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Abstract

The standard van Neumann computer excels at many things. However, it can be very inefficient in solving optimization problems

with a large solution space. For that reason, a novel analog approach, the oscillator-based Ising machine, has been proposed as

a better alternative for dealing with such problems. In this work, we review the concept of oscillator-based Ising machines. In

particular, we address how optimization problems can be mapped onto such machines when the QUBO formulation is given.

Furthermore, we provide an ideal circuit that can be used in combination with the wave digital concept for real-time simulated

annealing. The functionality of this circuit is explained on the basis of a Lyapunov stability analysis. The latter also provides

an answer for the question: when has the Ising machine solved a mapped problem? At the end, we provide emulation results

demonstrating the correlation between functionality and stability of the discussed machine. These results show that mapping

a problem onto an Ising machine effectively maps the solution of the problem onto an equilibrium of the phase space.
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Summary

The standard van Neumann computer excels at many things. However, it can be very
inefficient in solving optimization problems with a large solution space. For that rea-
son, a novel analog approach, the oscillator-based Ising machine, has been proposed
as a better alternative for dealing with such problems. In this work, we review the con-
cept of oscillator-based Ising machines. In particular, we address how optimization
problems can be mapped onto such machines when the QUBO formulation is given.
Furthermore, we provide an ideal circuit that can be used in combination with the
wave digital concept for real-time simulated annealing. The functionality of this cir-
cuit is explained on the basis of a Lyapunov stability analysis. The latter also provides
an answer for the question: when has the Ising machine solved a mapped problem? At
the end, we provide emulation results demonstrating the correlation between func-
tionality and stability of the discussed machine. These results show that mapping a
problem onto an Ising machine effectively maps the solution of the problem onto an
equilibrium of the phase space.

KEYWORDS:
Ising machine, unconventional computing, Kuramoto model, Lyapunov stability

1 INTRODUCTION

As the progress in van-Neumann-based technology begins to stagnate, scientific research is slowly gravitating towards finding
alternative technologies that can supplement the deficiencies of standard computers1,2. In this context, oscillator-based Ising
machines are a promising approach for solving combinatorial optimization problems with a large solution space3. Their hardware
implementation is commonly based on a network of diffusively coupled (nonlinear) oscillators4,5,6,7,8. Although in recent years,
we have also seen a number of optical implementations, so-called coherent Ising machines9,10,11,12.

In principle, all Ising machines are built, such that they have the natural tendency to minimize a scalar function, the so-called
Ising Hamiltonian, which relates to the Ising model13 and describes the energy of a lattice consisting of magnetically coupled
spins,

𝐻 = −sTJs − hTs , J = JT , eT𝜈 s = 𝑠𝜈 ∈ {±1} , (1)

where e𝜇 denotes a unit vector with a one in the 𝜇-th entry. The vector of spin variables s has the entries 𝑠𝜈 describing the
orientation of the 𝜈-th spin in the lattice. In general, these spins can either point upwards 𝑠𝜈 = 1 or downwards 𝑠𝜈 = −1. The
mutual coupling is described by the coupling coefficient matrix J , whose 𝜇𝜈-th element, 𝐽𝜇𝜈 , describes the magnetic coupling
between the 𝜇-th and 𝜈-th spin in the lattice. Moreover, the vector h is the external coupling vector, whose 𝜈-th entry describes

†Bakr Al Beattie and Karlheinz Ochs should be considered joint first author



2 B. Al Beattie, K. Ochs

an external coupling between the 𝜈-th spin and an external magnetic field. In the following, we refer to the corresponding term
as the Zeeman term.

To solve a combinatorial optimization problem, one must map the considered problem onto the Ising Hamiltonian. In the
past decade, many optimization problems (including Karp’s 21 NP-problems) have been successfully mapped onto the Ising
Hamiltonian14,15,16,17,18,19,20. Here, mapping refers to the procedure of formulating a Hamiltonian, similar to (1), whose minimum
encodes the optimal solution of the given problem, see14. This means that the minimum can only be achieved when an optimal
spin configuration (ground state) is found, where the latter corresponds to the solution of the problem. However, even when an
adequate Hamiltonian description of a problem is found, mapping the problem onto the coupling coefficients within J and h is
not always straightforward. To address this problem, we propose a mathematical framework, which directly yields the coupling
coefficients in case the Hamiltonian of the considered problem is given.

In previous work21, we have proposed a real-time-capable algorithm for emulating an oscillator-based Ising machine that can
solve optimization problems with no Zeeman term. The algorithm is based on the wave digital concept, which is a powerful tool
for emulating the behavior of electrical circuits. In particular, this concept is known for its numerical robustness and massive
parallelism when it comes to emulating large electrical networks22. In this work, we aim to present a generalization of the
circuit, on which the algorithm is based, that also considers the Zeeman term. To explain the functionality and robustness of the
proposed algorithm, we recapitulate the stability analysis presented in4, which is based on Lyapunov’s stability theory. Here,
we propose a modified Lyapunov function that now fulfills the properties of a strict Lyapunov function, as opposed to the one
found in literature4. Furthermore, we provide a novel concept for finding out when an oscillator-based Ising machine has solved
a mapped problem besides convergency. This concept serves as both an explanation and a numerical proof of the Ising machine’s
functionality.

The remainder of this paper is structured as follows: Section 2 gives some preliminary remarks on the nomenclature used
throughout this work. In section 3 we introduce a framework for mapping optimization problems onto the Ising machine. Section
4 deals with the functionality, stability, and modeling of a phase-oscillator-based Ising machine. In section 5, we show emulation
results to validate the discussions of the previous section. Finally, section 6 summarizes our contributions and gives a brief
outlook on future research in the context of this work.

