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Abstract

Landscape genetics is increasingly transitioning away from microsatellites, with Single Nucleotide Polymor-
phisms (SNPs) providing increased resolution for detecting patterns of spatial-genetic structure. This is
particularly pertinent for research in arid-zone mammals due to challenges associated with unique life his-
tory traits, boom-bust population dynamics and long-distance dispersal capacities. Here, we provide a case
study assessing the performance of SNPs versus microsatellites in evaluating three explicit landscape genetic
hypotheses (isolation-by-distance, isolation-by-barrier, and isolation-by-resistance) in a suite of small, arid-
zone mammals in the Pilbara region of Western Australia. Using clustering algorithms, Mantel tests, and
linear mixed effects models, we compare functional connectivity between genetic marker types and across
species, including one marsupial, Ningaui timealeyi , and two native rodents, Pseudomys chapmani and P.
hermannsburgensis . SNPs resolved subtle genetic structuring not detected by microsatellites, particularly
for N. timealeyi where two genetic clusters were identified. Furthermore, stronger signatures of isolation-
by-distance and isolation-by-resistance were detected when using SNPs, and model selection based on SNPs
tended to identify more complex resistance surfaces (i.e., composite surfaces of multiple environmental layers)
in the best-performing models. While we found limited evidence for physical barriers to dispersal across the
Pilbara for all species, we found that topography, substrate, and soil moisture were the main environmental
drivers shaping functional connectivity. Our study demonstrates that new analytical and genetic tools can
provide novel ecological insights into arid landscapes, with potential application to conservation manage-
ment through identifying dispersal corridors to mediate the impacts of ongoing habitat fragmentation in the
region.
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Introduction

To conserve biodiversity, it is essential to preserve the evolutionary processes that support it, such as dis-
persal, mating, gene flow and selection (Latta, 2008). Incorporating dispersal knowledge into conservation
planning is fundamental as this represents where and when species move in the landscape (Driscoll et al.,
2014). However, deriving dispersal estimates through methods such as capture-recapture or telemetry is
expensive and difficult in non-abundant species (Waits, Cushman, & Spear, 2015). Further, the distinction
between long-distance dispersal events that lead to gene exchange (realised dispersal), crucial for maintain-
ing functional connectivity between populations, versus home-range movements is challenging to ascertain
(Jordano, 2017). A valuable and important proxy for measuring functional connectivity is the empirical
estimation of gene flow using genetic data, since this is equivalent to measuring realised dispersal (Manel,
Schwartz, Luikart, & Taberlet, 2003; Whitlock & McCauley, 1999).

Landscape genetics aims to determine how realised dispersal is influenced by the surrounding environment.
It operates by examining genetic variation within heterogenous landscapes to explicitly quantify the effect of
landscape composition and/or matrix quality (the space separating habitat patches) on an organism’s disper-
sal, gene flow and/or spatial-genetic structure (Manel et al., 2003). Microsatellite markers have previously
been the major tool for such research (Storfer, Murphy, Spear, Holderegger, & Waits, 2010), capitalising on
short nucleotide motifs that are repeated in tandem a variable number of times. Due to high mutation rates,



they possess a high information content per locus (Morin, Luikart, Wayne, & the SNP workshop group,
2004), although panels are often constrained to just tens of markers and represent a small fraction of the
genome (O’Leary, Puritz, Willis, Hollenbeck, & Portnoy, 2018). Alternatively, Single Nucleotide Polymor-
phisms (SNPs) are abundant and widespread throughout the genome (Morin et al., 2004). Though SNP
markers are bi-allelic and give lower information content per locus, this can be offset by the large number
generated (often thousands to tens of thousands) (Andrews, Good, Miller, Luikart, & Hohenlohe, 2016).

With appropriate sampling, microsatellites have revealed patterns of functional connectivity and landscape
barriers to dispersal across a variety of species and ecosystems (Emaresi, Pellet, Dubey, Hirzel, & Fumagalli,
2011; Munshi-South, 2012; Trénel, Hansen, Normand, & Borchsenius, 2008). However, evidence suggests that
SNP markers have higher accuracy and power to detect individual, population and species level patterns
of genetic structure (Kim & Roe, 2021; Sunde, Yildirim, Tibblin, & Forsman, 2020). SNPs consistently
outperform microsatellite markers in comparative studies analysing population structure and assignment
methods, specifically for finer-scale population genetic structure or species with high levels of gene flow
(Jeffries et al., 2016; Puckett & Eggert, 2016; Viengkone et al., 2016). However, to our knowledge, no studies
have yet compared findings between marker types in relation to landscape genetic isolation-by-resistance
hypotheses (IBR; where dispersal is influenced by the degree of landscape resistance) (McRae, 2006).

Arid-zone mammals possess several factors that make landscape genetic studies challenging, including unique
life history traits, boom-bust population dynamics and long-distance dispersal capacities to overcome sharp
ecological gradients (Dickman, Predavec, & Downey, 1995; Kelly, Dayman, Nimmo, Clarke, & Bennett,
2013). This is further reflected by the lack of landscape genetic literature for arid-zone species. Situated
in the Australian arid biome, the topographically complex Pilbara region is a biodiversity hotspot that
supports rich faunal diversity including both endemic and widespread mammals (McKenzie, van Leeuwen,
& Pinder, 2009). Despite this, functional connectivity in Pilbara mammals is poorly resolved and the few
genetic studies in the region are based on microsatellite and mitochondrial markers and reveal low genetic
structure (Hohnen et al., 2016; Levy et al., 2019; Umbrello, Didham, How, & Huey, 2020). Threats including
resource extraction, grazing pressure, and inappropriate fire regimes all impact habitat connectivity in the
Pilbara (Cramer et al., 2016), highlighting the need to understand functional connectivity in the region.

