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Abstract

Deep learning for computer vision has shown promising results in the field of entomology. Deep learning performance is

maximized primarily by bulk labeled data which, outside of rare circumstances, are limited in ecological studies. Currently, to

utilize deep learning systems, ecologists undergo extensive data collection efforts, or limit their problem to niche tasks. These

solutions do not scale to region agnostic models. There are solutions using data augmentation, simulators, generative models,

and self-supervised learning that supplement limited data labels. Here, we highlight the success of deep learning for computer

vision within entomology, discuss data collection efforts, provide methodologies for annotation efficient learning, and conclude

with practical guidelines for how ecologists can empower accessible automated ecological monitoring on a global scale.
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Abstract22

Deep learning for computer vision has shown promising results in the field of en-23

tomology. Deep learning performance is maximized primarily by bulk labeled data24

which, outside of rare circumstances, are limited in ecological studies. Currently, to25

utilize deep learning systems, ecologists undergo extensive data collection efforts,26

or limit their problem to niche tasks. These solutions do not scale to region ag-27

nostic models. There are solutions using data augmentation, simulators, generative28

models, and self-supervised learning that supplement limited data labels. Here, we29

highlight the success of deep learning for computer vision within entomology, dis-30

cuss data collection efforts, provide methodologies for annotation efficient learning,31

and conclude with practical guidelines for how ecologists can empower accessible32

automated ecological monitoring on a global scale.33

1 Introduction34

We live in a time of rapid global change where the pace at which we can collect and analyze35

ecological data makes it imperative to capture signals of ecosystem collapse. Insects and other36

arthropods play a crucial role in crop pollination [1], beneficial control of pests [2], and ter-37

restrial food web dynamics [3]. Hallmann et al. [4]’s ground-breaking study demonstrated a38

75% decrease in insect abundance across 63 conservation areas over a 30 year span. Subsequent39

work documents that this declining trend in insect abundance has been occurring across a wide40

variety of taxa and locations [5, 6, 7]. Drastic changes in arthropod population abundance41

and diversity have negative cascading effects on ecological stability and ecosystem resiliency42

[8, 9, 10]. To expedite and improve the analysis of these trends, the ecological field is cur-43

rently developing deep learning methods to better understand this potential threat of food web44

collapse [11, 12, 13, 14, 15].45

Deep learning systems for computer vision offer the predictive capabilities of an expert46

anywhere in the world at massive cost reduction. While computationally expensive to train,47

deployed deep learning systems can operate on average computers and modern mobile devices48
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[16]. van Klink et al. [17]’s 2022 review highlights the use of deep learning for computer vision,49

acoustic monitoring, radar, and molecular models for entomology. As a continuation of these50

recent successes, ecological deep learning methods would benefit from initiatives that focus51

on broad scale applications with a global perspective. Current approaches require building52

a dataset using experts with laboratory devices and training models on computing resources53

only available in first world countries [11, 15]. This approach creates a bias in trends analyzed54

and prevents less resourced labs from participating in the deep learning advance. To achieve a55

global initiative of ecological data collection, we believe there should be a focus on designing56

accessible and generalizable deep learning systems to process ecological data collected cheaply57

from rural environments, using only a net, camera, and possibly an internet connection [18].58

This would empower those untrained to contribute to expert level analysis from remote locations59

anywhere in the world. This form of data collection effort would create an ethically fair data60

analysis pipeline capable of providing a dynamic feedback loop of year-over-year metrics related61

to abundance, biomass, and richness anywhere in the world.62

In order for this global objective to succeed, there exist many technical challenges. A main63

challenge for deep learning models to perform in global settings is the availability of data that64

extend class labels beyond niche taxa groupings or confined geographic regions. Currently, the65

majority of models trained have been limited to narrow groupings, primarily due to limited66

labeled data availability [19, 20, 21, 22]. There exist deep learning methods related to anno-67

tation efficient learning that overcome this limitation that have been successfully utilized in68

other disciplines [23, 24, 25, 26, 27]. Here, we focus on methods that can empower ecologists to69

accomplishing the training of deep learning models with a global initiative, focusing specifically70