2 PRELIMINARIES

A graph  = ( , ) consists of || = 𝑛 vertices and || = 𝑚 edges. Two vertices 𝜇 and 𝜈 are said to be adjacent if the edge
set  contains a corresponding edge denoted by (𝜇, 𝜈) ∈  . In most cases, the edges are undirected, i.e. when (𝜇, 𝜈) ∈  ,
then this indirectly implies (𝜈, 𝜇) ∈  , unless the problem is explicitly declared to have directed edges. The matrix A denotes
the adjacency matrix of the graph, which is always symmetric A = AT and contains zeros on its main diagonal, as we do not
consider any form of self loops. The matrix Ā denotes the co-adjacency matrix of the graph and is given by:

Ā = 1𝑛1
T
𝑛 − 𝟏 −A . (2)

This matrix is always symmetric Ā = ĀT and contains zeros on its main diagonal. Lastly, a complete graph is a graph, where
a path exists from every vertex to every other vertex in the graph. A set of vertices (or oscillators) are said to be completely
coupled/connected, if their graph representation constitutes a complete graph.

3 PROBLEM MAPPING

Mapping an optimization problem to an oscillator-based Ising machine first requires formulating the problem as a Quadratic
Unconstrained Binary Optimization problem (QUBO):

min
x

{

xTQx
}

, 𝑥𝜈 ∈ {0, 1} . (3)

Here, we refer to x as a vector of bit variables and Q ∈ ℝ𝑛×𝑛 as the coefficient matrix, which encodes the optimization problem.
The problem of minimizing the Ising Hamiltonian is essentially a QUBO, since it can always be stated as

min
s
{𝐻} , with 𝐻 = −sTeJese , Je =

[

J h

2
hT

2
0

]

, and se =
[

s

1

]

, (4)
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where se is an extended vector of spin variables and Je is an extended coefficient matrix, which now also encodes the Zeeman
term. In the following, we refer to the problem of minimizing the Hamiltonian defined in (4) as an Ising problem. Note, the
relation between the two variables x and s is bijective:

x = 1
2
[s + 1] ⇐⇒ s = 2x − 1 . (5)

Therefore, every QUBO can be reformulated as an Ising problem and vice versa.
To give an example of problem mapping, we consider the maximum cut problem (max-cut), arguably the most popular

problem in association with the Ising machine. This is partly due to the direct correspondence of the optimization problem with
the Ising model. Given a weighted graph  = ( , ) with the weighted adjacency matrix W , the maximum cut problem asks for
a partitioning of the graph’s vertices into two complementary sets, such that the number of edges between the sets is maximal,

max
s

{cut{s}} = min
s

{

sTWs
}

, with cut{s} = 1
4

𝑛
∑

𝜇=1

𝑛
∑

𝜈=1
𝑤𝜇𝜈[1 − 𝑠𝜇𝑠𝜈] =

1
4
[

1
TW1 − sTWs

]

. (6)

Evidently, the coupling coefficients in (1) are determined by:

J = −W and h = 𝟎 . (7)

One spin variable sometimes do not suffice for representing local decisions, which have more than two possible outcomes. In
this case, a common approach is to use multiple spin variables. Thus, we obtain subsets of spin variables, which are mutually
coupled to encode the considered problem. For that reason, it can be beneficial to represent the spin variables in the form of a
matrix, whose columns each represent a subset of spin variables:

S =
[

s1, s2, … , s𝑚
]

, with S ∈ ℝ𝑘×𝑚 , 𝑚𝑘 = 𝑛 , and s = vec(S) . (8)

Here, 𝑚 is the number of subsets, 𝑘 is the number of spin variables in each subset, while vec(S) denotes the vectorization of the
matrix S. Equivalent to (6), we define a matrix of bit variables:

X = 1
2
[S + 11

T] , with x = vec(X) . (9)

Throughout this manuscript, we will show that the Hamiltonian representation of many graph-related tasks can be formulated
as

𝐻 = 𝐻𝓁 +
𝓁−1
∑

𝜆=0
𝐻𝜆 , with 𝐻𝜆 = tr

(

QT
𝜆S

TR𝜆S
)

and 𝐻𝓁 = qT
𝓁S

Tr𝓁 , (10)

where Q𝜆 ∈ ℝ𝑚×𝑚 and R𝜆 ∈ ℝ𝑘×𝑘 are real matrices (usually adjacency matrices), q𝓁 ∈ ℝ𝑘 and 𝑟𝓁 ∈ ℝ𝑚 are real vectors,
and tr(⋅) denotes the trace operator. The relationship between (10) and the canonical formulation of the Ising Hamiltonian (1)
is given by:

𝐻 =
𝓁
∑

𝜆=1
𝐻𝜆 , with 𝐻𝜆 = sT[Q𝜆 ⊗R𝜆]s and 𝐻𝓁 = [q𝓁 ⊗ r𝓁]Ts , (11)

where ⊗ denotes the Kronecker product. A thorough derivation of this relationship is given in the appendix. Now, we would
like to give a graph-theoretical interpretation of this mapping scheme, so we rewrite the partitioned Hamiltonians as a linear
combination of bilinear forms:

𝐻𝜆 =
𝑚
∑

𝜇=0
𝑞𝜆,𝜇𝜇s

T
𝜇R𝜆s𝜇 +

𝑚
∑

𝜇≠𝜈
𝑞𝜆,𝜇𝜈s

T
𝜇R𝜆s𝜈 , with 𝑞𝜆,𝜇𝜈 = eT𝜇Q𝜆e𝜈 . (12)

The first sum maps 𝑚 topologically identical disjoint subgraphs onto the Ising Hamiltonian. Their interconnections are described
by R𝜆, where the edge weights of the 𝜇-th subgraph are uniformly scaled by the factor 𝑞𝜇𝜇. The second sum maps the intercon-
nection between the vertices of the 𝜇-th and 𝜈-th subgraph. Again, the interconnections and their weights are described by the
adjacency matrix R𝜆 and are uniformly scaled by the factor 𝑞𝜇𝜈 . By comparing the coefficients of (1) with (11), we obtain the
following relationship between both representations:

J = −
𝓁−1
∑

𝜇=0
[Q𝜆 ⊗R𝜆] and h = −[q𝓁 ⊗ r𝓁] . (13)
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J12

J34

J14 J23

G12

G34

G14 G23

Figure 1 Left: An arbitrary spin configuration for an Ising lattice. Right: Compact representation of an Ising machine with the
same configuration as the left side. The appearing oscillators assume a relative phase shift of either 0 or 𝜋. A relative phase shift
of 𝜋 is interpreted as ”spin up” (blue), while a relative phase shift of 0 is interpreted as ”spin down” (red).