Here, we assess spatial-genetic structure for three small ground-dwelling mammals (body weight <15 g)
adapted to arid environments, including a carnivorous dasyurid marsupial; Ningaui timealeyi, and two
native rodents; the western pebble-mound mouse, Pseudomys chapmani and the sandy inland mouse, Pseu-
domys hermannsburgensis . While P. hermannsburgensis is widespread across most of arid Australia, both
P. chapmani and N. timealeyi are Pilbara endemics. Both P. hermannsburgensis andN. timealeyi are habi-
tat generalists, although P. hermannsburgensis shows a slight preference for sandy substrates (Gibson &
McKenzie, 2009). Conversely, P. chapmani is a habitat specialist associated with rocky substrates, requiring
small, uniform pebbles to construct mounds (Start, Anstee, & Endersby, 2000). Both Pseudomys sp. exhibit
boom-bust population dynamics, whileN. timealey: displays more seasonal breeding (Dickman et al., 1995;
Dunlop & Sawle, 1982; Start et al., 2000).

A previous study found limited evidence that the Pilbara landscape influenced patterns of genetic structure
in these species (Levy et al., 2019). With new, high-resolution genetic and spatial data, we investigate
the relative performance of microsatellites and SNPs to resolve functional connectivity in the Pilbara by
(1) identifying population genetic structure and potential physical barriers to dispersal (isolation-by-barrier;
IBB); and (2) determining the role of dispersal capacity (isolation-by-distance; IBD) and specific landscape
attributes (isolation-by-resistance; IBR: aridity, soil moisture, substrate, topography, distance to water,
vegetation, and/or fire) in facilitating or restricting realised dispersal. We explore how vast and dynamic
arid landscapes shape the spatial-genetic structure of arid-zone species with high capacity for dispersal, and
how new analytical and genetic tools can provide novel ecological insights for conservation.

Materials and Methods

Study area



The Pilbara bioregion covers an extensive 179,000 km?and is divided into four distinctive subregions: Chich-
ester, Hamersley, Fortescue, and Roebourne (Figure 1). The Hamersley and Chichester subregions are
characterised by rugged ranges (elevation [?] 1,250 meters). Mulga woodland and sedimentary ranges and
gorges are found in the former, while the latter is dominated largely by Acacia shrub steppe with granite
and basalt plains (McKenzie et al., 2009). The alluvial plains of the Fortescue River Valley dissect the two
ranges; consisting of extensive marsh and flood-out zones, and Roebourne is comprised predominantly of
sandy coastal plains (McKenzie et al., 2009). The two main bioclimatic zones overlapping the Pilbara include
semi-tropical and arid climates (Sudmeyer, 2016).

Genetic data sets

Microsatellite data for N. timealeyi (Nt ), P. chapmani (Pc ) and P. hermannsburgensis (Ph) were obtained
from Levy et al., (2019) and consisted of 12 loci for N. timealeyi, and 14 loci for both Pseudomys species.
See Levy et al., (2019) for further detail. A subset of these samples were re-genotyped for SNP loci with
Diversity Arrays Technology Pty Ltd (DArT). A total of 100 — 500 ng of genomic DNA was sent to DArT
for library preparation and sequencing. Library preparation by DArTseq™ follows a reduced representation
method with enzyme digestion (here PstI and Sphl) followed by sequencing on an Illumina Hiseq 2500 (Nt :
medium density sequencing at 1.2 million reads; Pc and Ph : high density sequencing at 2.5 million reads)
(Cruz, Kilian, & Dierig, 2013; Kilian et al., 2012). Read assembly, quality control and SNP calling was
carried out through DArT’s proprietary software (Melville et al., 2017). We focussed on samples collected
between 1988-2006, resulting in sequencing of 183 individuals for N. timealeyi (Nt ), 94 individuals for P.
chapmani (Pc ) and 179 individuals for P. hermannsburgensis (Ph ).

The raw SNP data sets (Nt = 36,899, Pc = 45,733 andPh = 139,916 SNP loci) were filtered in R version
4.1.2 (R Core Team, 2021) using a custom R script (Shaw, 2022; Shaw et al., 2022) with functions from
dartr (Gruber, Unmack, Berry, & Georges, 2018) and SNPRelate (Zheng et al., 2012) packages. Filtering
thresholds were determined by visualising the raw data (see Appendix S1). After individual call rate filtering,
one N. timealeyiindividual (call rate <0.5), and two P. hermannsburgensis individuals (call rate <0.7) were
removed. Locus quality filters were applied to each data set based on thresholds for missing data (Nt & Ph
: 5%, Pc: 4%), average total read depth (Nt : between 20 and 100, Pc : between 15 and 25,Ph : between
20 and 40), repeatability average (95%), and minimum minor allele frequency (Nt & Ph : 0.025, Pc =
0.05). Multiple SNPs per sequence were removed followed by linkage disequilibrium pruning. We calculated
pairwise relatedness (Wang, 2002) in the R package related (Pew et al. 2015), using a relatedness threshold
of 0.24 to remove additional samples (Nt = 2, Pc= 14 and Ph = 4) to avoid biasing the genetic analyses
with closely related individuals (i.e., half-siblings and above) (Wang, 2018). We included an additional
filter to remove loci not in Hardy-Weinberg Equilibrium (HWE) for IBD and population genetics summary
statistics using dartr to remove SNPs that significantly deviated from HWE assumptions, with a Bonferroni
correction. HWE filtering was carried out within genetic clusters (i.e., populations) identified through IBB
analysis, described below.

