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Abstract

This study applied the ZZ transformation and the new iterative transform technique to obtain a fascinating explicit pattern for

outcomes of the biological population model. It makes important projections and helps us understand the dynamical method of

demographic fluctuations in biological population models. Additionally, ZZ transforms combine various other transformations

that already exist. We used a complex fractional transformation to deal with a fractional partial differential equation and a

new iterative transform approach to study the nonlinear equations in examine the closed form solutions. In mathematics, the

number of equations and their solutions that have been discovered and associated with different innovative properties of the

proposed model. A variety of images and tabulations are provided to provide extra context for these notions. The suggested

technique accuracy and efficiency imply that it can be applied to a wide range of nonlinear evolutionary problems.
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abstract

This study applied the ZZ transformation and the new iterative transform
technique to obtain a fascinating explicit pattern for outcomes of the biologi-
cal population model. It makes important projections and helps us understand
the dynamical method of demographic fluctuations in biological population
models. Additionally, ZZ transforms combine various other transformations
that already exist. We used a complex fractional transformation to deal with
a fractional partial differential equation and a new iterative transform ap-
proach to study the nonlinear equations in examine the closed form solutions.
In mathematics, the number of equations and their solutions that have been
discovered and associated with different innovative properties of the proposed
model. A variety of images and tabulations are provided to provide extra con-
text for these notions. The suggested technique accuracy and efficiency imply
that it can be applied to a wide range of nonlinear evolutionary problems.

KEYWORDS:
ZZ transform, new iterative method, biological population model, analytical solution,

atangana-Baleanu fractional derivative

1 INTRODUCTION

Fractional calculus (FC), which has been there since classical calculus, has recently received much interest due to its
connections to basic ideas. Leibniz and L’Hospital were the first to present fractional calculus, but it has since gained
popularity among academics due to its wide range of applications. Following that, it was widely used to examine a
variety of occurrences. But several researches emphasized the disadvantages of using this operator specifically, the
physical importance of the starting condition and the derivative of a non-zero constant. Then Caputo introduced a
novel fractional operator that overcame the earlier limitations. The bulk of models explored and analyzed under the
FC framework use the Caputo operator. Some basic works of fractional calculus on different aspects are given by
Momani and Shawagfeh, Podlubny, Jafari and Seifi, Kiryakova, Oldham and Spanier, Miller and Ross, Diethelm et
al., Trujillo, Kilbas and Kemple and Beyer1,2,3,4,5.
Biologists consider emigration and dispersal to be crucial processes in the establishment of species populations.

Three independent position functions Φ = (ζ, χ) in the area C with ϑ6 are utilised to represent the transmission
of a biological species. Dispersion velocity u(Φ, ϑ), population supply p(ζ, ϑ), population density v(ζ, ϑ) are the
three variables. p(ζ, ϑ) signifies the rate at which birth and death produce individuals per unit volume, while v(ζ, ϑ)

0Math. Methods Appl. Sci.: MMAS, Mathematical Methods in the Applied Sciences



2 Moez Benhamed et al

represents the number of people. In addition, u(ζ, ϑ) signifies the average speed of persons and population movement
from one area to another. The v, u and p for each D⊂C sub-region must be consistent with

dß

dτß

∫
D

vdU+

∫
∂D

vu·n̂dA=

where n̂ is unit normal outward to the boundary ∂D result7

p=p(v), u= −λ(v)∇

where λ(v) > 0 for v> 0, and ∇ is the Laplace nonlinear degenerate parabolic PDE can be obtain and which is
presented as

Dß
τv=

∂2φ(v)

∂ζ2
+
∂2φ(v)

∂χ2
+p(v)

In this instance, the fractional order is considered in the sense of Caputo. In addition, Nisbet and Gurney8 used
(v) as an unique case to simulate and evaluate the animal population. Usually, the preparations are made by young
animals who wish to establish their own breeding region after attaining maturity and moving away from their parental
territory, or by adult species who are endangered by mature invaders. In either of these two scenarios, it is much
more probable that they will be directed toward the adjacent uninhabited territory. The probability distribution is
resolved on the side of the mesh affected by the population density gradient between these two possibilities.
Now, Eq. (3) with φ(v) =v2 leads to

Dß
τv=

∂2v2

∂ζ2
+
∂2v2

∂χ2
+p(v), τ≥0,ζ, χ∈R,

with the given initial condition v(ζ, χ, 0). For µ= 1, Eq. (III) simplifies the classical biological population model
(NBPM):

∂v

∂τ
=
∂2v2

∂ζ2
+
∂2v2

∂χ2
+p(v), τ≥0,ζ, χ∈R.