To map an Ising problem to the Ising machine, we must encode the coupling coefficients into the couplings of the oscillators.
Fig. 1 depicts the solution of an Ising problem with four coupling coefficients 𝐽𝜇𝜈 . Here, the coefficients have been mapped
onto the conductances of the Ising machine depicted on the right side. The following sections give a systematic derivation
of the coupling coefficients from the underlying QUBO formulation. Here, we will deal with different kinds of optimization
problems (including NP-problems), where each problem will introduce a new type of cost function or constraint. The problems
are hierarchically organized by the difficulty of their QUBO formulation. The purpose of this analysis is to obtain a reservoir
of different cost functions and constraints, whose mapping onto the Ising machine should be the simplified by our contribution.
The resulting formalism is especially useful for systematically mapping densely constrained problems onto the Ising machine.
In particular, we would like to draw the reader’s attention to the recurring vector-valued representations, which appear in many
graph-based optimization problems. These terms usually appear as multiple sums over node or edge subsets in the original
QUBO formulations, see14 for an overview. Such a representation makes it very difficult to discern the coupling structure and the
associated weights. However, this interpretation becomes very simple and intuitive, when the suggested formalism is applied.

3.1 Binary Integer Linear Programming
Binary Integer Linear Programming (BILP) is an optimization task that asks us to maximize a linear cost function subject to a
set of linear equality constraints23:

max
x

dTx , s. t. Wx = b . (14a)

The entries of the vector d ∈ ℝ𝑛 scale the bit variables according to their importance or impact. The entries of W ∈ ℝ𝑘×𝑛 are
the coefficients of the considered linear constraints, while b contains the constant equality constraints. The QUBO formulation
associated with this problem reads14,

𝐻 = 𝐻0 +𝐻1 , 𝐻0 = −𝑐0 dTx , 𝐻1 = 𝑐1‖b −Wx‖2 , (14b)

where ‖⋅‖ denotes the Euclidian norm. The coefficients 𝑐𝜈 weigh the different parts of the Hamiltonian according to their
importance. In some Ising problems, certain choices of these coefficients are beneficial for enhancing the performance of the
Ising machine14. Now, since we have no subsets of bit variables, the corresponding Hamiltonian of the Ising problem can be
directly obtained by applying (5):

𝐻 =
𝑐1
4
sTW TWs

⏟⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏟
mutual coupling

+
𝑐1
2

[

1
TW TW − 2bTW −

𝑐0
𝑐1
dT

]

s

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
Zeeman term

− 𝑐1
[

bTb − bTW1 + 1
TW TW1 −

𝑐0
2𝑐1

dT
1

]

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
offset

. (14c)

Comparing the coefficients of (14c) with (1) then yields the desired coupling coefficients:

J = −
𝑐1
4
W TW and h = −

𝑐1
2

[

W TW1 − 2W Tb −
𝑐0
𝑐1
d
]

. (14d)

The offset appearing in (14c) is not important w.r.t. the coupling coefficients. However, it ensures that the minimum of the
Hamiltonian, corresponding to the solution of the problem, stays at zero.
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4 1

23

s1,1s1,2

s1,3s1,4

sµ,g

sµ,b

sν,g

sν,b

Figure 2 An example of a graph with 𝑚 = 4 and 𝑘 = 4. Every vertex in the compact graph is a condensed representation of a
complete graph with 𝑘 = 4 vertices. The vertices of the latter are the spin variables representing the color of the corresponding
vertex. An explicit representation of the green dashed edges is given on the right side of the figure.

3.2 Minimal Vertex Cover
Given an undirected graph  = ( , ) with 𝑚 vertices and 𝑝 edges, a vertex cover is a set of vertices covering all edges, i.e. every
edge is incident to a vertex in the set. The minimal vertex cover problem asks for the minimal number of vertices that must be
colored in order to obtain a vertex cover24:

min
x

1
Tx , s. t. 𝑥𝜇 + 𝑥𝜈 ≥ 1 for all (𝜇, 𝜈) ∈  . (15a)

Here, the validity of the vertex cover is embedded into the inequality constraint. The QUBO formulation of this problem reads14:

𝐻 = 𝐻0 +𝐻1 , 𝐻0 = 𝑐01
Tx , 𝐻1 =

𝑐1
2
[1 − x]TA[1 − x] , (15b)

with the adjacency matrix A of . Again, no subsets of bit variables appear in this problem. Applying (5) yields

𝐻 =
𝑐1
8
sTAs

⏟⏞⏟⏞⏟
mutual coupling

−1T
[𝑐1
4
A −

𝑐0
2
𝟏
]

s

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
Zeeman term

+
𝑐1
4
𝑝 +

𝑐0
2
𝑚

⏟⏞⏞⏞⏟⏞⏞⏞⏟
offset

. (15c)

The desired coefficients are given by:

J = −
𝑐1
8
A and h =

[𝑐1
4
A −

𝑐0
2
𝟏
]

1 . (15d)

3.3 Graph Coloring
Given an undirected graph  = ( , ) with 𝑚 vertices and 𝑝 edges, the graph coloring problem asks us to color the graph with
𝑘 colors such that two adjacent vertices never share the same color. Here, we have two conditions that must be fulfilled: every
vertex must have exactly one color and two adjacent vertices should not have the same color. Considering that every color can
only be represented by one binary variable, we must introduce 𝑘 binary variables for the different colors of each vertex. We can
then formulate the optimization problem as follows:

min
x

1 , s. t.
𝑘
∑

𝜘=1
𝑥𝜈,𝜘 = 1 , 𝑥𝜇,𝜘 + 𝑥𝜈,𝜘 ≤ 1 , 𝑥𝜈,𝜘 ∈ {0, 1} . (16a)

A possible QUBO formulation reads14

𝐻 = 𝐻1 +𝐻2 , with 𝐻1 = ‖

‖

XT
1 − 1‖

‖

2 , 𝐻2 =
1
2
tr(AXTX) , and X ∈ ℝ𝑚×𝑘 , (16b)

where A denotes the adjacency matrix of . Every column of X contains 𝑘 bit variables 𝑥𝜈,𝜘 for each possible color of the 𝜈-th
vertex. To obtain the equivalent Ising problem, we apply (9), which yields the Hamiltonian

𝐻 = 1
4
tr(ST

11
TS) + 1

8
tr(ASTS)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
mutual coupling

+ 1
4
1
T [A + [2𝑘 − 4]𝟏]ST

1

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
Zeeman term

+ 1
4
[

𝑝𝑘 + 𝑛[𝑘 − 2]2
]

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
offset

. (16c)
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From (13), we can deduce the desired coupling coefficients:

J = −1
4
[𝟏⊗ 11

T] − 1
8
[A⊗ 𝟏] and h = −1

4
[[A + [2𝑘 − 4]𝟏]1⊗ 1] . (16d)

A graphical illustration of the coupling scheme is given Fig. 2.