Isolation-by-barrier: genetic clustering

The presence of barriers to dispersal in the three focal species was investigated using multiple analyses.
Firstly, we ran a Principal Coordinate Analysis (PCoA) (Legendre & Legendre, 2012) in dartrto identify
natural genetic clusters in the data. These results helped guide the maximum value for K (the number
of ancestral populations) when using the TESS3 algorithm in the R package tess3r (Caye, Deist, Martins,
Michel, & Frangois, 2016). As opposed to Bayesian clustering programs like STRUCTURE that utilise
Markov chain Monte Carlo (MCMC) methods (Pritchard, Stephens, & Donnelly, 2000), tessSrestimates
individual ancestry coefficients based on sparse non-negative matrix factorization algorithms (sSNMF) taking
geographic information into account (Caye et al., 2016). This algorithm produces similar results to Bayesian
clustering methods while being substantially faster (Frichot, Mathieu, Trouillon, Bouchard, & Frangois,
2014). Unlike STRUCTURE and related models, this approach does not rely on assumptions such as linkage
equilibrium and HWE in ancestral populations (Caye et al., 2016). Given our large geographic and temporal
spread of samples, we deemed this the most appropriate model for our study system.



We tested K values one through seven, with 50 repetitions for each value and the maximum number of
optimisation iterations set to 200. We used the default settings for the remaining parameters and masked
10% of the data to use for the cross-validation. The best performing run with the lowest root mean squared
error (RMSE) was presented, with the best value for K decided based on the presence of a plateau or change
in slope in the cross-entropy criterion.

IBD and summary statistics

We performed tests for IBD and calculated population genetic summary statistics for each genetic cluster
identified in the IBB analysis for both microsatellite and SNP data sets. Individuals were assigned to a
genetic cluster if the corresponding admixture coefficient proportion was [?] 0.7 or were excluded from IBD
and summary statistics if they fell below this threshold. IBD was investigated with Mantel tests in GenAlEx
6.5 (Peakall & Smouse, 2006, 2012; Smouse, Long, & Sokal, 1986) using 999 permutations to determine
significance. Summary statistics were then calculated in GenAlEx 6.5 within each genetic cluster, including
the number of alleles (Na ), observed heterozygosity (H o), expected heterozygosity (H e) and the fixation
index (F' ). When more than one genetic cluster was detected, we also calculatedF' 1g and F' gr.

Isolation-by-resistance

We collated and derived high resolution spatial layers to test IBR landscape genetic hypotheses (Table 1;
Appendix S2). We sought to represent aspects of aridity (aridity indices — ADI, ADX and ADM), landscape
productivity (relative soil moisture indices — SOMO29 to 30), substrate (clay, sand, silt, coarse fragments
— CF), topographic features (weathering intensity index — WII, vector ruggedness measure — VRM, digital
elevation model — DEM), watercourses (Euclidean distance to water — WAT), vegetation (spinifex density
index — SPIN, persistent forest cover — FOR), and fire (fire frequency — FF). All layers were aggregated to a 5
km? resolution due to the long-range dispersal capacities of the focal species. For example, both Pseudomys
species have displayed long-range movements of several kilometres, with P. chapmani individuals found up
to two kilometres from neighbouring mounds and P. hermannsburgensisrecorded moving up to 14 kilometres
in a two-week period (Dickman et al., 1995; Start et al., 2000). Evidence from dasyurid species suggests
that long-range dispersal of several hundreds of meters to several kilometres is also likely for N. timealeyi
(Dickman et al., 1995).

The parameterisation of resistance surfaces within landscape genetic analyses has traditionally relied on
subjective ‘expert opinion’ which can sometimes lead to inaccuracy (Liu, Newell, White, & Bennett, 2018).
Further, researchers generally assume a linear relationship between continuous variables and genetic distance
despite this often not being the case (Spear, Balkenhol, Fortin, McRae, & Scribner, 2010). For these reasons,
we used a genetic algorithm to parameterise resistance surfaces (i.e., relationship between pairwise genetic and
effective distances) and maximum value (i.e., cost ratio) through optimising for the best transformation with
no a priori assumptions (Peterman, Connette, Semlitsch, & Eggert, 2014), and fit this relationship using linear
mixed effects models (described below). This was implemented in the R package ResistanceGA (Peterman,
2018). Given these analyses are sensitive to contemporary patterns of gene flow, we removed samples with
ambiguous date information from this analysis. For each species and marker type (microsatellites versus
SNPs) we calculated mean pairwise Euclidean genetic distance for individuals within each 5 km? raster pixel
using the R package ecodist(Goslee & Urban, 2007). Effective distances were calculated based on random-
walk commute times, equivalent to CIRCUITSCAPE ‘resistance distance’ (Klein & Randi¢, 1993; McRae,
Dickson, Keitt, & Shah, 2008).

The creation of optimised composite resistance surfaces through ResistanceGA can be applied to both cate-
gorical or continuous rasters and can be performed either independently or simultaneously across all raster
layers. This is achieved by fitting linear mixed effects models with a maximum likelihood population effects
parameterisation (MLPE) (Clarke, Rothery, & Raybould, 2002) to the pairwise genetic data (response) and
effective distances (predictor). During optimisation, models are compared based on an objective function (we
used the default option, log-likelihood) across different transformations and parameters over “generations”
until there is no improvement, thus indicating the best optimised surface.



