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Abstract

1. The Environmental Data Initiative (EDI) is a trustworthy, stable data repository and data management support organization

for the environmental scientist. In a bottom-up community process EDI was built with the premise that freely and easily available

data are necessary to advance the understanding of complex environmental processes and change, to improve transparency of

research results, and to democratize ecological research. 2. EDI provides tools and support that allow the environmental

researcher to easily integrate data publishing into the research workflow. 3. Almost ten years since going into production, we

analyze metadata to provide a general description of EDI’s collection of data and its data management philosophy and placement

in the repository landscape. We discuss how comprehensive metadata and the repository infrastructure lead to highly findable,

accessible, interoperable, and reusable (FAIR) data by evaluating compliance with specific community proposed FAIR criteria.

4. Finally, we review measures and patterns of data (re)use, assuring that EDI is fulfilling its stated premise.
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Abstract 18 

1. The Environmental Data Initiative (EDI) is a trustworthy, stable data repository and data 19 

management support organization for the environmental scientist. In a bottom-up 20 

community process EDI was built with the premise that freely and easily available data 21 

are necessary to advance the understanding of complex environmental processes and 22 

change, to improve transparency of research results, and to democratize ecological 23 

research.  24 

2. EDI provides tools and support that allow the environmental researcher to easily integrate 25 

data publishing into the research workflow.  26 

3. Almost ten years since going into production, we analyze metadata to provide a general 27 

description of EDI’s collection of data and its data management philosophy and 28 

placement in the repository landscape. We discuss how comprehensive metadata and the 29 

repository infrastructure lead to highly findable, accessible, interoperable, and reusable 30 

(FAIR) data by evaluating compliance with specific community proposed FAIR criteria.  31 

4. Finally, we review measures and patterns of data (re)use, assuring that EDI is fulfilling its 32 

stated premise.  33 

Keywords: data reuse, environmental data repository, FAIR data, metadata, open science 34 

Introduction 35 

Domain-specific data repositories provide services that directly support certain communities of 36 

practice or disciplines. They often cater to the needs of that community by archiving and making 37 

available data that are of interest, in formats that are usable, and through interfaces that are 38 
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accessible to the community. A National Science Board refers to these services as “essential, 39 

community-proxy functions” (National Science Board, 2005). In turn, the community supports 40 

and builds trust in the repository and its content and relies upon it to publish primary data and as 41 

a source of data repurposed to answer new scientific questions, either in its original form or 42 

combined into a synthetic product or meta-analysis. Data published in a trustworthy and 43 

accessible repository provide significant benefits to scientific progress (Hampton et al., 2013), 44 

society in general, and the careers and research of individual scientists (Eisenstein, 2022). 45 

Evaluating the connection between metadata quality and data reuse will help inform the role of 46 

data repositories in the future of ecological science. 47 

The Environmental Data Initiative (EDI) is a domain-specific data repository that was designed 48 

for and with input from the environmental and ecological research communities. It was founded 49 

in 2016 as a successor to the Long-Term Ecological Research (LTER) Network Information 50 

System (NIS) (Servilla et al., 2016) now serving the environmental research community 51 

worldwide. The unit of publication in EDI is a “data package”, which consists of data, the 52 

metadata, and a quality report. The data may consist of one or more digital files (e.g., tables, 53 

spatial raster images and vectors, binary objects, documents, or software code). We distinguish a 54 

data package from a dataset by formally including the metadata and quality report as part of the 55 

aggregate package in addition to the data. A dataset (Chapman et al., 2020), on the other hand, is 56 

often an abstract collection of data files that may or may not include metadata or any other 57 

ancillary products relevant to the collection. A data package may undergo an ordered set of 58 

revisions, where each revision is an immutable digital snapshot of the data package at the time it 59 

was published. The set of revised data packages is called a series. Each data package revision is 60 

issued a Digital Object Identifier (DOI), which is registered with DataCite (Brase, 2010), along 61 
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with a subset of the metadata. Revision-based DOIs not only improve the reuse of data (Groth et 62 

al., 2020) but also facilitate the reproducibility of research results that are based on data created 63 

at a specific date and time.  64 

EDI has an established data archive of 45,000 unique series (composed of 80,500 individual data 65 

packages) containing about 405,000 digital data files and continues to grow in volume. Many 66 

data are from early, one-time efforts of the NSF LTER program (EcoTrends synthesis project 67 