3.4 Hamiltonian Cycle
Given a directed or undirected graph  = ( , ) with 𝑚 vertices and 𝑝 edges, can one find a cycle that visits every vertex exactly
once? Essentially, a Hamiltonian cycle imposes two conditions: every vertex must be visited exactly once and only adjacent
vertices are visitable from the current vertex. To formulate this problem as a binary optimization problem, one can introduce 𝑚
bit variables representing the current positioning in the graph for every graph traversal. However, this implies that we must add
the condition that the current position must always be unique. Overall, we can formulate the problem as follows:

min
x

1 s. t.
𝑛
∑

𝜇=1
𝑥𝜇,𝜈 = 1 ,

𝑛
∑

𝜈=1
𝑥𝜇,𝜈 = 1 , 𝑥𝜇,𝜆 + 𝑥𝜈,𝜆+1 = 0 , for all (𝜇, 𝜈) ∉  . (17a)

The corresponding QUBO formulation then reads14

𝐻 = 𝐻1 +𝐻2 +𝐻3 , 𝐻1 = 𝑐1‖X1 − 1‖
2 , 𝐻2 = 𝑐1‖‖X

T
1 − 1‖

‖

2 ,

𝐻3 = 𝑐1 tr(ĀXTP TX) , P =
[

𝟎T 1
𝟏 𝟎

]

, X ∈ ℝ𝑛×𝑛 ,
(17b)

where Ā is the co-adjacency matrix defined in (2) and where every column of X represents a subset of bit variables. After
applying the bijective mapping relation (9), we obtain the Hamiltonian of the Ising problem:

𝐻 =
𝑐1
4
[

tr(11TSTS) + tr(ST
11

TS) + tr(ĀSTP TS)
]

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
mutual coupling

+
𝑐1
2
1
T [Ā + [2𝑚 − 4]𝟏

]

ST
1

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
Zeeman term

+
𝑚𝑐1
4

[2[𝑚 − 2]2 + 𝑚2 − 𝑚 − 𝑝]
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

offset

.

(17c)
The desired coupling coefficients are given by:

J = −
𝑐1
4
[

11
T ⊗ 𝟏 + 𝟏⊗ 11

T + Ā⊗ P T] and h = −
𝑐1
2
[[

Ā + [2𝑚 − 4]𝟏
]

1⊗ 1
]

. (17d)

A graphical illustration of the coupling scheme is given in Fig. 3.

3.5 Traveling Salesman Problem
Let  = ( , ) be a directed or undirected weighted graph with 𝑚 vertices and the weighted adjacency matrix W , where each
edge (𝜇, 𝜈) is associated with the weight 𝑤𝜇𝜈 representing a distance between two cities. Can one find a Hamiltonian cycle such
that the distance covered while traveling through the cycle is minimal? The optimization task is the same as (17a) except that
we now have a non-constant cost function:

min
x

∑

(𝜇,𝜈) ∈ 
𝑤𝜇𝜈 𝑥𝜇𝜈 s. t.

𝑛
∑

𝜇=1
𝑥𝜇,𝜈 = 1 ,

𝑛
∑

𝜈=1
𝑥𝜇,𝜈 = 1 , 𝑥𝜇,𝜆 + 𝑥𝜈,𝜆+1 = 0 , for all (𝜇, 𝜈) ∉  . (18a)

Extending the Ising formulation of the Hamiltonian cycle problem to cover the traveling salesman problem is achieved by adding
the following term to (17b),

𝐻0 = 𝑐0 tr(WXTP TX) . (18b)

This ensures the minimum of the Hamiltonian is given by a variable configuration that provides the shortest Hamiltonian cycle.
In order to avoid violating the conditions of a Hamiltonian cycle, the constant coefficient 𝑐2 must be chosen to be in the interval
0 < 𝑐0 < 𝑐1∕max(𝑤𝜇𝜈)14. Now, apply (9) to obtain:

4
𝑐0
𝐻0 = tr(WSTP TS)

⏟⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏟
mutual coupling

+21TWST
1

⏟⏞⏞⏞⏟⏞⏞⏞⏟
Zeeman term

+𝑚1TW1
⏟⏞⏟⏞⏟

offset

. (18c)
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s3,λs4,λ

s1,λ
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Figure 3 Top left: Trivial instance and solution of the Hamiltonian cycle problem with the starting point 1. Here, the edge
labels represent the order of the transitions. Top Right: Illustration of the solution of in terms of spin variable subsets. The
highlighted variables represent the current positioning after each graph traversal. Center left: Compact representation of the
coupling scheme. Center right: Every node in contains four variables with an all to all coupling. Bottom left: Explicit illustration
of the blue couplings. Bottom right: Explicit representation of the green couplings.

Finally, the desired coupling coefficients are finally given by:

J = −1
4
[

[𝑐0W + 𝑐1Ā]⊗ P T] −
𝑐1
4
[

11
T ⊗ 𝟏 + 𝟏⊗ 11

T] and h = −
𝑐1
2

[[

Ā +
𝑐0
𝑐1
W + [2𝑚 − 4]𝟏

]

1⊗ 1

]

. (18d)

A graphical illustration of the resulting coupling is presented in Fig. 4.