Before calculating the multi-surface optimisations, we reduced collinearity in the raster data by removing
correlated variables (Spearman’s |rs|>0.7; Appendix S3), by running single surface optimisations and select-
ing the top ranked surface in correlated sets (according to Akaike’s Information Criterion corrected for small
sample size; AICc) (Akaike, 1974). We included IBD and panmixia as alternate and null hypotheses, respec-
tively, within the model selection. Surfaces were also excluded from multi-surface optimisation if they ranked
lower than, or equivalent (AAICc [?]2) (Burnham & Anderson, 2002) to the IBD or panmixia model in the
single surface model selection above. Next, we performed multi-surface optimisation using the “all_comb”
function inResistanceGA on a maximum of four combined surfaces. We conducted 1000 bootstrap iterations
across random subsets of 75% of the total data to calculate the percentage of iterations where surfaces were
ranked as the top model (similar to model weight) (Burnham & Anderson, 2002). This provides an indication
of the level of support for each surface and whether outlier samples are disproportionately influencing model
results.

Results
Genetic data sets

After filtering, the final SNP data sets included 180 N. timealeyi samples genotyped at 4,272 loci, 80 P.
chapmanisamples at 5,049 loci, and 173 P. hermannsburgensis samples at 3,844 loci. Filtering for HWE
further reduced the number of loci to 3,907 (Nt ), 4,925 (Pc ) and 3,638 (Ph ). Microsatellite data sets were
subset so that individuals matched those in the final filtered SNP data set.

Isolation-by-barrier: genetic clustering

There was no evidence for IBB within the rodent species using both marker types, while for N. timealeyi,
SNPs resolved two genetic clusters that were not detected when using microsatellite markers. Although
the first two principal coordinate axes of the PCoA explained more variation when using microsatellites
compared to SNPs for all species (Microsatellites: Nt = 10.7%, Pc = 9.8%,Ph = 8%; SNPs: Nt = 5%,
Pc = 4.3%, Ph = 2.1%; Figure 2), SNPs consistently outperformed microsatellites at revealing patterns of
population genetic structure. When using SNPs, the PCoA delineated two main groups for N. timealeyi ; one
in the north-east Chichester and the other including individuals in the western and south-eastern Pilbara
(Figure 2). These two population groupings were supported by the tess3r analysis of the SNP data set,
with two ancestral populations identified (K = 2), although with admixture between the two clusters (K
= 2; Figure 3; Appendix S4). In contrast, both the PCoA and tess3r analysis for N. timealeyi based on
the microsatellites lacked support for population genetic structure (K = 1), showing no obvious plateau or
change in slope of the cross-entropy criterion for increasing values of K (Appendix S4).

Patterns of population genetic structure at SNP loci were more subtle for both Pseudomys species. The PCoA
showed some evidence for potential western and north-south groupings for P. chapmani,while the PCoA for P.
hermannsburgensis separated one individual on Enderby Island from Pilbara mainland individuals (Figure
2). As withN. timealeyi , these same patterns were not resolved when using microsatellites (Figure 2).
Further, tess3r analysis did not detect population genetic structure at either SNPs or microsatellite markers,
suggesting the Pilbara represents one genetic cluster (K= 1) for both Pseudomys species (Appendix S4).

IBD and summary statistics

Mantel tests and summary statistics were calculated across two genetic clusters (or “populations”; K = 2)
for the N. timealeyiSNP data set identified in IBB analyses, and further excluding 23 admixed individuals
that did not assign to either population. For the Pseudomys SNP data sets, and the microsatellite data sets
for all three species, analyses included all individuals as a single genetic population (K = 1).

We detected significant IBD (P < 0.05) within populations using both marker types for all three species.
However, while the weak positive relationship between genetic and geographic distance was consistent be-
tween marker types for P. hermannsburgensis (microsatellites: Rzy = 0.054, P = 0.014; SNPs: Rzy =
0.058, P = 0.037), the magnitude differed by a factor of approximately 1.5 to 3 between marker types for
N. timealeyi (microsatellites: Rzy = 0.144, P = 0.001; SNPs:cluster 1 — Rxy = 0.202, P = 0.001, cluster 2



— Ray = 0.424, P = 0.001) and P. chapmani(microsatellites: Rzy = 0.186, P = 0.002; SNPs: Rzy= 0.405;
P = 0.001), suggesting SNPs were better able to resolve patterns of IBD (Appendix S5-S6).

Across both marker types, P. chapmani showed the highest heterozygosity (microsatellites: H o = 0.775 +
0.038, H e =0.878 + 0.032; SNPs: H 0 = 0.26 £ 0.002, H e = 0.28 + 0.002), followed by the other two species
(Nt — microsatellites: H o = 0.741 £ 0.042, H e = 0.794 &+ 0.034; SNPs: H o = 0.215 £ 0.002 [clusterl],
0.208 + 0.003 [cluster 2], H e = 0.236 £ 0.002 [cluster 1], 0.227 & 0.003 [cluster 2]; Ph— microsatellites: H o
= 0.756 + 0.032, H e = 0.834 + 0.035; SNPs: H o = 0.16 + 0.002, H e = 0.177 + 0.002). Where population
genetic structure was detected, genetic differentiation was low (Nt SNP data set: F' gt = 0.022 £ 0.001; full
summary statistics provided in Appendix S5).

Isolation-by-resistance

The number of variables retained following single-surface optimisation varied from one to eight (Table 1),
with microsatellite-based model selection consistently resulting in fewer variables being retained than for
SNPs (i.e., variables performed worse than or equivalent to IBD or panmixia). For the remaining variables,
multi-surface optimisation generated single and composite resistance surfaces that performed better in the
model selection than the null model (panmixia) and IBD, for all three species across both marker types.
However, SNP data sets better differentiated between the best models (models within AAICc = 2 from
the top-ranked model) and both IBD and null models, with AAICc for SNP IBD and null models 8 to 58
times greater (i.e., further from the top model) than for those using microsatellites (Table 2). The strength
of the relationship between landscape resistance and genetic distance increased for all species when using
SNP markers compared to microsatellites, although was most notable for N. timealeyi (model estimates
for microsatellites vs. SNPs: Nt = 0.14 vs. 1.86; Pc = 0.09 vs. 0.79; Ph = 0.06 vs. 0.33; Figure 4).
Furthermore, SNPs appeared to provide additional power to detect more subtle environmental associations
between landscape elements and connectivity. Model selection based on SNPs for both N. timealeyi and P.
chapmani ranked composite surfaces as the best performing models, while single surfaces consistently ranked
best across microsatellite models.