(Peters et al., 2013) and Landsat imagery), collectively known as the “early collections.” The 68 

“main collection” is composed of 9,000 unique series (about 30,000 data packages), with new 69 

and revised packages added regularly. Contributions to the main collection are from roughly 70 

4,000 scientists and are curated primarily with support from professional information managers 71 

at EDI, LTER and other research sites. Data contributions to the EDI data repository have 72 

achieved a steady-state growth of roughly 3,000 contributions per year since 2016 with the 73 

greatest number being added in the last two years.  74 

Data are described by detailed metadata encoded in the Ecological Metadata Language (EML) 75 

standard (Jones et al., 2019a) and must pass a rigorous quality assessment before being published 76 

to the repository following community recommendations for best practices (Whitlock, 2011, 77 

Goodman et al., 2014, Roche et al., 2015, Briney et al., 2020, Contaxis et al., 2022, Hanisch et 78 

al., 2022). Although requirements to fulfill a basic EML document are minimal, EDI’s user 79 

community agreed on requiring much broader and in-depth metadata for any data to be archived 80 

and published as part of the main collection. For example, EDI metadata must include discovery-81 

level information (e.g., title, abstract, creators, and organizations) as well as physical information 82 

about the data (e.g., file name, format, size, access location) and attribute-level information about 83 

data tables (e.g., column name, data type, data range, units of measurement). Data packages that 84 
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lack required metadata or whose metadata is not on parity with the data are prevented from 85 

submission to the repository. Rules encoded in software that evaluate the metadata and data for 86 

quality and consistency enforce this mandate. This evaluation generates a “quality report” that is 87 

included as part of the final data package for a successful evaluation but is also available for 88 

review if the evaluation fails (O’Brien et al., 2016). 89 

Because requirements for metadata vary across data repositories (Wilkinson et al., 2016), it is 90 

valuable to see where EDI falls within a spectrum of other repositories when ease of discovery 91 

and reusability of data are plotted against repository requirements for metadata richness, data 92 

formatting or specialization of submitted data (Fig. 1). Typically, when metadata and data 93 

requirements are stringent, data are easier to find and use. EDI is positioned near the center of 94 

this correlation. By requiring more metadata than generalist repositories (but without stringent 95 

formats), EDI still provides sufficient information for consumers to determine fitness-of-use and 96 

reuse of archived data. 97 

 98 
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Figure 1: Characteristics of data repositories are plotted qualitatively along axes representing ease of data 99 
discovery and reuse versus the perceived effort to create semantically rich metadata or formatted data of a 100 
specific type. 101 

 102 

EDI simplifies the creation of rich metadata by providing a simple, highly automated, online 103 

metadata editor, ezEML (Vanderbilt et al., 2022) and professional curation services. EDI data 104 

curators are available to counsel users on best practices in data organization, documentation, and 105 

ethical publication practices (Puebla et al., 2021), including procedures to help identify and 106 

anonymize sensitive data (e.g., human subject or endangered species data) prior to publishing. 107 

 108 

Figure 2:Services and approaches provided by EDI to provide optimal reusability of published data 109 
packages. 110 

 111 

After a decade of repository operations and four decades of organized Information Management 112 

experience in the community served by EDI, we are taking stock of the data collection managed 113 

by EDI (specifically, the “main collection”). We explore the variability of data within the 114 
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repository by classifying descriptive attributes found in associated metadata and by analyzing 115 

how these attributes stack up against FAIR (Findable, Accessible, Interoperable, and Reusable) 116 

criteria (Wilkinson et al., 2016). We then review indications of data reuse by analyzing 117 

download statistics and formal data citations found in scientific publications as reported by 118 

Google Scholar (and other means). Finally, we discuss how openly available and well 119 

documented data have enabled the ecological community to ask and answer important new 120 

questions. 121 

Methods 122 

Three primary sets of data were analyzed: the first consists of the EML metadata that 123 

accompanies each data package in EDI’s main collection; the second is a summary of download 124 

events for individual data files; and the third consists of citations of data archived in the EDI 125 

repository obtained by a Google Scholar search. 126 

EDI’s data collection and FAIR analysis 127 

There is no universal definition of a data package (Lowenberg et al., 2019), nor even within a 128 

community does complete agreement exist (Gries et al., 2021) which has ramifications for the 129 

following analyses. In environmental sciences, it is important that data packages are designed to 130 

document the context of a specific research project and data collection with metadata, data, and 131 

code. Hence, in some cases, a data package encompasses a combination of thematically different 132 

observations that are needed to fully comprehend the context of a particular research study (e.g., 133 

the abiotic conditions during sampling and concurrent observations of the biota). Alternatively, 134 

data may be separated into several data packages according to different aspects of a study. 135 