For p(v), three examples of constitutive equations are presented as follows(i) p(v) =cv, c= constant, Malthusian law6.
(ii) p(v) =c1v−c2v2, c1, c2= positive constants, Verhulst law7.
(iii) p(v) =cvγ , (c> 0, 0 <γ< 1), porous media9,10.
Numerous academicians have recent times devised more specific and efficient ways for locating and analyzing solutions
to nonlinear and intricate problems. In response to this, George Adomian, an American scientist and aerospace
engineer, developed the Adomian decomposition method11. ADM has been utilized effectively to examine the behavior
of nonlinear dynamic systems without the necessity for perturbation or linearization. ADM, on the other hand,
necessitates a considerable amount of time and computer memory for analytical work. Rawashdeh and Maitama
conceived and cultivated the FNDM12,13, a hybrid of NTM and ADM, to satisfy these needs. Because FNDM is
an improved form of ADM, it does not require pertubation, linearization, or discretization. Due to its accuracy and
effectiveness, several mathematics and scientists have recently utilized FNDM to appreciate physical behavior in a
wide range of complex scenarios14,15. The considered technique is distinctive in that it employs a simple algorithm
to evaluate the solution and is based on Adomian polynomials, enabling rapid convergence of the obtained solution
for the nonlinear portion of the problem. These polynomials generalize to a Maclaurin series when a free external
parameter is introduced. In this study, FNDM was utilized to solve a fractional order, two-dimensional biological
population model. Numerous authors have solved the given biological population model using a variety of numeric
and analytic techniques in order to analyze the behavior and demonstrate the efficacy of the techniques16,17,18.

2 PRELIMINARIES

Definition 1. The Aboodh transform set of function is given as

B =
{
g(τ) : ∃M,n1, n2 > 0, |g(τ)| < Me−sτ

}
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and is expressed as19,20

A{g(τ)} =
1

s

∞∫
0

g(τ)e−sτdτ, τ > 0 and n1 ≤ s ≤ n2

Theorem 1. When G and F are used as g(τ) ∈ B Aboodh and Laplace transformations, respectively21,22

G(s) =
F (s)

s
. (1)

Zain23 was developed first time the ZZ transform. It mixture the integral transforms of Aboodh and Laplace. The
ZZ transformation is given as

Definition 2. Suppose that g(τ)∀τ ≥ 0 is a function then the ZZ transformation Z(v, s) of g(τ) is defined as23

ZZ(g(τ)) = Z(v, s) = s

∞∫
0

g(vτ)e−sτdτ.

The ZZ transformation is linear, just as the Aboodh and Laplace transforms.

Eß(z) =
∞∑
m=0

zm

Γ(1 +mß)
, Re(ß) > 0.

Definition 3. The Atangana-Baleanu (AB) Caputo derivative of a function ν(ϕ, τ) ∈ H1(a, b), then for ß ∈ (0, 1),
is given as24

ABCaD
ß
τν(ϕ, τ) =

ψ(ß)

1− ß

τ∫
a

ν′(ϕ, τ)Eß

(
−ß(τ − η)ß

1− ß

)
dη.

Definition 4. Let the AB Riemann-Liouville derivative ν(ϕ, τ) ∈ H1(a, b), then for ß ∈ (0, 1), is defined as24

ABR
a Dß

τν(ϕ, η) =
ψ(ß)

1− ß

d

dτ

τ∫
a

ν(ϕ, η)Eß

(
−ß(τ − η)ß

1− ß

)
dη,

where with the condition ψ(0) = ψ(1) = 1, ψ(ß) is a term and b > a.

Theorem 2. The AB Caputo and Riemann-Liouville derivative of Laplace transformation are, respectively, defined
as24

L
{
ABC
a Dß

τν(ϕ, τ)
}

(s) =
ψ(ß)

1− ß

sßL{ν(ϕ, τ)} − sß−1ν(ϕ, 0)

sß + ß
1−ß

(2)

and
L

{
ABR

a
Dß
τν(ϕ, τ)

}
(s) =

ψ(ß)

1− ß

sßL{ν(ϕ, τ)}
sß + ß

1−ß

(3)

The following theorem have been suggested, with the supposition that g(τ) ∈ H1(a, b), b > a and ß ∈ (0, 1).

Theorem 3. The AB Riemann-Liouville of Aboodh transformation of derivative is defined as22

G(s) = A

{
ABR

a
Dß
τν(ϕ, τ)

}
(s) =

1

s

[
ψ(ß)

1− ß

sßL{ν(ϕ, τ)}
sß + ß

1−ß

]
(4)

Proof. We obtained at the required result applying the Theorem 2.1 and eq. (3). In the theorem below, the
relationships link the transforms of ZZ and Aboodh is defined.

Theorem 4. The AB Caputo derivative of Aboodh transform is defined as22

G(s) =A

{
ABC

a
Dß
τν(ϕ, τ)

}
(s) =

1

s

[
ψ(ß)

1− ß

sßL{ν(ϕ, τ)} − sß−1ν(ϕ, 0)

sß + ß
1−ß

]
(5)

Proof. We may investigate the given result by applying Theorem 2.1 and equation (2).