While model selection for each marker type did not identify the same specific surfaces in the best perform-
ing models, landscape elements were somewhat similar. For the N. timealeyi SNP model selection, there
was support for two models using composite surfaces, including soil moisture (SOMO29), terrain rugged-
ness (VRM) and a vegetation element (top model — persistent forest cover [FOR], weight= 0.663, AICc=
15635.646, marginal R?= 0.634; second model — spinifex density [SPIN], weight= 0.0.337, AICc= 15636.998,
marginal R%2= 0.633; AAICc for the third-best model= 72.23; Table 2; Appendix S7-S9). Together, these
models ranked first in 81% of bootstrap iterations (Table 2; Appendix S10). In both cases, the optimised
resistance surface primarily represented ruggedness, which made the greatest contribution to the composite
surface (top model = 80.68%; second model = 79.75%), followed by soil moisture (top model = 18.29%; sec-
ond model = 19.85%), and a minimal contribution by the vegetation element (top model[FOR]|= 1%; second
model [SPIN]= 0.39%). For both models, landscape resistance decreased with increasing ruggedness and
soil moisture, and increased as the specific vegetation cover/density (FOR vs. SPIN) increased (Appendix
S11). In comparison, the top-ranked model for the microsatellite data set (weight= 0.965, AICc= 6038.543,
marginal R?= 0.108, AAICc for the second-best model= 6.63; Table 2; Appendix S7-S9) included a single
surface of coarse fragments (CF) which was highly correlated with VRM (Appendix S3). This model ranked
first in 97.2% of bootstrap iterations and revealed a negative relationship between landscape resistance and
coarse fragments (Table 2; Appendix S10-S11). Thus, regardless of whether SNPs or microsatellites were
used to generate genetic response data, models revealed that increasing ruggedness and rockiness (coarse
fragments) facilitate landscape connectivity, although the magnitude of this effect was approximately 13
times greater when using SNPs.

The P. chapmani SNP model selection provided moderate support for a top-ranked model including a com-
posite surface of soil moisture (SOMO29) and weathering intensity (WII; weight= 0.748, AICc= 1873.642,
marginal R?= 0.612; AAICc for the second-best model= 2.172; Table 2; Appendix S7-S9), which ranked
first in 44.4% of bootstrap iterations (Table 2; Appendix S10). Soil moisture contributed most to the com-



posite surface (71.26%), with landscape resistance decreasing as soil moisture increased (Appendix S11).
Weathering intensity made a 28.74% contribution to the composite surface, with landscape resistance in-
creasing with increased weathering (Appendix S11). In contrast, the microsatellite model selection provided
moderate support for a top-ranked model including coarse fragments (CF) only (weight= 0.581, AICc=
602.832, marginal R?= 0.055, AAICc for the second-best model= 5.241; Table 2; Appendix S7-S9). This
model ranked first in 100% of bootstrap iterations, with landscape resistance decreasing as the percentage of
coarse fragments increased (Table 2; Appendix S10-S11). While analyses based on SNP versus microsatellite
genetic response data selected different surfaces, both showed that either increased rocky outcrops (lower
weathering) or increased rocky substrate (coarse fragments) facilitate landscape connectivity, although SNPs
also found increased soil moisture was important. The magnitude of this effect was approximately 9 times
greater when using SNPs compared to microsatellite markers.

Both SNP and microsatellite model selection for P. hermannsburgensis supported a top model including a
single surface of terrain ruggedness (VRM; weight= 0.785, AICc= 7091.639, marginal R?= 0.209; AAICc for
the second-best model= 6.611; Table 2; Appendix S7-S9), or clay (weight= 0.798, AICc= 4698.857, marginal
R2= 0.025; AAICc for the second-best model= 4.582; Table 2; Appendix S7-S9), respectively. The best
supported SNP model ranked first in 92.6% of bootstrap iterations, compared to 79.3% for the microsatellite
model (Table 2; Appendix S10). In both cases, landscape resistance increased as either ruggedness or
clay content increased (Appendix S11). Although the SNP and microsatellite genetic response data selected
different surfaces, both found that non-sandy substrates (rocky/rugged terrain and clay) increased landscape
resistance, with the magnitude of this effect approximately 5.5 times greater when using the SNP dataset.

Discussion

Increasingly the field of conservation genetics is transitioning to the use of genomic data to understand
patterns of connectivity in wild populations. While SNP markers appear to provide increased resolution
for detecting population genetic structure, so far there has been a lack of studies to properly evaluate the
performance of SNPs relative to microsatellites for empirical landscape genetic analyses. Here we provide
a case study assessing the performance of these two marker types in evaluating three explicit landscape
genetic hypotheses (IBD, IBB and IBR) in a suite of small arid-zone mammals possessing high dispersal
capacities. In general, SNP markers provided additional resolution in detecting subtle genetic structuring in
IBB analyses, particularly for the dasyurid, and strengthened the performance of IBD and IBR analyses in
both rodent and dasyurid species.