on computer vision. To do this, we highlight current successes, current limitations, techni-71

cal solutions for how these limitations can be overcome, and lastly our perspective on future72

directions.73

2 Computer Vision Entomologist AI Systems74

The ongoing exploration of deep learning in the field of entomology continually makes strides75

to accomplish what previously required human experts [28, 29]. This is particularly true for76
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computer vision and entomology as arthropod image data with fixed numbers of classifications77

is well-suited for deep learning models that have, in recent years, standardized around specific78

vision architectures (ResNet, DenseNet, Vision Transformer, etc.) [30, 31, 32]. There are79

alternative ways of approaching vision tasks depending on the input image and output label.80

These differences can be summarized into two main dichotomous pairs:81

• Lab-based vs. field-based images. Lab-based results can utilize imaging with standard-82

ized/uniform conditions [28, 33, 34] while field-based images must generalize to variable83

backgrounds and lighting conditions [19, 35, 36]. If desired, lab based approaches can84

also take advantage of capturing multiple images per individual from a variety of angles.85

• Single vs. multiple individuals per image. Images of single individuals typically assume86

that the subject is centered and occupies the majority of the image, thus they do not87

need a separate segmentation step [11, 37], while images with multiple individuals require88

a model with the ability to successfully crop, extract and classify specific regions of an89

image [19, 35, 36].90

The use of deep learning for computer vision in entomology has been predominately in three91

disciplines: museum specimens, pest management, and ecological sampling. We briefly explore92

these here.93

2.1 Museum Specimens94

Images of museum specimens are often ideal: lab based, single individual, well-mounted, high95

resolution, and clear with little to no noise in the background. These conditions are optimal96

for maximizing machine learning performance. Marques et al. [33] demonstrated the potential97

success of deep learning systems when applied under museum conditions classifying 57 ant genera98

using 127,832 images, where head views provided the best prediction accuracy. Hansen et al.99

[28] demonstrated that deep learning systems can distinguish among 361 carabid beetle species100

considering 364 images taken from the British Isles. The breadth and diversity of museum101

specimens will provide rich source of training data for general entomologist AI systems.102
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2.2 Pest Management103

Images used to detect and manage pests are often ‘noisy’ images with variable backgrounds104

and lighting conditions requiring a model’s ability to generalize often beyond the training dis-105

tribution. In addition, images may contain many individuals, requiring object detection models106

to localize individuals. Xia et al. [36] used deep learning systems to classify 24 pest insects107

from field crop images with non-uniform backgrounds. Ding and Taylor [19] expanded a limited108

dataset of 100s of images using data augmentation to localize and train a deep learning model109

to count the number of codling moths, a major pest to agricultural crops. Rustia et al. [35]110

collected data autonomously from greenhouse sticky traps using an object detector and series of111

sub-classification deep learning networks to localize insect individuals and re-train and improve112

the model over time. Expanding these works to consider a single model capable of generalizing113

across pests would aid farmers all over the world.114

2.3 Ecological Sampling115

Images taken in an ecological context are often either images from the field, or images of curated116

samples captured in a laboratory setting. In laboratory settings, imaging is traditionally, but not117

necessarily, done using a single individual per image. Motta et al. [37]’s deep learning classifier118

can distinguish mosquitoes by species and sex using images captured in a laboratory setting119

from a dataset of 4,000 images. Tuda and Luna-Maldonado [38] showed deep learning systems120

outperformed traditional computer vision methods for characterizing populations and species121

assemblages of the pest beetle Callosobruchus chinensis and 2 parasitic wasps: Anisopteromalus122

and Heterospilu. Gerovichev et al. [18] analyzed sticky traps placed in Eucalyptus forests to123

quantify the abundance of two hemipteran pests of eucalypts and a parasitoid wasp. Ärje124

et al. [11] quantified insect assemblage/diversity using the robotic system BIOSCAN which125

funnels single individuals into a tube where an image is captured. Similarly, Schneider et al.126

[15] utilized a white background to isolate arthropod individuals from bulk samples, classifying127

order, diversity, and order level biomass of 1000s of arthropod samples from a single photo. The128

use of a single model to generalize across taxa could automate ecological analyses anywhere in129

the world.130
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3 Big Data?131