Theorem 5. If G(s) and Z(v, s) are the Aboodh and ZZ transforms of g(τ) ∈ B. Then, we achieved22

Z(v, s) =
s2

v2
G
( s
v

)
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Proof. The ZZ transform definition, we get

Z(v, s) = s

∞∫
0

g(vτ)e−sτdτ (6)

Putting vτ = τ in eq. (6) we get

Z(v, s) =
s

v

∞∫
0

g(τ)e−
πz
v dτ (7)

The right-hand side of the above eq. (7) is given as

Z(v, s) =
s

v
F
( s
v

)
, (8)

where F (.) express the Laplace transform of g(τ). Using the theorem 2.1, eq. (8) can be define as

Z(v, s) =
s

v

F
(
s
v

)(
s
v

) × ( s
v

)
=
( s
v

)2

G
( s
v

)
, (9)

where G(.) represent as the Aboodh transform of g(τ).

Theorem 6. ZZ transform of g(τ) = τß−1 is defined as

Z(v, s) = Γ(ß)
(v
s

)ß−1

(10)

Proof. The Aboodh transform of g(τ) = τß, ß ≥ 0 is

G(s) =
Γ(ß)

sß+1

Now, G
( s
v

)
=

Γ(ß)vß+1

sß+1
.

Using eq. (10), we achieved

Z(v, s) =
s2

v2
G
( s
v

)
=
s2

v2

Γ(ß)vß+1

sß+1
= Γ(ß)

(v
s

)ß−1

Theorem 7. Let ß, ω ∈ C and Re(ß) > 0, then the ZZ transform of Eß

(
ωτß

)
is defined as22

ZZ
{(
Eß

(
ωτß

))}
= Z(v, s) =

(
1− ω

(v
s

)ß
)−1

(11)

Proof. We know that Aboodh transform of Eß

(
ωτß

)
is defined as

G(s) =
F (s)

s
=

sß−1

s (sß − ω)
(12)

So,

G
( s
v

)
=

(
s
v

)ß−1(
s
v

) ((
s
v

)ß − ω) , (13)

Using the Theorem 2.9, we achieved

Z(v, s) =
( s
v

)2

G
( s
v

)
=
( s
v

)2
(
s
v

)ß−1(
s
v

) ((
s
v

)ß − ω)
=

(
s
v

)ß(
s
v

)ß − ω =

(
1− ω

(v
s

)ß
)−1
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Theorem 8. If G(s) and Z(v, s) are the Aboodh and ZZ transforms of g(τ). Then the ZZ transformation of AB
Caputo derivative is defined as22

ZZ

{
ABC

0
Dß
τg(τ)

}
=

[
ψ(ß)

1− ß

sa+2

vß+2G
(
s
v

)
− sß

vß f(0)
sß

vß + ß
1−ß

]
(14)

Proof. USing the eqs. (1) and (5), we get

G
( s
v

)
=
v

s

[
ψ(ß)

1− ß

(
s
v

)ß+1
G
(
s
v

)
−
(
s
v

)ß−1
f(0)(

s
v

)ß
+ ß

1−ß

]
(15)

So, the ZZ transform of AB Caputo is defined as

Z(v, s) =
( s
v

)2

G
( s
v

)
=
( s
v

)2 v

s

[
ψ(ß)

1− ß

(
s
v

)ß+1
G
(
s
v

)
−
(
s
v

)ß−1
f(0)(

s
v

)ß
+ ß

1−ß

]

=

[
ψ(ß)

1− ß

(
s
v

)ß+2
G
(
s
v

)
−
(
s
v

)ß
f(0)(

s
v

)ß
+ ß

1−ß

]

Theorem 9. Let us suppose that G(s) and Z(v, s) are the Aboodh and ZZ transforms of g(τ). Then the ZZ
transformation of AB Riemann-Liouville derivative is defined as22

ZZ

{
ABR

0
Dß
τf(τ)

}
=

[
ψ(ß)

1− ß

5ß+2

vß+2G
(
s
v

)
sµ

vµ + ß
1−ß

]
(16)

Proof. Using the eqs. (1) and (4), we get

G
( s
v

)
=
v

s

[
ψ(ß)

1− ß

(
s
v

)ß+1
G
(
s
v

)(
s
v

)ß
+ ß

1−ß

]
(17)

From the eq. (9), the ZZ transform of AB Riemann-Liouville is defined as.

Z(v, s) =
( s
v

)2

G
( s
v

)
=
( s
v

)2 (v
s

)[ ψ(ß)

1− ß

(
s
v

)ß+1
G
(
s
v

)(
s
v

)ß
+ ß

1−ß

]

=

[
ψ(ß)

1− ß

(
s
v

)ß+2
G
(
s
v

)(
s
v

)ß
+ ß

1−ß

]

3 THE GENERAL IMPLEMENTATION OF ITERATIVE TRANSFORM METHOD

This section will cover briefly iterative transform method, which is used to solve fractional non-linear partial
differential equations.