Isolation-by-barrier: SNPs vs. microsatellites

Here, using SNP data, we identified genetic structure in the dasyurid species, N. timealeyi, that was not
detected with microsatellite data using the same individuals (in this study and in Levy et al., [2019]). Our
results add to a growing body of work suggesting SNPs provide higher resolution for population genetic
analyses compared to microsatellites, particularly in species with weak population structure (Jeffries et al.,
2016; Puckett & Eggert, 2016; Viengkone et al., 2016). Similar to our results, Camacho-Sanchez et al.,
(2020) compared both marker types in two amphibians, concluding that SNP data sets with large numbers
of loci are more reliable at identifying population genetic structure at large spatial scales (7500,000 square
kilometres). Further, a synthesis of studies using both marker types showed that SNPs were either equivalent
or outperformed microsatellites at detecting population genetic structure, suggesting this pattern is broadly
representative, rather than study or context specific (Sunde et al., 2020).

SNP markers indicated two genetically distinct groups in N. timealeyi , although given the large degree of
admixture, these clusters may be better described as representing a geographic cline. These clusters are
somewhat aligned with the Abydos Plain and Oakover Valley which are known to have distinct vegetation
assemblages (McKenzie et al., 2009). Phylogenetic studies on several reptile genera (geckos) revealed sim-
ilar genetic division (Pepper, Doughty, & Keogh, 2013), suggesting this split may represent an ecological
transition zone and could be present across multiple taxa. Alternatively, given that SNPs have a slower
mutation rate than microsatellites (Morin et al., 2004), this pattern may also reflect the ancestral genetic



signature present prior to aridification in the mid-late Pleistocene (approximately 15-25 kya). This period
saw rivers transition from perennial to ephemeral flows and the expansion of drought resistant flora (Byrne
et al., 2008). Thus, a third scenario of reconnection of previously separated refugial populations may also
explain the substantial admixture and low differentiation between these genetic clusters. In fact, Umbrello
et al., (2020) found evidence of population expansion in six small dasyurids across the Pilbara since the
mid-late Pleistocene and the Last Glacial Maximum (LGM) and proposed that this followed the increased
availability of arid habitat. Refugial separation prior to population expansion after the LGM has also been
detected in sea spiders (Soler-Membrives, Linse, Miller, & Arango, 2017), mussels (Cunha, Lopes, Reis, &
Castilho, 2011) and ants (Xun et al., 2016), with weak differentiation reflecting the loss of refugial genetic
structure over time due to high dispersal capacities.

In contrast, we were not able to detect evidence for population genetic structuring within the Pilbara
landscape for the two native Pseudomys species across both SNP and microsatellite data sets, suggesting a
lack of landscape barriers to dispersal. However, SNPs were still able to resolve some subtle patterns not
detected with microsatellites (e.g., PCoA groupings of the P. hermannsburgensisisland individual and the
subtle western and north-south groupings forP. chapmani ). The weak clusters detected in the SNP P.
chapmani data set may reflect the accumulation of positive spatial-genetic structure driven by the sociality
of the species (i.e., family groups within pebble mounds) (Firman, Ottewell, Fisher, & Tedeschi, 2019;
Ford & Johnson, 2007). However, this structure was too weak to be detected with our sampling strategy
(spatially dispersed individuals) and the clustering analysis. Several other genetic studies in rodents also
find low population structure even in the presence of major landscape barriers or considerable landscape
heterogeneity (Gauffre, Estoup, Bretagnolle, & Cosson, 2008; Vega, Vazquez-Dominguez, Mejia-Puente,
& Cuarén, 2007). This is likely because irruptive boom-bust population dynamics obscure any signals of
population structure.

Isolation-by-distance and isolation-by-resistance: SNPs vs. microsatellites

Few studies have evaluated the ability of microsatellites versus SNPs to detect IBD and we are not aware
of any that have compared results between marker types for identifying IBR. In a comparative study using
RADseq SNPs and microsatellites, Jeffries et al., (2016) identified a stronger signature of IBD from the SNP
data than from microsatellite data sets, suggesting this may be due to the mutational processes of the markers.
Similarly, we detected significant IBD for all species and marker types, and this signature was stronger when
using SNPs in some cases. For example, while both marker types showed weak IBD for P. hermannsburgensis
, the magnitude of the correlation increased when using SNPs for N. timealeyi and P. chapmani . Perhaps
the increased power provided by more loci, coupled with the slower mutation rate of SNPs was able to
resolve this subtle pattern, suggesting that these species have more constrained dispersal capacities than P.
hermannsburgensis . For IBR, we found that SNPs tended to resolve more complex resistance surfaces (i.e.,
composite surfaces of multiple environmental layers) than microsatellites, potentially reflecting the increased
power of large SNP panels to detect subtle and complex patterns of functional connectivity. SNP models
also revealed a stronger effect of landscape resistance on genetic distance and tended to better differentiate
between the top models and the alternate IBD hypothesis, adding to the body of evidence arguing that SNPs
provide better resolution for questions that require individual-level genetic information, such as relatedness,
individual identification and fine-scale genetic structure (Sunde et al., 2020).

High resolution spatial data in combination with sophisticated landscape resistance modelling revealed ad-
ditional detail on the landscape characteristics influencing functional connectivity in our target species than
detected in Levy et al., (2019), and the identified drivers of connectivity were largely consistent between
marker types. When directly compared via model selection, we found that IBR hypotheses outcompeted the
alternate hypothesis of IBD in all cases. However, these results should be interpreted carefully since the high
power inherent to large pairwise data sets, combined with correlations between competing IBD and IBR
models, can result in low model selection accuracy (Shirk, Landguth, & Cushman, 2018). We attempted
to reduce model selection error by following best practice recommendations, including using linear mixed-
effects models fit with MLPE and by transforming resistance surfaces to satisfy assumptions of linearity, as



this approach has been shown to outperform other regression methods (Shirk et al., 2018). We also used
individual-genetic distances, with metrics sensitive to contemporary genetic structure (Shirk, Landguth, &
Cushman, 2017), since population-level analyses are less representative of species that are continuously dis-
tributed. Finally, we used a data-driven approach to parameterising resistance surfaces based on spatial
layers that are biologically plausible, to tease apart competing hypotheses and determine the most likely
characteristics contributing to landscape resistance.