The above papers demonstrate the successful predictive capabilities of deep learning on ecologi-132

cal data. These studies, however, follow a trend where each are based on niche, limited ecological133

datasets that consider a small number of classes and are restricted to specific geographic re-134

gions. When considering broad ecological questions and the prospect of global ecological efforts,135

models need be more general, and operate beyond these niche subsets. This problem is exacer-136

bated as we pursue finer-grained classification from order, down to species, where the number137

of required labels grows by several orders of magnitude.138

It is common to see modern learning systems with millions to billions of parameters which are139

tuned during training to a given data distribution [39]. With such a large number of parameters,140

deep learning systems continually improve performance when presented with millions or more141

labeled examples, achieving spectacular results [39, 40]. One approach to expand the data142

availability and solve predictive tasks using deep learning in ecology is the massive data science143

effort to aggregate images from lab and field cameras around the world [41, 42, 43]. While144

we do encourage efforts to empower research groups around the world with standardized data145

releases, there are many challenges to overcome. These challenges include:146

• Permissions - Often times multiple individuals and funding sources are involved in the147

collection of data. Ecological data collection efforts often span years, and even decades.148

Getting permissions from all parties involved in the formulation of data can be difficult149

to obtain.150

• Standardizing labels - When assigning taxonomic labels there exists a hierarchy of label151

granularity, where samples may be labeled to any of the order, family, genus, or species152

level depending on the original research objective. When training models from combined153

data sources, one must be able to handle these intermittent hierarchical taxonomic labels.154

• Human error - Different research labs have different levels of access to experts and equip-155

ment that improve the accuracy of taxonomic labels. A combine dataset would have156

varied levels of label accuracy.157

• Image resolution - Images of arthropod samples will range wildly depending on how the158
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data were collected considering the original task. One must determine how best to handle159

these variable image resolutions.160

• Environmental setting - Across tasks, arthropods will be captured in a wide variety of161

environmental settings. Biases towards particular environments may impact performance162

when training models.163

• Numbers of individuals - Ecological images can contain a variable number of individ-164

uals. One may need to maintain two datasets: one for object detection with location165

annotations, and another for standard classification.166

• Data biases - When considering ecological sampling, there will be inevitably biases within167

the data. Arthropods of interest and frequent arthropods are often over-represented,168

while rare arthropods from underrepresented geographic locations will inevitably be under169

represented.170

While not an exhaustive list, these challenges are examples of what must be overcome for171

each dataset. Dealing with these challenges will be primarily a manual process requiring an172

organization to monitor and govern the overall quality and usability of the data releases. While173

important, the data science approach will be slow and still require technical solutions like those174

described below to account for biases within the data.175

In ecology, an additional consideration when utilizing deep learning systems is that, we often176

care about the rare, endangered, and unexpected over the common. Deep learning systems, in177

principle, are designed for the opposite, as they predict signals that are frequent within the realm178

of variation provided by a given data distribution [44]. In classification systems, this is known179

as class imbalance, where classes with frequent observations overwhelm the few examples of rare180

classes [45, 46, 47, 48]. Due to the urgently needed motivations of ecological research to observe181

the rare and under-represented, we have the opportunity to employ technical innovations that182

overcome such challenges in data collection efforts.183

Ecological analyses will benefit from deep learning approaches focused on data efficiency184

where there is limited, and even no, labeled data. Here we outline three deep learning tech-185

niques, in combination with case studies, highlighting the method and providing data scenarios186
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where the technique would help overcome their limitations. We group these techniques into187

three main forms: data augmentation [49, 50, 51], data generation [52, 53, 54, 55], and self-188

supervised learning [56, 57, 58, 59, 60, 61] (Fig 1). Each methodology has its own problem189

formulation, strengths and weaknesses, and ability to extract signal from limited observations.190