Dß
τΦ(ζ, χ, τ) +RΦ(ζ, χ, τ) +NΦ(ζ, χ, τ) = g(ζ, χ, τ), n− 1 < ß ≤ n, n ∈ N, (18)

Φ(k)(ζ, χ, 0) = hk(ζ, χ), k = 0, 1, 2, ..., n− 1, (19)

where Dß
τΦ(ζ, χ, τ) is the fractional Caputo operator of order ß, n − 1 < ß ≤ n, denoted by Eq. 18, R and N are

linear and nonlinear operators. The g(ζ, χ, τ) is source function.
Applying ZZ transformation of Eq. 18, we have

Z[Dß
τΦ(ζ, χ, τ)] + Z[RΦ(ζ, χ, τ) +NΦ(ζ, χ, τ)] = Z[g(ζ, χ, τ)]. (20)
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Z[Φ(ζ, χ, τ)] =
v

s
Φ(ζ, χ, 0) +

(
1− ß + ß

(
v
s

)ß)
ψ(ß)

Z[g(ζ, χ, τ)]

−

(
1− ß + ß

(
v
s

)ß)
ψ(ß)

Z[RΦ(ζ, χ, τ) +NΦ(ζ, χ, τ)].

(21)

Apply inverse ZZ transformation of Eq. 21, we get

Φ(ζ, χ, τ) =Z−1
[v
s

Φ(ζ, χ, 0) + Z[g(ζ, χ, τ)]
]

− Z−1


(

1− ß + ß
(
v
s

)ß)
ψ(ß)

Z[RΦ(ζ, χ, τ) +NΦ(ζ, χ, τ)]

 . (22)

From iterative method,

Φ(ζ, χ, τ) =

∞∑
i=0

Φi(ζ, χ, τ). (23)

Since R is a linear operator

R

( ∞∑
i=0

Φi(ζ, χ, τ)

)
=

∞∑
i=0

R [Φi(ζ, χ, τ)] , (24)

and the non-linear operator N is splitted as

N

( ∞∑
i=0

Φi(ζ, χ, τ)

)
= N [Φ0(ζ, χ, τ)] +

∞∑
i=1

{
N

(
i∑

k=0

Φk(ζ, χ, τ

)
−N

(
i−1∑
k=0

Φk(ζ, χ, τ)

)}
. (25)

Putting equations 23, 24 and 25 in equation 22, we obtain

∞∑
i=0

Φi(ζ, χ, τ) = Z−1
[v
s

Φ(ζ, χ, 0) + Z[g(ζ, χ, τ)]
]
− Z−1


(

1− ß + ß
(
v
s

)ß)
ψ(ß)

Z

[ ∞∑
i=0

R[Φi(ζ, χ, τ)] +N [Φ0(ζ, χ, τ)] +

∞∑
i=1

{
N

(
i∑

k=0

Φk (ζ, χ, τ)−N

(
i−1∑
k=0

Φk(ζ, χ, τ)

))}]]
.

(26)

Applying Eq. 26, we defined the following iterative producer

Φ0(ζ, χ, τ) = Z−1

v
s

Φ(ζ, χ, 0) +

(
1− ß + ß

(
v
s

)ß)
ψ(ß)

Z(g(ζ, χ, τ))

 , (27)

Φ1(ζ, χ, τ) = −Z−1


(

1− ß + ß
(
v
s

)ß)
ψ(ß)

Z[R[Φ0(ζ, χ, τ)] +N [Φ0(ζ, χ, τ)]

 , (28)

Φm+1(ζ, χ, τ) = −Z−1


(

1− ß + ß
(
v
s

)ß)
ψ(ß)

Z

[
R(Φm(ζ, χ, τ))−

{
N

(
m∑
k=0

Φk(ζ, χ, τ)

)
−N

(
m−1∑
k=0

Φk(ζ, χ, τ)

)}] ,
m ≥ 1

(29)

The approximates m-terms result of Eq. 28 and Eq. 29 in form of series as

Φ(ζ, χ, τ) ∼= Φ0(ζ, χ, τ) + Φ1(ζ, χ, τ) + Φ2(ζ, χ, τ) + · · · ,+Φm(ζ, χ, τ), m = 1, 2 · · · , (30)
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4 NUMERICAL RESULTS

4.1 Example
Consider fractional order Biological population model is given as

∂ßΦ

∂τß
=

∂2

∂ζ2
(Φ2) +

∂2

∂χ2
(Φ2) + hΦ−1(1− rΦ), 0 < ß ≤ 1, ζ, χ ∈ <, τ > 0, (31)

with the initial condition

Φ(ζ, χ, 0) =

√
hr

4
ζ2 +

hr

4
χ2 + χ+ 5, (32)

The ZZ transformation to Eq. 31 is define as

ψ(ß)(
1− ß + ß

(
v
s

)ß)Z[Φ(ζ, χ, τ)]− v

s
Φ(ζ, χ, 0) = Z(

∂2

∂ζ2
(Φ2) +

∂2

∂χ2
(Φ2) + hΦ−1(1− rΦ)),

ψ(ß)(
1− ß + ß

(
v
s

)ß)Z[Φ(ζ, χ, τ)] =
v

s
Φ(ζ, χ, 0) + Z(

∂2

∂ζ2
(Φ2) +

∂2

∂χ2
(Φ2) + hΦ−1(1− rΦ)),

(33)

Z[Φ(ζ, χ, τ)] =
v

s

√
hr

4
ζ2 +

hr

4
χ2 + χ+ 5 +

(
1− ß + ß

(
v
s

)ß)
ψ(ß)