Using this approach across both marker types, we found that increasing ruggedness or rockiness facilitated
landscape connectivity for N. timealyei . This is surprising, as this species is a habitat generalist, weakly
associated with clay substrates (Gibson & McKenzie, 2009), highlighting the fact that habitat and dispersal
requirements are not always tightly linked. For example, Keeley, Beier, Keeley, & Fagan, (2017) found that
Kinkajou (Potos flavus ), an arboreal mammal, will readily cross non-forested habitat during dispersal and
mating movements despite having home ranges tightly linked to forested areas. In the case of N. timealeyi ,
the increased complexity of rocky, rugged habitat and dense vegetation (also identified as having a positive
effect on connectivity) may provide protection from predators during dispersal (Moore et al., 2019). Addi-
tionally, SNP IBR models indicated that higher soil moisture increased connectivity, likely reflecting mesic
conditions more conducive to dispersal in this arid landscape. In contrast, both Pseudomys species showed a
comparatively weaker effect of landscape resistance on functional connectivity, again likely indicative of the
irruptive population dynamics present in rodents compared to dasyurids. Results for P. hermannsburgensis
were consistent with previous research showing an association with sandy soils (Gibson & McKenzie, 2009),
as our top models included a negative effect of non-sandy substrates on landscape connectivity. Interestingly,
while N. timealeyi and P. hermannsburgensis both showed top models that were orders of magnitude higher
than the IBD (and panmixia) models, this difference was slightly less pronounced for P. chapmani (particu-
larly using the microsatellite data set), suggesting that functional connectivity is approaching IBD for this
species. Still, our results indicated that increased rocky outcrops (lower weathering — SNPs) or increased
rocky substrate (coarse fragments — microsatellites), and increased soil moisture (SNPs) facilitated landscape
connectivity. This is biologically plausible since this species is a rocky habitat specialist, although our results
suggest that due to the fragmented nature of rocky habitat in the Pilbara (Ford & Johnson, 2007), dispersal
must often occur between these patches, a pattern also seen in other species found in rocky habitat in the
Pilbara (Shaw et al., 2022).

Conclusions

There has been a rapid shift from microsatellite markers to SNPs in the fields of conservation and population
genetics, and comparative studies (including ours) suggest that the major benefit of SNPs is not inherently
about the marker type, but the number used (Sunde et al., 2020). Conservation is a crisis discipline requiring
all genetic tools at our disposal, so rather than recommending against certain marker types, simulations
can be used to undertake power analyses and evaluate findings (i.e., to determine whether marker panels
have the power to detect genetic patterns in specific systems or scenarios). Simulation tools such as CDPOP
(Landguth & Cushman, 2010) and HexSim (Schumaker & Brookes, 2018) have contributed greatly to this
goal, however, it can be difficult to parameterise simulations, particularly in relatively understudied systems
such as the arid landscape presented here, due to complex and unknown species’ demography. In particular,
it is not yet feasible to simulate landscapes where genetic structure plays out over such a vast scale and there
is still much work to be done to develop landscape genetic tools to help us understand the interplay between
boom-bust dynamics, temporally and spatially dynamic refuges (common features of arid landscapes), and
dispersal. Further research on arid systems can provide greater mechanistic understanding of these patterns
and processes.

Understanding subtle resistance patterns in highly permeable landscapes is not of obvious conservation
concern (Shirk et al., 2018). However, the Pilbara is substantially impacted by competing land uses, including
mining and pastoralism, as well as climatic cycles that drive dynamic drought and fire regimes (Cramer et al.,
2016; McKenzie et al., 2009). Research and workshops on Pilbara threatened species consistently highlight
that the cumulative impacts of habitat clearance and fragmentation are a major threat (Cramer et al., 2022,
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2016), and that maintaining connectivity is crucial, even in large, panmictic populations (Umbrello et al.,
2022). Although we found high levels of gene flow in the Pilbara (particularly for the Pseudomysspecies),
ongoing habitat fragmentation is likely to impede functional connectivity in future. Knowledge of factors
driving connectivity could assist with identifying wildlife corridors, which can facilitate higher gene flow
at regional scales (Liu et al., 2018) and act as foci for conservation management (Shaw et al., 2022). This
understanding of which landscape elements maintain meta-population health is becoming increasingly crucial
for successful conservation in Australia, and globally.
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Tables

Table 1. Spatial layers used to test isolation-by-resistance hypotheses, with proposed mechanisms detailed

in the justification column (see Appendix S2 for layer visualisation and further information).

Variable

Aridity indices:
ADI, ADX, ADM

Relative soil
moisture indices:
SOMO29, SOMO30,
SOMO31,
SOMO32, SOMO33

Substrate: Clay,
Sand, Silt, CF

Description

ADI: min. monthly
aridity; ADX: max.
monthly aridity;
ADM: mean annual
aridity.

SOMO29: max. for
all weeks of the
year; SOMO30:
min. for all weeks of
the year; SOMO31:
seasonality (weekly
standard deviation),
SOMO32: mean of
quarter with highest
average; SOMO33:
mean of quarter
with lowest average.
Mean estimated
value (%) of each
soil type (where
CF= Coarse
Fragments) between
0-60 cm.