One encouraging trend within the deep learning community is a focus on reproducibility. This191

results in the rapid release of novel methods in the form of pre-prints and often associated192

example code, reporting new techniques as they are developed.193

4 Improving Data Efficiency194

4.1 Data Augmentation195

Data Augmentation is a form of annotation efficient learning where one uses a series of predefined196

techniques to manipulate data samples to increase the input representations that correspond197

to a given label [51]. When considering computer vision, deep learning models learn to identify198

patterns within the numeric values represented as pixels. A simple example of augmentation199

to expand this representation is mirroring an image. When mirrored, the high-level concept200

of what is contained within the image remains unchanged, but the model sees an entirely201

new pixel representation. For computer vision, standardized image augmentation techniques202

include: translation, rotation, colour manipulation, additive Gaussian noise, random masking,203

light glare, even artificial weather conditions, among many others [51, 62, 63].204

When training deep learning models, the parameters of a model are modified over multiple205

epochs. During each epoch, the model is fed each data sample. The key to the use of augmen-206

tation is that every time a data point is sampled, the series of augmentations used are randomly207

applied. In so doing, the model never sees identical images, forcing it to learn a general repre-208

sentation as opposed to memorizing the data. Deep learning models see the world by observing209

samples from a hypothetical “data generating distribution”. Data augmentation intuitively can210

be viewed as a way of upweighting the tails of this distribution in a way that doesn’t require211

collecting more data.212

Data augmentation is primarily applied to scenarios where labeled data is limited, which213
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is nearly all scenarios in ecology. Data augmentation is also applicable as a tool to mitigate214

class imbalance. When training, one can re-sample under-represented classes with a higher215

frequency while then applying aggressive augmentation [47]. An additional ecological boon is216

that, particular lighting and weather conditions augmentations can be applied to help models217

be robust to variable environmental conditions [64].218

4.2 Simulators & Generative Models219

When training deep learning models, it is often beneficial to provide addition data through220

synthetic means to inflate underrepresented classes, such as rare species. This data synthesis221

process can be performed through programmed simulators, or learned from data using a genera-222

tive model. There are multiple forms of generative models including: Variational Autoencoders223

(VAEs), Flow-based models, Diffusion Models, and Generative Adversarial Networks (GANs)224

[65]. Below we focus on GANs because of their recent success and popularity.225

Simulation is a form of generating additional data using human-coded programmatic rules.226

Simulated data can take many forms depending on the problem formulation. One problem227

common within ecology is domain shift, which includes scenarios in which classes and their228

background are correlated, biasing future predictions to behave the same [47, 66]. One can229

simulate example data by training a model to crop objects of interest from images, and paste230

these cutouts on new locations before, or during training [67]. More generally, to obtain indi-231

viduals in new poses, researchers have used rendering engines to create synthetic examples of232

the classes of interest. Using these renders, one can then programatically manipulate the pose,233

environment, or general appearance [53, 54]. Creating renders can be expensive in terms of234

time and effort, however, if these renders or the engine that created them are released to the235

public domain the overhead of creating the model only needs to occur once for all to use, and236

the process becomes much more feasible.237

Alternatively, GANs are a deep learning approach where, in computer vision, models are238

trained to create novel lifelike images conditioned on the domain of the training data. GANs239

train two models in competition with one another, a generator and discriminator. The generator240

is trained to create novel images conditioned from random noise, while the discriminator is241
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trained to detect if the generator’s images are real or fake. After training, the result is a242

model that can generate lifelike images of a desired domain [68, 69]. Using this approach, one243

can generate nearly endless novel images from limited datasets and under-represented classes244

[26]. One promising area of research is the use of GANs to generate not only the image, but245

corresponding labels as well. The end result is a ‘labeled data factory’ which can be applied to246

rare classes within a dataset [70].247

For enhancing ecological data, generative models should be used as a tool to grow limited248

datasets, supplement under-represented classes, or in the case of labeled data factory, provide249

data and their annotations in bulk. This is not an exclusive list, but a subset of problems250

that may be overcome using data generation when data is limited for the use of deep learning251

systems.252

4.3 Self-Supervised Learning253

When referring to deep learning systems to this point, we have been primarily referring to254

traditional classifiers which produce a class label from an image considering a predefined list255

of possible options - a multiple choice question of which arthropod is the dominant subject of256

an image. To train these systems, the approach requires human annotators to provide a class257

label for every image within the data. For niche ecological problems, this is feasible only when258