[
Z(

∂2

∂ζ2
(Φ2) +

∂2

∂χ2
(Φ2) + hΦ−1(1− rΦ))

]
. (34)

Applying inverse ZZ transformation of Eq. 34, we get

Φ(ζ, χ, τ) =

√
hr

4
ζ2 +

hr

4
χ2 + χ+ 5 + Z−1


(

1− ß + ß
(
v
s

)ß)
ψ(ß)

[
Z(

∂2

∂ζ2
(Φ2) +

∂2

∂χ2
(Φ2) + hΦ−1(1− rΦ))

] . (35)

Applying iterative method define in Eqs. 24 and 25 we achieved the following results of example 4.1

Φ0(ζ, χ, τ) =

√
hr

4
ζ2 +

hr

4
χ2 + χ+ 5.

Φ1(ζ, χ, τ) = Z−1


(

1− ß + ß
(
v
s

)ß)
ψ(ß)

[
Z(

∂2

∂ζ2
(Φ2

0) +
∂2

∂χ2
(Φ2

0) + hΦ−1
0 (1− rΦ0))

] . (36)

= h((
hr

4
ζ2 +

hr

4
χ2 + χ+ 5)−

1
2 )

1

ψ(ß)

[
1− ß +

ßτß

Γ(ß + 1)

]
, (37)

Φ2(ζ, χ, τ) = Z−1


(

1− ß + ß
(
v
s

)ß)
ψ(ß)

[
Z(

∂2

∂ζ2
(Φ2

1) +
∂2

∂χ2
(Φ2

1) + hΦ−1
1 (1− rΦ1))

] ,
= −2h2((

hr

4
ζ2 +

hr

4
χ2 + χ+ 5)−

3
2 )

1

(B(ß))2

[
(1− ß)2 +

2ß(1− ß)τß

Γ(ß + 1)
+

ß2τ2ß

Γ(2ß + 1)

]
,

(38)

Φ3(ζ, χ, τ) = Z−1


(

1− ß + ß
(
v
s

)ß)
ψ(ß)

[
Z(

∂2

∂ζ2
(Φ2

2) +
∂2

∂χ2
(Φ2

2) + hΦ−1
2 (1− rΦ2))

] . (39)

= 3h3((
hr

4
ζ2+

hr

4
χ2+χ+5)−

5
2 )

1

(B(ß))3

[
(1−ß)3+

3ß(1− ß)2τß

Γ(ß + 1)
+

ß2(1− ß)τ2ß+1

Γ(2ß + 2)
+

2ß2(1− ß)τ2ß

Γ(2ß + 1)
+

ß3τ2ß+1

Γ(2ß + 2)

]
. (40)
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Figure 1 The first figure show the exact and second the analytical solution graph of example 4.1 at ß = 1, h = 0.01

and r = 48.

The series type of approximate result is provided as

Φ(ζ, χ, τ) = Φ0(ζ, χ, τ) + Φ1(ζ, χ, τ) + Φ2(ζ, χ, τ) + Φ3(ζ, χ, τ) + · · · ,

= (
hr

4
ζ2 +

hr

4
χ2 + χ+ 5)

1
2 + h((

hr

4
ζ2 +

hr

4
χ2 + χ+ 5)−

1
2 )

1

ψ(ß)

[
1− ß +

ßτß

Γ(ß + 1)

]
− 2h2((

hr

4
ζ2 +

hr

4
χ2 + χ+ 5)−

3
2 )

1

(B(ß))2

[
(1− ß)2 +

2ß(1− ß)τß

Γ(ß + 1)
+

ß2τ2ß

Γ(2ß + 1)

]
+ 3h3((

hr

4
ζ2 +

hr

4
χ2

+ χ+ 5)−
5
2 )

1

(B(ß))3

[
(1− ß)3 +

3ß(1− ß)2τß

Γ(ß + 1)
+

ß2(1− ß)τ2ß+1

Γ(2ß + 2)
+

2ß2(1− ß)τ2ß

Γ(2ß + 1)
+

ß3τ2ß+1

Γ(2ß + 2)

]
+ · · · ,

(41)

The exact result is

Φ(ζ, χ, τ) =

√
hr

4
ζ2 +

hr

4
χ2 + χ+ 2hτ + 5. (42)

4.2 Example
Consider the biological population model is define as

∂ßΦ

∂τß
=

∂2

∂ζ2
(Φ2) +

∂2

∂χ2
(Φ2) + hΦ, (43)

with initial condition
Φ(ζ, χ, 0) =

√
ζχ, (44)

ZZ transformation apply to Eq. 43 is define as

ψ(ß)(
1− ß + ß

(
v
s

)ß)Z[Φ(ζ, χ, τ)]− v

s
Φ(ζ, χ, 0) = Z(

∂2

∂ζ2
(Φ2) +

∂2

∂χ2
(Φ2) + hΦ),

ψ(ß)(
1− ß + ß

(
v
s

)ß)Z[Φ(ζ, χ, τ)] =
v

s
Φ(ζ, χ, 0) + Z(

∂2

∂ζ2
(Φ2) +

∂2

∂χ2
(Φ2) + hΦ),

(45)