To conclude this section, we have provided a systematic procedure for mapping QUBO formulations from literature onto the
coupling coefficients of an Ising problem. In principle, we argue that almost any graph-related task is formulated as a linear
combination of the terms that have appeared in the discussed problems. In fact, even problems that are not necessarily graph-
related can be interpreted this way. For example, problems with images, such as image restoration25, can be interpreted as a
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1 2

34
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s2,λ

s3,λ

s4,λ

s1,λs1,λ+1
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s1,λs3,λ+1

s1,λs4,λ+1

w12
w
14

w12

w 14

w23 w23

w34
w34

Figure 4 Compact representation of the coupling scheme for the traveling salesman problem. The blue and green couplings are
the same as in Fig. 3. The magenta coupling is explicitly illustrated on the right side of the figure.

lattice of vertices with nearest-neighbor interaction. By calculating the associated adjacency matrix, one can easily map the
problem onto our suggested formalism and obtain the coupling coefficients. Thus, we have bridged the gap between the QUBO
formulation and the coupling coefficients needed for mapping a problem onto the Ising machine. For the sake of convenience,
the essential relations are summarized in table 1 of the appendix.

4 AN ISING MACHINE BASED ON PHASE OSCILLATORS

Now that we have addressed the systematic mapping of optimization problems oscillator-based Ising machines, we can discuss
the reasons, which qualify oscillator networks to function as Ising machines. The general idea is to let a diffusively coupled
oscillator network emulate the behavior of coupled spins, whose energy is described by the Ising Hamiltonian. If the Ising
Hamiltonian is somehow mapped onto the energy of the electrical system, then we expect the free-running system to find a state
configuration that minimizes its energy and consequently the mapped Hamiltonian. However, this requires the oscillators to act
like the spins from the Ising model. Therefore, every oscillator is subjected to a special type of forcing, so-called subharmonic
injection locking (SHIL), which enforces bi-stable phase behavior in the stationary state26, i.e. a phase shift of 0 or 𝜋 with
respect to some reference oscillation. To explain the functionality of the considered circuit in a formal but intuitive manner, we
approximate the circuit’s dynamics by phase reduction27. This results in a phase model, similar to the Kuramoto model28, which
captures the phase behavior of the original circuit through a system of differential equations:

�̇�𝜇 = 𝛥𝜔𝜇 + 𝑘c 𝜔c𝜇 − 𝑘s 𝜔s𝜇 , (19a)

𝛥𝜔𝜇 = [𝜔𝜇 − 𝜔0] , (19b)

𝜔c𝜇 = 𝜔0

𝑛
∑

𝜈=1
𝐽𝜇𝜈ℑ

{

𝑒j[𝜑𝜈−𝜑𝜇]
}

, (19c)

𝜔s𝜇 = 𝜔0ℑ
{

𝑒 j2𝜑𝜇
}

. (19d)

Here, 𝜑𝜇 denotes the phase shift of the 𝜇-th oscillator. The constant 𝛥𝜔𝜇 represents the difference between the frequency of the
𝜇-th oscillator 𝜔𝜇 and the network’s central frequency 𝜔0. The subfunction 𝜔c𝜇 represents the inter-oscillator coupling between
the 𝜇-th oscillator and the remainder of the network, with the bias coupling strength 𝑘c and the couplings weights 𝐽𝜇𝜈 . Similarly,
𝜔s𝜇 represents the SHIL coupling of the 𝜇-th oscillator with the coupling strength 𝑘s. For a detailed derivation of the phase
model, we refer the interested reader to4.

4.1 Stability Analysis
The functionality of the phase-oscillator-based Ising machine can be understood by analyzing the stability of the system. The
considered phase model, in particular, is a special case, where this stability analysis is relatively simple, due to it being a gradient
system. The trajectories of the said system always follow the steepest descent of an associated scalar potential function29, which
leads to asymptotic stability in the sense of Lyapunov. A sufficient condition for the existence of a potential function is the
symmetry of the Jacobian associated with the vector field of the considered system30. In the following, we derive an analytical
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expression for the Jacobian and show it to be indeed symmetric. To that end, we first rewrite (19) as

𝛴 ∶

⎧

⎪

⎪

⎨

⎪

⎪

⎩

φ̇ = 𝛥ω + 𝑘c ωc(φ) − 𝑘s ωs(φ)
𝛥ω = ω − 𝜔0 1

ωc(φ) = 𝜔0ℑ
{

𝐝𝐢𝐚𝐠(sH)J s
}

ωs(φ) = 𝜔0ℑ {𝐝𝐢𝐚𝐠(s)s}

, (20)

where 𝛥ω = [𝛥𝜔1, 𝛥𝜔2,… , 𝛥𝜔𝑛]T, φ = [𝜑1, 𝜑2, ..., 𝜑𝑛]T. Furthermore, we introduce the vector s(φ) = 𝑒 jφ, which projects
the phase values 𝜑𝜇 onto continuous spin values 𝑠𝜇 ∈ [−1, 1], which can be interpreted like the spin variables of the Ising
Hamiltonian. In general, the partial derivatives of the phase equation only consist of two types of elements:

𝜕�̇�𝜇

𝜕𝜑𝜘
= 𝜔0𝑘c

{

−eT𝜘ℜ
{

𝐝𝐢𝐚𝐠(sH)Js
}

, 𝜘 = 𝜇

𝐽𝜘,𝜇ℜ
{

𝑠𝜘 𝑠∗𝜇
}

, 𝜘 ≠ 𝜇.
. (21)

Consequently, the Jacobian in analytical form can be given by:

J𝑓 (φ) = 𝑘c J𝑓c(φ) − 𝑘s J𝑓s(φ) , with (22a)
J𝑓c(φ) = Ω1(φ) − 𝐝𝐢𝐚𝐠(Ω1(φ)1) , (22b)
J𝑓s(φ) = 2𝜔0ℜ

{

𝐝𝐢𝐚𝐠(s)2
}

, and (22c)
Ω1(φ) = 𝜔0ℜ

{

𝐝𝐢𝐚𝐠(sH)J 𝐝𝐢𝐚𝐠(s)
}

. (22d)

Here, J𝑓c(φ) is a Hermitian matrix containing the partial derivatives of ωc, whereas J𝑓s(φ) is a real diagonal matrix containing
the partial derivatives of ωs. Hence, the Jacobian J𝑓 , as a linear combination, is also Hermitian. Therefore, the considered
network has a scalar potential function 𝑉 (φ), which can be obtained by integrating the state equation with respectφ and choosing
the integration constant such that the negative gradient of 𝑉 (φ) coincides with the state equation,