considering a small number classes and only if one has the availability of experts to label the259

data.260

When training traditional deep learning models with a softmax, multiple choice output,261

it is often thought that one requires class labels for all data samples. Due to the expensive262

nature of obtaining labels, this is sometimes infeasible, especially when requiring an expert to263

provide labels, as in ecology. One approach to utilize all of a partially labeled dataset is known264

as semi-supervised learning [71]. Semi-supervised learning exploits both labeled and unlabeled265

data for learning, usually in the setting where labeled data is restricted and unlabeled data is266

plentiful. One popular form of semi-supervised learning known as “pseudo-labeling” is a simple267

technique in which one first trains a model on the labeled data subset, followed then by using268

this model to predict the labels of the remaining unlabeled data. For each unlabeled input, deep269
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learning models provide a predicted label as well as a confidence. Using these confidences, one270

then adds the predictions with high confidence to the training data along with the predicted271

“pseudo-labels” and repeats the process. While the model may make prediction errors, the272

overall process has been found to improve performance in comparison to considering only the273

labeled subset of data [71, 72].274

Models limited to detect only expected classes, like supervised and semi-supervised, have275

a number of vulnerabilities. Such models are unable to expect unanticipated classes, such as276

invasive species, and cannot be used in different regions where other classes exist. For global277

initiatives, as we aim to be region agnostic and eventually increase the resolution of taxa beyond278

order, the labeling efforts required to train traditional classifiers quickly become infeasible. This279

is due to the number of fine-grained classes, geographic data imbalance, and the inevitable280

human error leading to label noise. Considering the extreme case of species, there are estimated281

to be millions of insect species in the world, all of which would require hundreds of expert282

labeled images [73]. Supervised deep learning models trained with human labels to answer a283

multiple choice question with millions of possible choices will not be the large scale solution to284

species-level entomology.285

Self-supervised learning is an alternative approach that can generalize to classes not present286

in the original training data. To do this, self-supervised models operate on a proxy task, such287

as distinguishing if two input images are the same or different considering the domain from288

which the model was trained [59, 74]. How these two input images are selected depends on the289

availability of data labels. In the case of entomology, if one has taxa labels, one can select the290

same or different taxa, while if one has no labels, one can select a single image and apply two291

unique forms of augmentation to create two distinct samples [57, 75]. The result is a model292

trained to learn to distinguish if any input images of arthropods are the same or different293

taxa, extending to those never before seen in the training data [61]. This model then becomes294

agnostic to geographic region, capable of detecting invasive species, and does not require a295

library of labeled images. In practice, one would train a model for each taxa: order, family,296

genus, and species, and use the model appropriate for the task’s granularity requirement. By297

training a performant comparison of taxa this way, the model becomes universal to data biases298

related to rarity and is applicable to comparisons from any geographic region in the world.299
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Self-supervised learning should be a tool used when: data labeling is unattainable, the data300

are bountiful but ‘noisy’ and difficult to label, the data do not contain a large representation of301

all the classes one would like to identify, or one would like their model to be robust to geographic302

region.303

4.4 Real World Practicalities304

The urgency of insect collapse falls back to one main motivation. What is the shortest path to305

improving the speed and accuracy of ecological predictions on a global scale? When we consider306

a global scale, this implies that machine learning methods be universal and used to empower307

data analyses in remote locations of the world. As attractive as machine learning approaches308

may be in their current form, as we outline above, there are still serious obstacles to overcome309

to achieve this objective of generality.310

To offer pragmatic solutions in pursuit of a global arthropod deep learning system, the first311

general approach would be to aggregate as large of a universal dataset as possible and limit the312

scope of classifying arthropods to the order level. Using these data, one would then train a model313

with either the traditional classification or self-supervised approach, using data augmentation314

with synthetic data from a renderer or generative model. To measure model generality, one315

could then divide the data into training and testing relative to geographic regions, reporting316

performance classifying arthropod individuals from the withheld regions.317

The result of training a model performant at the general task of order level arthropod318

classification would be the origin of a foundation model for entomology [76, 77]. Foundation319

models are models recognized as a tool that universally solve a particular task. Examples320

include: GPT-3 [78] for text generation, DALL-E 2 [79] for text-to-image generation, and the321