Z[Φ(ζ, χ, τ)] =
v

s

√
ζχ+

(
1− ß + ß

(
v
s

)ß)
ψ(ß)

[
Z(

∂2

∂ζ2
(Φ2) +

∂2

∂χ2
(Φ2) + hΦ)

]
. (46)
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Figure 2 Example 4.1 error graph at ß = 1

Applying inverse ZZ transformation of Eq. 46

Φ(ζ, χ, τ) =
√
ζχ+ Z−1


(

1− ß + ß
(
v
s

)ß)
ψ(ß)

[
Z(

∂2

∂ζ2
(Φ2) +

∂2

∂χ2
(Φ2) + hΦ)

] . (47)

Applying iterative method expressed in Eqs. 24 and 25, we achieved the following result of example 4.2

Φ0(ζ, χ, τ) =
√
ζχ,

Φ1(ζ, χ, τ) = Z−1


(

1− ß + ß
(
v
s

)ß)
ψ(ß)

[
Z(

∂2

∂ζ2
(Φ2

0) +
∂2

∂χ2
(Φ2

0) + hΦ0))

] . (48)

= h
√
ζχ

1

ψ(ß)

[
1− ß +

ßτß

Γ(ß + 1)

]
, (49)

Φ2(ζ, χ, τ) = Z−1


(

1− ß + ß
(
v
s

)ß)
ψ(ß)

[
Z(

∂2

∂ζ2
(Φ2

1) +
∂2

∂χ2
(Φ2

1) + hΦ1)

] ,
= h2

√
ζχ

1

(B(ß))2

[
(1− ß)2 +

2ß(1− ß)τß

Γ(ß + 1)
+

ß2τ2ß

Γ(2ß + 1)

]
,

(50)

Φ3(ζ, χ, τ) = Z−1


(

1− ß + ß
(
v
s

)ß)
ψ(ß)

[
Z(

∂2

∂ζ2
(Φ2

2) +
∂2

∂χ2
(Φ2

2) + hΦ2)

] . (51)

= h3
√
ζχ

1

(B(ß))3

[
(1− ß)3 +

3ß(1− ß)2τß

Γ(ß + 1)
+

ß2(1− ß)τ2ß+1

Γ(2ß + 2)
+

2ß2(1− ß)τ2ß

Γ(2ß + 1)
+

ß3τ2ß+1

Γ(2ß + 2)

]
, (52)

The analytical result of series form is define as

Φ(ζ, χ, τ) = Φ0(ζ, χ, τ) + Φ1(ζ, χ, τ) + Φ2(ζ, χ, τ) + Φ3(ζ, χ, τ)+, ...,

=
√
ζχ+ h

√
ζχ

1

ψ(ß)

[
1− ß +

ßτß

Γ(ß + 1)

]
+ h2

√
ζχ

1

(B(ß))2

[
(1− ß)2 +

2ß(1− ß)τß

Γ(ß + 1)
+

ß2τ2ß

Γ(2ß + 1)

]
+

h3
√
ζχ

1

(B(ß))3

[
(1− ß)3 +

3ß(1− ß)2τß

Γ(ß + 1)
+

ß2(1− ß)τ2ß+1

Γ(2ß + 2)
+

2ß2(1− ß)τ2ß

Γ(2ß + 1)
+

ß3τ2ß+1

Γ(2ß + 2)

]
+, · · · ,

(53)
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Figure 3 The first figure show that exact and second the analytical solution of example 4.2 at ß = 1, h = 0.01 and
r = 48 .

Figure 4 Example 4.2 error at ß = 1

The exact result is
Φ(ζ, χ, τ) =

√
ζχehτ , (54)

4.3 Example
Consider fractional order biological population model is define as

∂ßΦ

∂τß
=

∂2

∂ζ2
(Φ2) +

∂2

∂χ2
(Φ2) + Φ, (55)
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with initial condition
Φ(ζ, χ, 0) =

√
sin ζ sinhχ, (56)

ZZ transformation apply to Eq. 55 is define as

ψ(ß)(
1− ß + ß

(
v
s

)ß)Z[Φ(ζ, χ, τ)]− v

s
Φ(ζ, χ, 0) = Z(

∂2

∂ζ2
(Φ2) +

∂2

∂χ2
(Φ2) + Φ),

ψ(ß)(
1− ß + ß

(
v
s

)ß)Z[Φ(ζ, χ, τ)] =
v

s
Φ(ζ, χ, 0) + Z(

∂2

∂ζ2
(Φ2) +

∂2

∂χ2
(Φ2) + Φ),

(57)

Z[Φ(ζ, χ, τ)] =
v

s

√
ζχ+

(
1− ß + ß

(
v
s

)ß)
ψ(ß)

[
Z(

∂2

∂ζ2
(Φ2) +

∂2

∂χ2
(Φ2) + Φ)

]
. (58)

Applying inverse ZZ transformation of Eq. 58, we achieved

Φ(ζ, χ, τ) =
√
ζχ+ Z−1


(

1− ß + ß
(
v
s

)ß)
ψ(ß)