Environmental Data Initiative data reuse 

7 

Following the above example, one package may contain meteorological data while a different 136 

package contains observations of the biota. In other cases, observations taken over time may be 137 

published as a single data series that is regularly updated and versioned (i.e., a series), or as 138 

separate packages for each observation period (e.g., annually). Similarly, observations spanning 139 

more than one location may be split into different data packages along spatial criteria. High-140 

volume data may also be separated into individual packages to simplify management, download 141 

and processing. This heterogeneity should be considered when interpreting the following 142 

analyses, which are based on numbers of data series.  143 

Metadata for the approximately 9,000 data series in EDI’s main collection (data package of the 144 

newest revision were used) were analyzed for specific attributes, including keywords, start and 145 

end dates of the data collection period, and the sampling locations. Analysis was performed by 146 

using the R statistical programming language to parse and record attribute information from the 147 

metadata. This information was then recorded into a corresponding table of key-value pairs for 148 

keyword analysis or into time-period bins for temporal analysis or into latitude/longitude pairs 149 

for spatial analysis. These data and the R source code are published in the EDI data repository 150 

(Gries and Servilla, 2022). 151 

The set of metadata was then processed to determine compliance with criteria identified as being 152 

representative of FAIR data. The two sources of FAIR criteria used in this analysis are the FAIR 153 

Data Maturity Model proposed by Bahim et al. (2020) and the MetaDIG criteria (Jones and 154 

Slaughter, 2019) adopted by DataONE. A detailed discussion of how FAIR criteria were mapped 155 

to EML attributes may be found in Gries (2022). In total, 46 criteria combined from each 156 

approach were analyzed to determine their presence in EDI’s metadata. Again, this analysis was 157 

performed by using R, with results being recorded into criteria-based bins. 158 
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Download Events 159 

Download “request” events for data files were obtained from the repository audit system 160 

database. These events are annotated with the downloaded data file identifier, an event date-161 

timestamp, and the requesting HTTP User-Agent record. To analyze only user-initiated requests 162 

for data files, download events that did not contain a valid User-Agent record (i.e., the record 163 

was null or contained non-identifiable content) were excluded. The User-Agent record was used 164 

to categorize the originating actor of the request as either a “robot”, “human”, or “program”. 165 

Download events identified as a “robot” (i.e., initiated by a search engine or other web crawler) 166 

were filtered out by matching the string content found in the HTTP User-Agent record with 167 

known robot string patterns that are published by the Make Data Count project (Cousijn et al., 168 

2019). The remaining download events were further labeled, also based on the User-Agent 169 

strings, as either “human” (i.e., initiated through a web browser) or “program” (i.e., initiated by a 170 

computer program). Human requests for data were identified by matching the User-Agent string 171 

to known web browser labels, while program requests were identified by User-Agent strings that 172 

are associated with the programming environment being used to access the repository web-173 

service API. The approach used to identify robots in this research is not foolproof but does serve 174 

the needs of this analysis. 175 

Using the above approach, download events for 2021 were filtered and categorized. Of nearly 3 176 

million download events, 180,000 were identified as either human or program-initiated requests 177 

for data. Each download event record lists the data entity which was used to identify the 178 

corresponding data package from which data were downloaded. Once the data package is known, 179 

its metadata were analyzed to determine the thematic classification of the data and temporal 180 

ranges of data-collection time spans.  181 
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Data Citations 182 

Journal citations for data series were collected by using Google Scholar to search for the 183 

“shoulder” of the data package DOI, which is a unique substring found at the start of all DOIs 184 

registered to EDI. A small number of “citations” not found by Google Scholar were added based 185 

on author assurance of data package use. The set of citations was restricted to the years 2013 186 

through 2021. Although a formal data citation includes a DOI which points to a specific version 187 

within a data series, citations were combined for each series in the main collection. The validity 188 

of data package citations was confirmed by accessing the publication through the University of 189 

Wisconsin library system. A total of 2,595 data package citations were found. Similar to 190 

download events, the data package citations were summed into bins based on the data package 191 

identifier and again used as proxies for the reuse of thematic and time-span data. 192 