∇φ𝑉 (φ) = −φ̇ , (23a)

with

𝑉 (φ) = −𝛥ωTφ + 𝑘c𝑉c(φ) − 𝑘s𝑉s(φ) , (23b)

𝑉c(φ) =
𝜔0

2

[

1
TJ1 −ℜ

{

sHJs
}

]

, (23c)

𝑉s(φ) =
𝜔0

2

[

ℜ
{

sTs
}

− 𝑛
]

. (23d)

The function 𝑉 (φ) is a Lyapunov function candidate that must be modified, so it remains a potential function but fulfills the
conditions of a strict Lyapunov function. We refer the interested to31 for an overview on the properties and applications of
Lyapunov functions. Now, it can be verified that 𝑉 (φ) fulfills two of the three conditions of a strict Lyapunov function. The
third condition requires a valid Lyapunov function to be positive semidefinite. Up to this point, 𝑉 (φ) is only positive definite
if the coupling coefficients 𝐽𝜇𝜈 are non-negative, which generally does not hold. To construct a strict Lyapunov function, we
suggest applying a simple rectification:

𝑉 (φ) = −𝛥ωTφ + 𝑘c𝑉c(φ) − 𝑘s𝑉s(φ) (24a)

𝑉c(φ) =
𝜔0

2

[

1
TJ+1 −ℜ

{

sHJs
}

]

, (24b)

𝑉s(φ) =
𝜔0

2

[

ℜ
{

sTs
}

− 𝑛
]

. (24c)

The entries of J+ are the absolute values of the entries of J . This change ensures the potential function stays positive, when the
coupling coefficients are negative without having any effects on its gradient. Equation (24) now fulfills all the properties of a
strict Lyapunov function as opposed to the Lyapunov function appearing in literature4. The asymptotic stability of the network
can be inferred from examining the time derivative of its Lyapunov function:

�̇� (φ) =
[

∇φ𝑉 (φ)
]T

φ̇ = −‖‖
‖

∇φ𝑉 (φ)‖‖
‖

2
< 0 . (25)

Here, we make use of (23) to obtain the last equality. The application of a SHIL-signal forces the oscillators to assume the values
𝜑𝜇 ∈ {0, 𝜋} in the stationary state, such that we have ℜ

{

sTs
}

= 𝑛 and ℜ
{

sHJs
}

= sTJs . Thus, the Lyapunov function can
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be rewritten as

𝑉 (φ) = −sTJs + 𝑐(φ) , with 𝑐(φ) = −𝛥ωTφ + 1
TJ+ 1 (26)

where 𝑐(φ) (asymptotically) represents a constant offset. The Lyapunov function coincides with the Ising Hamiltonian up to
a constant offset. Equation (25) shows that the network minimizes the derived Lyapunov function and therefore also naturally
minimizes the Ising Hamiltonian, which explains its functionality as an Ising machine.

4.2 Electrical Model

C G0(uµ)

iGµ

iµ

uµjµ

Gµν

vµν

jµν

uµ uν

Figure 5 Left: Equivalent circuit of the phase oscillator. Right: Electrical coupling element representing the phase coupling in
the modified Kuramoto model.

In this section, we synthesize an electrical circuit for the considered phase model. This circuit is used for two purposes: to
emulate the behavior of the circuit and to extend the underlying model, so it incorporates the Zeeman term. To this end, we
apply an equivalency transformation to (19), where we associate the phase 𝜑𝜇 with a scaled voltage quantity 𝜋�̂�∕𝑢𝜇 resulting in,

𝜋
�̇�𝜇
�̂�

= 𝛥𝜔𝜇 + 𝑘c 𝜔c𝜇 − 𝑘s 𝜔s𝜇 , (27a)

𝜔c𝜇 = 𝜔0

𝑛
∑

𝜈=1
𝐽𝜇𝜈 sin

(

𝜋
𝑢𝜈 − 𝑢𝜇

�̂�

)

, (27b)

𝜔s𝜇 = 𝜔0 sin
(

2𝜋
𝑢𝜇
�̂�

)

, (27c)

with the voltage normalization constant �̂� = 1V. Now, consider the circuit on the left of Fig. 5, which is governed by:

�̇�𝜇 = 1
𝐶

[

𝑗𝜇 − 𝑖𝐺𝜇
+ 𝑖𝜇

]

. (28)

Equation (28) is now used to model the dynamics of (27). Since 𝜔c𝜇 represents an inter-oscillator interaction, it is associated
with the external coupling current 𝑖𝜇. The term 𝜔s𝜇 accounts for the SHIL-signal, which induces a self-coupling term in (19)
and is therefore associated with the current 𝑖𝐺𝜇

. Finally, the residual current 𝑗𝜇 is associated with the frequency degeneration
𝛥𝜔𝜇 resulting in:

𝑗𝜇 = 2�̂�𝑓0𝐶𝛥𝜔𝜇 , 𝜔0 = 2𝜋𝑓0 , (29a)

𝑖𝐺𝜇
= 𝐼s sin

(

2𝜋
𝑢𝜇
�̂�

)

, 𝐼s = 2�̂�𝑓0𝐶𝑘s , (29b)

𝑖𝜇 = 𝐼c
𝑛
∑

𝜈=1
𝐽𝜇𝜈 sin

(

𝜋
𝑢𝜈 − 𝑢𝜇

�̂�

)

, 𝐼c = 2�̂�𝑓0𝐶𝑘c . (29c)

We can now use Ohm’s law to obtain an expression for the nonlinear conductance:

𝑖𝐺𝜇
= 𝐺0(𝑢𝜇) 𝑢𝜇 , with 𝐺0(𝑢𝜇) = 𝐺s 2𝜋 si

(

2𝜋
𝑢𝜇
�̂�

)

and 𝐺s =
𝐼𝐺
�̂�

= 2𝑓0𝐶𝑘s . (30)