[
Z(

∂2

∂ζ2
(Φ2) +

∂2

∂χ2
(Φ2) + Φ)

] . (59)

Applying iterative method define in Eqs. 24 and 25, we achieved the following result of example 4.3

Φ0(ζ, χ, τ) =
√

sin ζ sinhχ,

Φ1(ζ, χ, τ) = Z−1


(

1− ß + ß
(
v
s

)ß)
ψ(ß)

[
Z(

∂2

∂ζ2
(Φ2

0) +
∂2

∂χ2
(Φ2

0) + Φ0))

] . (60)

=
√

sin ζ sinhχ
1

ψ(ß)

[
1− ß +

ßτß

Γ(ß + 1)

]
, (61)

Φ2(ζ, χ, τ) = Z−1


(

1− ß + ß
(
v
s

)ß)
ψ(ß)

[
Z(

∂2

∂ζ2
(Φ2

1) +
∂2

∂χ2
(Φ2

1) + Φ1)

] .
=
√

sin ζ sinhχ
1

(B(ß))2

[
(1− ß)2 +

2ß(1− ß)τß

Γ(ß + 1)
+

ß2τ2ß

Γ(2ß + 1)

]
,

(62)

Φ3(ζ, χ, τ) = Z−1


(

1− ß + ß
(
v
s

)ß)
ψ(ß)

[
Z(

∂2

∂ζ2
(Φ2

2) +
∂2

∂χ2
(Φ2

2) + Φ2)

] . (63)

=
√

sin ζ sinhχ
1

(B(ß))3

[
(1− ß)3 +

3ß(1− ß)2τß

Γ(ß + 1)
+

ß2(1− ß)τ2ß+1

Γ(2ß + 2)
+

2ß2(1− ß)τ2ß

Γ(2ß + 1)
+

ß3τ2ß+1

Γ(2ß + 2)

]
. (64)

The analytical series type solution is define as

Φ(ζ, χ, τ) = Φ0(ζ, χ, τ) + Φ1(ζ, χ, τ) + Φ2(ζ, χ, τ) + Φ3(ζ, χ, τ) + · · · ,

=
√

sin ζ sinhχ+
√

sin ζ sinhχ
τß

Γß + 1
+
√

sin ζ sinhχ
1

(B(ß))2

[
(1− ß)2 +

2ß(1− ß)τß

Γ(ß + 1)
+

ß2τ2ß

Γ(2ß + 1)

]
+
√

sin ζ sinhχ
1

(B(ß))3

[
(1− ß)3 +

3ß(1− ß)2τß

Γ(ß + 1)
+

ß2(1− ß)τ2ß+1

Γ(2ß + 2)
+

2ß2(1− ß)τ2ß

Γ(2ß + 1)
+

ß3τ2ß+1

Γ(2ß + 2)

]
+ · · · ,

(65)

The exact result is
Φ(ζ, χ, τ) =

√
sin ζ sinhχeτ , (66)
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Figure 5 The first graph of exact and second analytical solution graph of example 4.3 at ß = 1 h = 0.01 and r = 48.

Figure 6 The various fractional-order of ß at example 4.3

4.4 Example
Consider the fractional order biological population model is define as

∂ßΦ

∂τß
=

∂2

∂ζ2
(Φ2) +

∂2

∂χ2
(Φ2) + Φ(1− rΦ), (67)

with initial condition
Φ(ζ, χ, 0) = exp

1
2

√
r
2 (ζ+χ) . (68)

ZZ transformation apply to Eq. 67 is define as

ψ(ß)(
1− ß + ß

(
v
s

)ß)Z[Φ(ζ, χ, τ)]− v

s
Φ(ζ, χ, 0) = Z(

∂2

∂ζ2
(Φ2) +

∂2

∂χ2
(Φ2) + Φ(1− rΦ)),

ψ(ß)(
1− ß + ß

(
v
s

)ß)Z[Φ(ζ, χ, τ)] =
v

s
Φ(ζ, χ, 0) + Z(

∂2

∂ζ2
(Φ2) +

∂2

∂χ2
(Φ2) + Φ(1− rΦ)),

(69)
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Z[Φ(ζ, χ, τ)] =
v

s
exp

1
2

√
r
2 (ζ+χ) +

(
1− ß + ß

(
v
s

)ß)
ψ(ß)

[
Z(

∂2

∂ζ2
(Φ2) +

∂2

∂χ2
(Φ2) + Φ(1− rΦ))

]
. (70)

Applying inverse ZZ transformation of Eq. 70, we get

Φ(ζ, χ, τ) = exp
1
2

√
r
2 (ζ+χ) +Z−1


(

1− ß + ß
(
v
s

)ß)
ψ(ß)

[
Z(

∂2

∂ζ2
(Φ2) +

∂2

∂χ2
(Φ2) + Φ(1− rΦ))

] . (71)

Applying iterative method define in Eqs. 24 and 25, we achieve the following result of example 4.4