Results 193 

EDI’s Main Collection of Data 194 

EDI houses valuable long-term ecological observations with almost 30% of data series having 195 

observations covering 10 or more years (Fig. 3). Some short-duration data packages (e.g., 196 

classified as “1 year”) are part of longer-term observation, but were published in smaller 197 

increments (see Methods). Data packages with tree-ring analyses, modeling results, and records 198 

of duration of ice cover provide data records for well over 500 years.  199 
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 200 

Figure 3:Number of data packages (newest revision within each series) per length of observation in years. 201 

 202 

EML metadata include sampling locations as a bounding box or as a list of discrete point 203 

locations. Fig. 4 shows sampling locations (or bounding box centroids) for 8500 (97%) data 204 

series that provide geographic coverage. Centroids for bounding boxes that span northern Europe 205 

and North America appear in the North Atlantic. The EDI repository contains data from all over 206 

the world but with a strong emphasis on the US research community. In addition to data 207 

packages submitted by international contributors, a wide range of sampling locations can be 208 

found in large data products that synthesize many local data packages. 209 
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 210 

Figure 4: Sampling locations as detailed in metadata, for bounding boxes a centroid was calculated. 211 

 212 

The broad subject areas of data in EDI’s main collection reflect the complexities of 213 

environmental research and are best depicted in an analysis of keywords used by authors in 214 

describing their data packages. The 200 most frequently applied keywords are displayed in a 215 

word cloud in Fig. 5. Members of the LTER network (EDI’s largest contributor) are required to 216 

collect data in five core areas: “disturbance”, “primary productivity”, “populations”, “inorganic 217 

nutrients”, “organic matter”. As such, these keywords dominate the word cloud, along with 218 

common environmental drivers, like “temperature.” 219 
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 220 

Figure 5: Word cloud of 200 most frequently used keywords to describe research subject of data 221 
packages. 222 

 223 

A network analysis of the most commonly used keywords further shows how frequently they are 224 

used together to describe a single data package (e.g., “primary productivity” and “disturbance” 225 

are used together in 11%, “populations” and “disturbance” in 9% of data packages). This overlap 226 

in research themes within single data packages denotes the practice of collecting and publishing 227 

data of different topics. As described in the discussion of data package design in the methods, 228 

observations of organisms and measurements of their abiotic environmental conditions are 229 

frequently used to explain organismal behavior. However, each of those observations may very 230 

well be reused separately in a meta-analysis. This analysis of keyword grouping further 231 

highlights that keywords are often assigned by the data provider without any further 232 

requirements for harmonization between projects, therefore the practice of assigning different 233 
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words for similar concepts is very common. These practices and possible improvements have 234 

significant impact on the discoverability of data (Porter, 2019). 235 

Combining the basic count of keyword use, the analysis of keywords used most frequently 236 

together, and expert knowledge, we identified groups of keywords that appeared to be describing 237 

environmental research areas in their broadest scopes for which data package series are 238 

published in EDI. For instance, we expanded the concept of ‘populations’ to ‘biodiversity’ and 239 

included data packages with keywords: diversity, community, population, species, density, 240 

abundance, competition, cover, organism, habitat, restoration, distribution, plot, inventory, 241 

vegetation, fauna, microbe, survey, succession, biota, predation. We also added the concept of 242 

‘abiotic conditions’ which includes the frequently used terms: temperature, precipitation, snow, 243 

irradiance, ice, climate, meteorology, waves, radiation, rain, weather, PAR, hydrology, moisture, 244 

physical, discharge, elevation. Any single data package may be classified as belonging to more 245 

than one thematic area. The group of ‘Not Themed’ data packages is either lacking keywords or 246 

cannot be assigned to any of the other environmental themes (e.g., a very few are solely human 247 

subject related data). The number of data packages in EDI’s main collection is fairly evenly 248 

distributed across these large themes (Fig. 6) with abiotic conditions and biodiversity leading in 249 

number of data packages. 250 
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 251 

Figure 6: Number of data packages (newest revision within each series) within each major research 252 
subject area, as determined by keyword analysis. 253 

 254 

FAIR Ranking of Data Packages 255 

Analyzing metadata quality using the newly developed and more specific criteria for evaluating a 256 

data package’s degree of FAIR implementation clearly shows that the majority of data packages 257 

in EDI’s repository score high on many of the FAIR criteria (Fig. 7). Most criteria (over 70%) 258 

under Findable and Accessible are either checked for upon data submission or the metadata are 259 

increasingly inserted automatically by EDI. The most obvious exceptions (fewer than 50% of 260 

data packages pass) are criteria that do not apply to all data packages (e.g., taxonomic coverage), 261 

plus the adoption, acquisition and use of IDs in metadata (e.g., ORCID for data package authors, 262 