The external coupling currents model the inter-oscillator coupling of the original oscillator network. Considering that each
phase oscillator (left side of Fig. 5) is a reduced representative of an actual oscillator, we see that the topology of the original
network is retained in the circuit of the phase model. Thus, the currents 𝑖𝜇 results from coupling multiple phase oscillators via
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a diffusive coupling network, as depicted in Fig. 6 on the example of four coupled phase oscillators. The coupling elements are
given by nonlinear conductors (right side of Fig. 5), because they implement the nonlinear coupling of the phase model. The
conductances can, again, be determined by first writing out the particular Ohmic relation:

𝑗𝜇𝜈 = 𝐺𝜇𝜈 𝑣𝜇𝜈 = 𝐺𝜇𝜈 [𝑢𝜇 − 𝑢𝜈] . (31)

Here, the orientation of the currents 𝑗𝜇𝜈 is chosen, so they originate from phase oscillator with lower indices and flow towards
phase oscillators with higher indices, see Fig. 6. This simplifies the description of the current flow and enables using Kirchhoff’s
current law to obtain the relationship:

𝑗𝜇𝜈 = 𝐼c 𝐽𝜇𝜈 sin
(

𝜋
𝑢𝜇 − 𝑢𝜈

�̂�

)

. (32)

With equations (31) and (32), the coupling conductances can be formulated as

𝐺𝜇𝜈 = 𝐺c𝐽𝜇𝜈 𝜋 si
(

𝜋
𝑢𝜇 − 𝑢𝜈

�̂�

)

, with 𝐺c =
𝐼c
�̂�

= 2𝑓0𝐶𝑘c , (33)

where si(0) = 1, otherwise si(𝑥) = sin(𝑥)∕𝑥.

C G0(u1)

i1

u1j1 CG0(u2)

i2

u2 j2

CG0(u3)

i3

u3 j3C G0(u4)

i4

u4j4

G12

v12

j12

G34

v34

j34

G14v14

j14

G23 v23

j23

Figure 6 Four coupled phase oscillators.

Note, the coupling of the original oscillator network, whose behavior is described by the phase model, is linear. This statement
is based on the fact that the coupling coefficients 𝐽𝜇𝜈 are constant.

4.3 Implementing the Zeeman Term
Up to this point, the electrical model does not support incorporating the Zeeman term. However, this term appears in many
Ising formulations and should therefore be considered. The equivalent formulation of the Ising Hamiltonian in (4) reveals a
possible realization of the Zeeman term, where all oscillators are coupled to a reference oscillator with a locked phase value of
𝑠𝑛+1 = +1. The Zeeman term coefficients, given by 𝐽𝜇[𝑛+1] = ℎ𝜇∕2, are then incorporated into the conductances coupling the
phase oscillators to the reference oscillator:

𝐺𝜇[𝑛+1](𝑢) = 𝐺c
ℎ𝜇

2
𝜋 si

(

𝜋 𝑢
�̂�

)

. (34)
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Figure 7 Left: General topology of 𝑛 interconnected oscillators  coupled to a reference signal in order to account for the
Zeeman term. Right: Equivalent electrical circuit of the circuit depicted on the left.

Cjµ G0(uµ)

Gµ[n+1](ũµ)

ê

ũµ

uµ Cjµ G(uµ) uµ

Figure 8 Left: The reference source and the parallel conductors connected to it are inserted into the oscillator circuit. Right:
Omitting the voltage source by redefining the nonlinearity of the conductor.

Practically, it is a very simple approach that comes with one drawback. Simulations of the Ising machine using this approach
show that the reference oscillator can break out of its locked state. In such situations, the phase evolution of the Ising machine is
distorted, which usually results in an invalid or suboptimal solution. A much more reliable approach is to make use of an ideal
voltage source supplying the reference signal, see the left of Fig. 7. To decouple the circuit, we can split it at the node of the
voltage source into 𝑛 resistive voltage sources, see the right side of Fig. 7. Then, every resistive voltage source can be combined
with the corresponding oscillator circuit, see the left of Fig. 8. To omit the voltage source, we can simply redefine 𝐺𝜇[𝑛+1] as:

𝐺𝜇[𝑛+1](𝑢) = 𝐺c
ℎ𝜇

2
𝜋 si

(

𝜋 𝑢 − 𝑒
�̂�

)

, with 𝑒 = 1V . (35)

Now, we have two parallel conductors, which can be simplified to one conductor with the conductance:

𝐺(𝑢) = 𝐺s 2𝜋 si
(

2𝜋 𝑢
�̂�

)

+ 𝐺c
ℎ𝜇

2
𝜋 si

(

𝜋 𝑢 − 𝑒
�̂�

)

. (36)

These equivalent transformations allow reusing the same circuit as the one presented on the left side of Fig. 5, but with a different
internal conductance 𝐺(𝑢), see the right side of Fig. 8.

5 EMULATION RESULTS AND DISCUSSION

Now that we have derived an electrical circuit for the considered phase model, we now discuss briefly discuss our preferred
method of emulation. Here, we make use of the wave digital concept32, which is a powerful tool for emulating the behavior of
large electrical networks in a highly parallel fashion. In previous work21, we have discussed how efficient wave digital models can
be derived for the considered phase model. The electrical model of this work presents an extension of our past results, because
it now also implements the Zeeman term. However, the electrical model is structurally identical, which allows exploiting the
same methods discussed in21 to emulate the phase-oscillator-based Ising machine.
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Figure 9 Top left: Normalized voltage outputs of the Ising machine’s oscillators. Top center: Reconstructed output oscillations
corresponding to the normalized output voltages. Bottom left: Value of the Ising Hamiltonian and the cut size over time. Bottom
center: Real part of the minimal and maximal eigenvalues of the linearized system over time. Right: Benchmark graph including
the solution of the Ising machine.

To test the Ising machine on one practical example, we solve a max-cut problem with a graph from33 that is known to have a cut
size of 24, see the right side of Fig. 9. The emulation parameters used for the electrical circuit are given in table 1. Furthermore,
the machine is started at some random initial states in the interval [0, 1]V.

Emulation parameters
𝜔0 = 5 ⋅ 109 rad∕s 𝑘c = 0.5

𝐶 = 1 nF 𝑘s = 0.4

Table 1 Emulation parameters for the maximum cut problem.