Megadetector for animal localization from camera trap images [80]. The creation of such tools322

have benefits that ripple beyond academic disciplines to institutional frameworks in need of323

efficient arthropod detection, such as the Food and Agriculture Organization (FAO) [81] and324

Institute for Nature and Environmental Protection (INEP) [82]. This comes at a time when325

there is a critical shortage of taxonomists in the world, especially in remote locations [83]. Even326

in its early stages, generalized deep learning models can be used to ease this shortage by allowing327
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deep learning models to complement parataxonomists in remote locations of the world.328

5 Focus on AI and Ecology Moving Forward329

While we detail methods to improve the implementations of universal computer vision systems330

for entomology, there still exist a number of research challenges in computer vision that are331

required to be overcome. One scenario without a current solution is the separation of species332

that evolved to mimic the phenology of another [84]. Other scenarios that pose problems are333

taxa with variable appearances when the training data of these variations are underrepresented.334

Some of these scenarios include: wildly variable colourings across sex, species that undergo335

large phenotypic transformations over the course of their lifespan, such as Lepidoptera from336

caterpillars to butterflies, or images of taxa that have undergone some form of injury.337

One area of rapid research is the use of cross-modality data. van Klink et al. [17] recently338

highlighted how deep learning for ecology has been well represented in four distinct modalities:339

computer vision, acoustics, radar, and molecular methods. Recent successes in deep learn-340

ing research have shown training models that utilize a combination of these representations341

can improve performances over a single modality, especially for fine-grained classification tasks342

[85, 86, 87]. We believe there are vast numbers of research directions to explore considering mul-343

timodal ecological data. One area we believe has particular potential is to use DNA similarity344

as the measure of distance for self-supervised computer vision models [88, 89]. The result would345

be a model that can predict the genetic distance of two arthropods from their corresponding346

input images. Alternatively, there is an exciting area of research training generative models to347

create images of species considering only the DNA sequence as a prior. This problem formula-348

tion would follow the same text-to-image approach used to train DALL-E 2 [79]. Lastly, there349

has been success in combining DNA and image representations to predict class labels that exist350

in one modality that are not present in the other [90]. For example when training a model on351

complementary DNA and image data, while having robust DNA class labels but having only a352

subset of the total number of classes as images, models have been shown to predict the class of353

an image that was only represented as DNA during training [90]. This approach is known as354

zero-shot learning [91].355
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Lastly, while the approaches discussed here are have been largely focused around entomology,356

the annotation efficient and multi-modal learning techniques described are all general. These357

are applicable to nearly all data domains relevant to ecology and beyond. For example, the358

methods described can be used to inflate under-represented classes when considering camera359

trap data [47, 53]. Or, the multi-modal combinations of acoustics and vision could help identify360

species, such as birds with the task of bird classification [92].361

At a high level, we are at an inflection point where accelerated methodological development362

is revolutionizing the approaches and discoveries of academic disciplines. Ecology is well-suited363

to benefit from this boom, as the ecological process of drawing trends from noisy data is a364

well-suited task for deep learning systems. The current limiting factor is providing the mas-365

sive amount of labeled data required. To fully utilize deep learning systems, it will require a366

multi-faceted approach of data sharing, data organization, but also annotation efficient learning367

approaches. Here, we provided practical guidelines of such efforts to help overcome the limita-368

tions that face ecologists. The combination of all these approaches will allow ecologists to utilize369

ecological data to produce more general deep learning systems in pursuit of a general purpose370

foundation model of taxa classification. The future we are quickly approaching urgently needs371

the creation of a universal, region agnostic computer vision tool capable of identifying a globally372

broad range of taxa, including those rare and unexpected.373
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Figure 1: Visual summary of annotation efficient learning methods. a) Example aug-
mentations. Exponentially increases the amount of data by randomly varying an image
each time it is sampled. b) Example framework of a generative adversarial network. The
trained generator is used to create additional images for training classifiers. c) Exam-
ple framework for self-supervised learning. Images are sampled and randomly applied
augmentation. The system learns similarity by predicting these images are still the same
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