Research Organization Registry, ROR ID  for institutions and projects). These identifiers are 263 

relatively new (e.g., ROR IDs have only recently been assigned for LTER projects) and the 264 

practice of obtaining and integrating them into metadata will slowly improve. 265 

https://orcid.org/
https://ror.org/
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 266 

Figure 7: Compliance with a given quality measure in percent of all measured units in EDI’s main 267 
collection, i.e., measures for data package quality is given as percent of all data packages in EDI’s main 268 
collection, measure for data entities as percent of data entities, and measures for table attributes as percent 269 
of attributes. 270 

 271 

In the areas of Interoperability and Reusability, EDI’s metadata comply well with criteria 272 

suggested by Jones and Slaughter (2019) with the exception of specific data provenance 273 

information, measures of data quality and precision. The two lowest categories under ‘Reusable’ 274 

‘provenance information present’ and ‘software is specified’ in Fig. 7 are mainly needed for 275 

documenting the generation of synthesis data products (see discussion). The majority of data in 276 

EDI are original observations where this does not apply. General provenance information may be 277 
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found in several places in the metadata. Foremost, provenance information is detailed in the 278 

method description that is present in most data packages. Documenting data precision and 279 

quality, however, is a concern to data users that is currently not addressed by data contributors.  280 

Data Downloads and Data Citations 281 

By subject (Fig. 8) or time (Fig. 9), the majority of data downloads occurred manually via 282 

browser. It should be noted that because a script automates data access, it is likely to execute and 283 

record data access many times before the final data analysis is actually happening, which would 284 

inflate the importance of that download fraction. 285 

A total of 2,595 citations of 1,563 unique data packages were recorded from 1,382 unique 286 

publications. Citations per publication ranged from 1-33 data series, and single data series were 287 

cited in 1-25 publications. While it can be assumed that most data series in EDI have been used 288 

in at least one publication or thesis, formal documentation of such use accounts only for about 289 

18% of data series in EDI’s main collection. The practice of formally citing data packages in 290 

publications is rapidly gaining popularity, though, with journals starting to require that data are 291 

available in a public repository and a data availability statement be included in the publication. 292 

Accordingly, the number of publications containing formal citations of data published in EDI 293 

have increased from 13 to over 400 annually between 2013 and 2021. 294 

Given all caveats, the following data analysis does show very important patterns of data use. 295 

First, it does not appear that any particular research theme dominates data usage for either 296 

measure, download and citation (Fig. 8). 297 
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 298 

Figure 8: Data downloads (left) and citations (right) data package in category. Categories are major 299 
research themes as determined by author assigned keywords. For Downloads, gray = program and black = 300 

human. 301 

 302 

However, when comparing data use by length of observation, long-term data packages are being 303 

used proportionally more frequently than short-term data packages. Another interesting result is 304 

that download numbers are particularly low for data packages providing observation for only one 305 

year (Fig. 9). 306 
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 307 

Figure 9: Data downloads (left) and Citations (right) per data package in duration in years bin. For 308 
Downloads, black = human and gray = program) 309 

 310 

To further explore the impact of publicly available data packages, we retrieved citation indexes 311 

for each journal article citing a data package and the impact factors for the journals which range 312 

from 0 to 590 and 0.5 to 50 (Web of Science, 2021), respectively. 313 

Discussion 314 

EDI provides access to data from the ‘long-tail’ of environmental research and a large proportion 315 

of the data are long-term monitoring efforts in most environmental research areas. The 316 

distribution of reported data collections is worldwide with emphasis on North America. Our 317 

examination of the subject areas covered by dataset keywording entailed manual analysis that 318 

relied on EDI’s expert knowledge of the research fields covered by data packages. This work 319 

could have been accelerated had the use of controlled vocabularies supported by ontology and 320 

related technologies been embraced earlier. However, EDI and its data management community 321 
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are gearing up to retrospectively implement more meaningful annotations to the metadata. 322 