The machine partitions the graph into the two subgraphs, as denoted by the gray and white vertices on the left side of Fig. 9.
This partitioning can be interpreted from the output voltages of the oscillators 𝑢𝜇 on the top left of Fig. 9. The central top figure
shows the oscillations of the original network, which have been reconstructed using the relationship

�̃�𝜇 = �̂� sin(𝜔0𝑡 + 𝜑𝜇) , with �̂� = 1V . (37)

Overall, the machine evolves, so it minimizes the Ising Hamiltonian, which can be seen on the bottom right side of Fig. 9.
Since the problem of minimizing the cut size has been mapped to the Hamiltonian (using the coefficients in (7)), the cut size is
maximized when the Hamiltonian is minimized. The correlation between the stability and functionality can be clearly seen on
the central bottom figure of Fig. 9. Here, we calculated the eigenvalues of the Jacobian (22) and plotted the eigenvalue with the
maximal real part. All other eigenvalues are not plotted, but lie beneath the drawn one. The plot implies that some eigenvalues
initially have a positive real part, but eventually evolve to have a negative real part once the machine finds the optimal solution.
In other words, the optimal solution of the given task has been mapped onto a stable equilibrium of the system. This is, for
the first time, a numerical proof of stability, which relates to previous analysis4,8 but has yet to be conducted. Furthermore, it
has another important implication, which we now would like to discuss: when the machine is turned on, it is not possible to
know when it has solved the problem. However, if all eigenvalues have a negative real part, then this implies that the system
trajectories have entered a local attractor with a stable equilibrium. Once the system enters this attractor, the machine is not able
to exit the attractor’s domain (unless externally perturbed), which implies that the machine has solved the problem. Otherwise,
it is only possible to presume that the machine is done when it exhibits some convergency behavior, which is not necessarily
true. In principle, one could argue that it is possible to decode the solution after 1 s in this example.
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6 CONCLUSION AND OUTLOOK

Overall, this work is intended to give a broad overview on oscillator-based Ising machines. In the first part, we have discussed
the mapping of optimization problems onto an oscillator-based Ising machine. To simplify this process, we have proposed
a mathematical framework which aids in mapping quadratic unconstrained optimization problems onto the couplings of an
Ising machine. Here, we reviewed four representative optimization problems with different cost functions and constraint types
to give an overview on how quadratic unconstrained optimization problems can generally be mapped onto an Ising machine.
This analysis has shown that many problems can indeed be systematically mapped by an appropriate grouping of the decision
variables.

In the second part of this work, we recapitulated the concept of a phase-oscillator-based Ising machine. Here, we gave a
generalization of our previous work by synthesizing an ideal circuit that also considers the linear term appearing in the Ising
Hamiltonian, the so-called Zeeman term. In combination with the wave digital concept, this circuit can be used as an algorithm
for simulated annealing. To explain the functionality and robustness of the proposed algorithm, we have conducted a thorough
stability analysis. The results of this analysis have been numerically verified on a practical example, where we have discussed
the effects of problem mapping on the phase space of the phase-oscillator-based Ising machine. In a future work, we hope to
find a systematic mapping procedure of general binary optimization problems onto an oscillator-based Ising machine.

ACKNOWLEDGMENTS

This work was funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) – Project-ID 434434223
– SFB 1461 and DFG-404291403.

Conflict of interest
The authors declare no potential conflict of interests.



B. Al Beattie, K. Ochs 15

How to cite this article: B. Al Beattie and K. Ochs (2022), Primer on Ising Formulations for Oscillator-Based Ising Machines,
Int. J. Numer. Model., 2021;00:1–6.

APPENDIX

Sum Terms in QUBO Formulation Representation within Framework Coupling Coefficient Matrix J
[ 𝑛
∑

𝜈=1
𝑠𝜈

]2

tr(ssT) = ‖s‖2 = sTs J = −𝟏

𝑛
∑

𝜇=1

[ 𝑛
∑

𝜈=1
𝑤𝜇𝜈𝑠𝜈

]2

tr(W TWssT) = ‖Ws‖2 = sTW TWs J = −W TW

∑

(𝜇,𝜈) ∈ 
𝑠𝜇𝑠𝜈 tr(AssT) = sTAs J = −A

𝑛
∑

𝜈=1

[

𝑘
∑

𝜘=1
𝑠𝜈,𝜘

]2

tr(ST
11

TS) = ‖

‖

ST
1‖
‖

2
J = −𝟏⊗ 11

T

𝑘
∑

𝜘=1

[ 𝑛
∑

𝜈=1
𝑠𝜈,𝜘

]2

tr(11TSTS) = ‖S1‖2 J = −11T ⊗ 𝟏

𝑘
∑

𝜘=1

∑

(𝜇,𝜈) ∈ 
𝑠𝜇,𝜘𝑠𝜈,𝜘 tr(ASTS) J = −A⊗ 𝟏

𝑘
∑

𝜘=1

∑

(𝜇,𝜈) ∈ 
𝑤𝜇𝜈𝑠𝜇,𝜘𝑠𝜈,𝜘+1 tr(WSTP TS) J = −W ⊗ P T

𝑘
∑

𝜘=1

∑

(𝜇,𝜈) ∉ 
𝑠𝜇,𝜘𝑠𝜈,𝜘+1 tr(ĀSTP TS) J = −Ā⊗ P T

Table 1 Mapping between the sum terms from QUBO formulations and terms of the suggested framework.

In the following we show how the relationship between (1) and (10) is derived. Here, we make use of the trace operator
equalities,

tr(MNO) = tr(OMN ) = tr(NOM ) , tr(MTN ) = vec(M )Tvec(N ) , (1)

and the Kronecker product formula,

MNO = P ⇐⇒ [OT ⊗M ]vec(N ) = vec(P ) , (2)

where all appearing matrices are real and squared. Applying these equalities to every 𝐻𝜆 allows for rewriting (10) as:

𝐻 =
𝓁
∑

𝜆=1
𝐻𝜆 , with 𝐻𝜆 = sT[Q𝜆 ⊗R𝜆]s and 𝐻𝓁 = [q𝓁 ⊗ r𝓁]Ts . (3)
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