the serotonergic deficiency hypothesis of aggression and show OB as a relevant structure to understand
neurobiological complexity in aggressive behavior.

Compliance with Ethical Statement

All procedures were made following the Guide for the Care and Use of Laboratory Animals as adopted and
promulgated by the National Institutes of Health and the EU (Eighth Edition, 2011) and approved by the
Comité Institucional para el Cuidado y Uso de Animales de Laboratorio de la Universidad Nacional de Cuyo
(CICUAL UNCuyo) (Aval 82/2016), Mendoza, Argentina.

Limitations

Other brain areas relate to aggressive behavior are not included in the present study.

Data Accessibility Statement

The authors confirm that all data underlying the findings are fully available without restriction. All relevant
data are included in the paper.
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Figures and Tables Legends

Table 1: Real Time PCR Primer Design.

Specific primers designed for rat gene sequence amplification were selected for real-time PCR assay.

Table 2: pCPA effects in locomotor activity, Nonsocial activity and Social activity.

Locomotor activity results are expressed as mean ± SEM of distanced travel in centimeters. Nonsocial
activity and social activity results are expressed in mean ± SEM of time in seconds. Control (N=10) and
pCPA (N=10).

Table 3: pCPA effects in 5-HT, 5-HIAA and turnover %5-HIAA/5-HT.

Content determination by HPLC in the OB 5-HT and 5-HIAA results are expressed in ± SEM of pg/mg
protein. Turnover 5-HIAA/5-HT results are expressed in mean ± SEM of the 5-HIAA/5-HT pg/mg protein
percentage ratio. Control (N=10) and pCPA (N=10).

Figure 1: A- pCPA effects in Aggressive Behavior. Results are expressed in the mean ± SEM of several
events. B- pCPA effects in Aggressive Latency. Results are expressed in mean ± SEM of latency in time of
the first aggressive behavior. Control (N=10) and pCPA (N=10). ***p <0.001; ****p <0.0001 for “t” Test.

Figure 2: A- pCPA effects in TPH2 gene expression in the OB. Results are expressed in mean ± SEM
of TPH2 relative expression units. B- pCPA effects GABAAα1 mRNA expression in the OB. Results are
expressed in mean ± SEM of GABAAα1 relative expression units. Control (N=10) and pCPA (N=10). *p
<0.05 for t-Test.
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