Developing community endorsed vocabularies and ontologies (e.g., Buttigieg et al., 2016) show 323 

great promise for linking data both within and across scientific domains and improving 324 

findability and interoperability of the data.  325 

Our FAIR analysis addresses the utmost importance of carefully documenting the context in 326 

which data were collected, which has long been recognized in environmental research (Catford et 327 

al., 2022) and has important ramifications for metadata and the makeup of data in a data package 328 

(Lowenberg et al., 2019, Gries et al., 2021). Some of the RDA and DataONE criteria used for 329 

our FAIR evaluation are enforced by constraints in the EML XML schema. Furthermore, 330 

metadata content was collaboratively improved by the data providers since the data repository 331 

went into production in 2013 resulting in the development of the EML congruence checker 332 

(O’Brien et al., 2016), continuous improvements to the repository infrastructure, and its metadata 333 

editor, ezEML (Vanderbilt et al., 2022). Upon submission, all metadata and data files are passed 334 

through the EDI congruence checker, which compares metadata to data structures. By 335 

implementing the EML standard and developing community endorsed best practices, data in the 336 

EDI repository are inherently FAIR and were so long before the term was coined (Jones et al., 337 

2019b).  338 

In addition to the FAIR criteria recommendations used here, several data user interviews (Kratz 339 

and Strasser, 2015, Schmidt et al., 2016, Gregory et al., 2020) have identified a number of high-340 

priority criteria for evaluating the fitness for use of open data, some of which align well with the 341 

reported FAIR criteria and EDI’s mission. Free access, ease of access, data coverage, and 342 

adequate metadata rank high. Open data users do not expect a data package review process 343 

(Kratz and Strasser, 2015), but also consider transparency of collection and processing methods, 344 
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lack of data errors, or reputation of the data creator important when determining fitness for use of 345 

a data package. These criteria are difficult to judge reliably and report without human input. 346 

FAIR criteria suggested by Jones and Slaughter (2019) are designed to be machine-actionable 347 

and are mostly evaluating metadata completeness and not content. Hence, our FAIR analysis 348 

evaluates the existence and length of a method and other descriptive elements in the metadata but 349 

cannot judge the completeness or quality of such descriptions provided. Reporting use for data 350 

packages (downloads and citations) will be the best proxy indicator for these qualitative criteria. 351 

Not addressed in the FAIR analysis are Bahim et al. (2020) recommendations of using machine-352 

understandable knowledge representation for data, community data models, and FAIR-compliant 353 

vocabularies. Given EDI’s primary goals, (and hence position in the curation effort vs. usability 354 

diagram, Fig. 1), achieving higher ratings for criteria related to machine readability would 355 

require a major effort and expense. However, in collaboration with the research community, EDI 356 

increasingly hosts data in community-developed standardized formats (Vanderbilt and Gries, 357 

2021, O’Brien et al., 2021). 358 

Standards in reporting and analyzing data use are still a developing area and are strongly 359 

influenced by community practices (Lowenberg et al., 2019). EDI serves data communities 360 

(Cooper and Springer, 2019) within larger, place-based, cross-institutional environmental 361 

research programs (e.g., LTER sites, biological field stations, California Interagency Ecological 362 

Program). These data communities are marked by their early recognition of the value of data 363 

sharing and comprehensive metadata, expert data management support, and a bottom-up 364 

development of data management infrastructure (Gries et al., 2016, Kaplan et al., 2021, Stafford, 365 

2021), leading to the EDI repository of today with a well-defined scope and mission (Servilla et 366 

al., 2016). These communities are composed of thousands of researchers, representing both data 367 
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providers and users, plus research collaborators. These communities are central to EDI, a feature 368 

not typically exhibited by generic repositories (Fig. 1, left) or those focused mainly on 369 

aggregation and harmonization of specific data (Fig. 1, right). 370 

For example, for more than 40 years, observational data packages now available in EDI were 371 

used repeatedly within their respective data communities but without formal acknowledgment. 372 

The LTER program reports over 25,000 published products 373 

(https://www.zotero.org/groups/2055673/lter_network/library) (~19,000 peer-reviewed journal 374 

articles). It can safely be assumed that most of these products are directly using data now 375 

available in the EDI repository or are building on the knowledge gained from these data. 376 

It should be noted that throughout this study, we report total data use, and do not distinguish 377 

between primary use and reuse. Although there are several definitions for data reuse in the 378 

literature (Pasquetto et al., 2017), we are following the guidance of van de Sandt et al. (2019), 379 

who after extensive research into definitions plus modeling of data use scenarios, concluded that 380 