Φ0(ζ, χ, τ) = exp
1
2

√
r
2 (ζ+χ),

Φ1(ζ, χ, τ) = Z−1


(

1− ß + ß
(
v
s

)ß)
ψ(ß)

[
Z(

∂2

∂ζ2
(Φ2

0) +
∂2

∂χ2
(Φ2

0) + Φ0(1− rΦ0)))

] . (72)

= exp
1
2

√
r
2 (ζ+χ) 1

ψ(ß)

[
1− ß +

ßτß

Γ(ß + 1)

]
, (73)

Φ2(ζ, χ, τ) = Z−1


(

1− ß + ß
(
v
s

)ß)
ψ(ß)

[
Z(

∂2

∂ζ2
(Φ2

1) +
∂2

∂χ2
(Φ2

1) + Φ1(1− rΦ1))

] ,
= exp

1
2

√
r
2 (ζ+χ) 1

(B(ß))2

[
(1− ß)2 +

2ß(1− ß)τß

Γ(ß + 1)
+

ß2τ2ß

Γ(2ß + 1)

]
,

(74)

Φ3(ζ, χ, τ) = Z−1


(

1− ß + ß
(
v
s

)ß)
ψ(ß)

[
Z(

∂2

∂ζ2
(Φ2

2) +
∂2

∂χ2
(Φ2

2) + Φ2(1− rΦ2))

] , (75)

= exp
1
2

√
r
2 (ζ+χ) 1

(B(ß))3

[
(1− ß)3 +

3ß(1− ß)2τß

Γ(ß + 1)
+

ß2(1− ß)τ2ß+1

Γ(2ß + 2)
+

2ß2(1− ß)τ2ß

Γ(2ß + 1)
+

ß3τ2ß+1

Γ(2ß + 2)

]
. (76)

The analytical series form solution is define as

Φ(ζ, χ, τ) = Φ0(ζ, χ, τ) + Φ1(ζ, χ, τ) + Φ2(ζ, χ, τ) + Φ3(ζ, χ, τ) + · · · ,

= exp
1
2

√
r
2 (ζ+χ) + exp

1
2

√
r
2 (ζ+χ) 1

ψ(ß)

[
1− ß +

ßτß

Γ(ß + 1)

]
+ exp

1
2

√
r
2 (ζ+χ) 1

(B(ß))2

[
(1− ß)2 +

2ß(1− ß)τß

Γ(ß + 1)
+

ß2τ2ß

Γ(2ß + 1)

]
+

exp
1
2

√
r
2 (ζ+χ) 1

(B(ß))3

[
(1− ß)3 +

3ß(1− ß)2τß

Γ(ß + 1)
+

ß2(1− ß)τ2ß+1

Γ(2ß + 2)
+

2ß2(1− ß)τ2ß

Γ(2ß + 1)
+

ß3τ2ß+1

Γ(2ß + 2)

]
+ · · · ,

(77)

The exact result is
Φ(ζ, χ, τ) = exp

1
2

√
r
2 (ζ+χ)+τ , (78)

5 GRAPHICAL REPRESENTATION

The present work employs iterative transform method to solve several significant non-integer order biological models.
The proposed technique’s answer is to illustrate through its graphical depiction. The solution graphs for example 4.1
at ß = 1 are displayed in Figure 1. It is established that the iterative transform method solution is highly similar to
the precise solution. The error analysis of iterative transform method for example 4.1 is discussed in Figure 2. It is
observed that the considered technique has a sufficient degree of accuracy. Similarly, picture 3 illustrates the solution-
plot of iterative transform method and the actual solution for example 4.2. These solution-graphs are extremely
close, confirming the proposed technique’s reliability. Additionally, as illustrated in Figure 4, a higher degree of
precision is achieved. In Figure 5, the actual and ILTM findings for Example 4.3 are examined. Both the precise and
iterative transform method solutions are identical, demonstrating the proposed method’s dependability. In Figure 6,
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Figure 7 The first graph of exact and second graph of analytical solution of example 4.4 at ß = 1, h = 0.01 and
r = 48.

Figure 8 The various fractional order of ß at example 4.4

the solution to case 4.3 is determined at different fractional-orders. The hypothesis is tested that when fractional-
order solutions approach integer-order solutions, fractional-order solutions convergence to integer-order solutions.
The precise and iterative transform method solutions to example 4.4 are depicted graphically in Figure 7. Figure 7
illustrates the answer to Example 4 at various fractional-orders. Figure 8 illustrates the convergence of solutions with
varying fractional-order.

6 CONCLUSION

The current study is about solving fractional-order biological population models with an effective analytical method.
For integer and fractional-order models, the current technique is used. Plotted are the solution figures of iterative
transform method and the exact results to the issues. It is evaluated whether the iterative transform method results
are in strong agreement with the current technique’s actual solutions. The iterative transform method solutions to
the problems at various fractional-orders are also depicted graphically. The phenomenon of fractional-order results
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convergent to integer-order results is noticed. This behaviour of the generated solution validates the efficacy of the
proposed approach. Because of its simple and effective application, the proposed technique can be adjusted for the
solution of various fractional partial differential equations that arise in sciences and engineering.
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