Justification

Areas of higher
aridity inhibit
primary vegetation
growth and
invertebrate
communities
(Walsberg, 2000).
Areas of higher soil
moisture stimulate
primary vegetation
productivity and
resource availability
(Berndtsson et al.,
1996)

Clay is an
important predictor
of Nt occurrence;
Ph prefers
increasingly sandy
substrates; Pc
prefers rocky
substrates (Ford &
Johnson, 2007;
Gibson &
McKenzie, 2009).
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Included in
final variable
set

None

MSAT: Nt:
SOMO29 Ph:

SOMO31 SNP: Nt:

SOMO29 Pc:
SOMO29 Ph:
SOMO31

MSAT: Nt: CF Pc:

CF Ph: Clay SNP:
Nt: Clay Ph: Silt

Source

Harwood et al.,
(2016)

Harwood, (2019)

Holmes, Griffen, &
Odgers, (2014)



Topographic
features: WII,
VRM, DEM

Water courses:

WAT

Vegetation: SPIN,

FOR

Fire: FF

WII: Weathering
Intensity Index —
describes regolith
properties (low=
unweathered
outcrops, high=
areas with clays and
sands); VRM:
Vector Ruggedness
Measure — measure
for terrain
complexity
(independent of
slope); DEM: digital
elevation model.
Euclidean distance
(m) to natural
perennial water
(excludes artificial
water points, and
inland flats subject
to inundation or
flooding).

SPIN: Spinifex
density Index —
decision rules
applied to
determine the most
likely locations of
spinifex dominated
grasslands; FOR:
Persistent Forest
Cover — frequency of
occurrence for forest
and sparse woody
vegetation between
1988 — 2018.

FF: Fire frequency
— Proportion of
years burnt (annual
fire scar mapping)
between 2000-2008

Nt associated with
rugged topography;
Ph commonly
occupies gentle
topography; Pc
displays preference
for eroded, hilly
areas of
unweathered
bedrock (Ford &
Johnson, 2007;
Gibson, 2011).

Other mammals in
the Pilbara have
shown positive
association between
permanent water
sources and habitat

(Moore et al., 2019).

Higher vegetation
density (e.g.,
Triodia) provides
protection from
predators for small
mammals (Moseby,
Read, McLean,
Ward, & Rogers,
2016).

Burnt areas provide
less protection from
predators (Moseby
et al., 2016)

MSAT: Ph: VRM
SNP: Nt: DEM,
VRM Pc: DEM,
VRM, WII Ph:
DEM, VRM, WII

SNP: Nt: WAT Pec:
WAT Ph: WAT

SNP: Nt: FOR,

SPIN Pc: SPIN Ph:

SPIN

SNP: Ph: FF

WII: Wilford,
(2012); Wilford &
Roberts, (2019)
VRM: Derived from
DEM DEM:
Gallant, Wilson,
Dowling, Read, &
Inskeep, (2011)

Derived from:
Landgate, (2012,
2017, 2019)

SPIN: Derived from
Li et al., (2012);
Rampant, Zdunic,
& Burrows, (2019)
FOR: Derived from
Furby, (2018);
Furby, Wallace, &
Caccetta, (2007)

Derived using
equivalent methods
to North Australia
and Rangelands
Fire Information,
(2019)

MSAT= Microsatellites; SNP= single nucleotide polymorphisms; Nt=Ningaui timealeyi ; Pc = Pseudomys
chapmani; Ph =Pseudomys hermannsburgensis. Climate layers represent 30-year averages centred on 1990.

Table 2. MLPE model selection across all species and marker types, for models performing within 2
AAICc of the top-ranked model, as well as the isolation-by-distance (IBD) and panmixia (null) models for

comparison (full model summaries and diagnostic plots can be found in Appendix S7-S9).
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Species (marker)
Nt
(SNP)

Nt
(MSAT)

Pc
(SNP)

Pc
(MSAT)

Ph
(SNP)

Ph
(MSAT)

Surface
FOR*SOMO29*VRM
SOMO29*SPIN*VRM
IBD

Null

CF

IBD

Null

SOMO29*WII

IBD

Null

CF

IBD

Null

VRM

IBD

Null

Clay

IBD

Null

AAICc
0

1.35
1569.69
6816.77
0

27.16
213.12
0

49.88
184.47
0

5.32
14.45

0

85.61
246.99
0

9.61
27.29

AICc weight
0.66

0.34

0

0

0.97

R%m
0.63
0.63
0.42

0.11
0.02

0.61
0.07

0.06
0.01

0.21
0.01

0.03

R2c
0.93
0.93
0.70
0.28
0.39
0.33
0.32
0.79
0.63
0.60
0.50
0.47
0.47
0.76
0.66
0.65
0.41
0.40
0.40

LL
-7806.88
-7807.56
-8600.62
-11225.19
-3015.11
-3030.80
-3124.82
-928.52
-959.63
-1028.02
-297.37
-302.35
-307.99
-3537.42
-3582.34
-3664.06
-2345.27
-2352.19
-2362.06

Avg. rank
2.80
2.80
9.36
NA
1.04
3.46
NA
5.30
29.89
NA

1

2

NA
1.44
83.14
NA
1.35
3.34
NA

% Top
45.4
35.5
0
NA
97.2
1.8
NA
44 .4
3
NA
100
0
NA
92.6
0
NA
79.3
6.8
NA

MSAT= Microsatellites; SNP= single nucleotide polymorphisms; Nt=Ningaui timealeyi ; Pc = Pseudomys
chapmani; Ph =Pseudomys hermannsburgensis; AAICc= ranking of Akaike Information Criterion corrected
for small sample size in relation to best performing model; AICc weight= Akaike weight indicating the relative
likelihood of each model; R?m= marginal R%; R?c= conditional R?; LL= log-likelihood; Avg. Rank= average
model ranking over 1000 bootstrap iterations; %Top= percentage of 1000 bootstrap iterations where top

Model.

Supporting Information

Supporting Information, including additional details, analyses and results can be found in appendices S1 —

S11.
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