‘data use’ is the most accurate way to describe all uses of a research resource in a very complex, 381 

nonlinear, and evolving open research environment.  382 

Such nonlinear use of new and existing data is well established in synthesis science, which has 383 

been strongly promoted through the establishment of Synthesis Centers (Baron et al., 2017) over 384 

the last 25 years. Synthesis research is considered highly important in environmental science 385 

(Carpenter et al., 2009) addressing complex questions at broad scales (e.g., Wieder et al., 2021) 386 

with long-term observations proving critical to the understanding of drivers of environmental 387 

change and its implications (e.g., Patel et al., 2021). Synthesis involves meta-analyses, reviews, 388 

new combinations of existing data, and advances in statistical methods (Collins, 2020). In 389 

addition to making effective use of existing data, synthesis research leads to novel insights and 390 

https://www.zotero.org/groups/2055673/lter_network/library
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provides usable information for decision-makers (Hackett et al., 2008). Although data products 391 

from several such synthesis efforts have been published in the EDI repository (e.g., Collins et al., 392 

2018, Soranno et al., 2019, Wieder et al., 2020), other synthesis studies have not formally cited 393 

data packages that are published in EDI (Batt et al., 2017, Li and Pennings, 2016) but are 394 

assuring data use in other ways. In a recent study documenting the importance of such data use in 395 

advancing knowledge, Halpern et al., (2020) found a five-fold higher citation rate for synthesis 396 

publications compared to the broader ecological literature.  397 

In addition to data downloads and citations, EDI provides the option to document data use in the 398 

form of specific provenance information in the metadata along with processing scripts. This 399 

formal encoding of data used to develop a synthesis data product can handle many more data 400 

‘citations’ (links) than a regular journal publication would, and documents decisions made 401 

during data preparation (AlNoamany and Borghi, 2018, Brinckman et al., 2019). For instance, 402 

the above-mentioned data package by Soranno et al. (2019) documents 90 data packages that 403 

were used to synthesize it. Furthermore, Soranno et al. (2019) has been used to create the data 404 

package by Cheruvelil et al., (2022). One of the articles citing an earlier version of the Soranno 405 

et al. data package is what is called a ‘data paper’ (Belter, 2014, Kratz and Strasser, 2014), i.e., a 406 

journal article style discussion of the metadata for and content of a data package. This data paper 407 

(Soranno et al., 2017) in turn has been cited over 80 times. Hence, we see formal citations of the 408 

data package DOI and the data paper DOI both may indicate data use. This short discourse on the 409 

complexities of data package use shows that the research community needs more extensive data 410 

use reporting and the difference between use and reuse is almost impossible to determine or 411 

measure. 412 
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Although complex, the above examples of data use are documented and therefore transparent. 413 

They may be discovered by citation indexes and machine-readable metadata. Many data uses 414 

cannot be traced, however, and evaluating data downloads as a proxy is the only viable approach. 415 

EDI provides unfettered access to data (no login or registration is required) and does not ask a 416 

user to specify what the intended application of the data will be. Based on survey results by 417 

Gregory et al. (2020) other uses include data for teaching and exploring (and discarding) new 418 

ideas, and these are not likely to ever have a mechanism for formal documentation and reporting. 419 

Conclusion 420 

Studying the highly complex living environment to understand its connections and drivers and 421 

monitor and document its changes requires a multidisciplinary research endeavor. Although data 422 

sharing and reuse has become integral to advancing knowledge in environmental science, data 423 

stewardship and enabling such reuse are still in the early stages of socio-technical inventions 424 

(Michener, 2015). However, it is recognized that data publishing improves the scientific 425 

enterprise (McKiernan et al., 2016) by increasing transparency and reproducibility of published 426 

results (Roche et al., 2015, 2021, Borghi and Van Gulick, 2021) and encouraging new 427 

collaborations (e.g., Boland et al., 2017, Walter et al., 2021).  428 

EDI is a data repository and data management support organization providing the environmental 429 

research community with a stable platform of well documented and, hence, reusable data. As the 430 

open data landscape is changing toward data publishing requirements to increase transparency 431 

and reproducibility of scientific results (Roche et al., 2021) EDI provides tools and support to 432 

streamline publication workflows and review processes (e.g., Fox et al., 2021). The current rapid 433 
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and dramatic environmental changes in particular, increasingly prompt researchers to publish and 434 

seek historic observations for comparison and context in EDI.  435 
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