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Rafael Peña-Miller1, and Adrian Gonzalez Casanova4

1UNAM CCG
2Center for Genomic Regulation
3UNAM IIMAS
4UNAM

October 8, 2022

Abstract

Plasmids are extra-chromosomal genetic elements that encode a wide variety of phenotypes and can be maintained in bacterial

populations through vertical and horizontal transmission, thus increasing bacterial adaptation to hostile environmental con-

ditions like those imposed by antimicrobial substances. To circumvent the segregational instability resulting from randomly

distributing plasmids between daughter cells upon division, non-transmissible plasmids tend to be carried in multiple copies per

cell, which also results in a metabolic burden to the bacterial host, therefore reducing the overall fitness. This trade-off poses

an existential question for plasmids: What is the optimal plasmid copy number? We address this question using a combination

of population genetics modeling with microbiology experiments consisting of Escherichia coli K12 bearing a multi-copy plasmid

encoding for blaTEM-1, a gene conferring resistance to b-lactam antibiotics. We use a Wright-Fisher model to evaluate the

interaction between the above mentioned opposing forces. By numerically determining the optimal plasmid copy number for

constant and fluctuating selection regimes, we conclude that plasmid copy number is an optimized evolutionary trait that

depends on the rate of environmental fluctuation and balances the benefit between increased stability in the absence of selection

with the burden associated with carrying multiple copies of the plasmid.

Day 1 Day 2 Day 2

PB

PF

Sampling Sampling
A B

1



P
os
te
d
on

A
u
th
or
ea

8
O
ct

20
22

—
T
h
e
co
p
y
ri
gh

t
h
ol
d
er

is
th
e
au

th
or
/f
u
n
d
er
.
A
ll
ri
g
h
ts

re
se
rv
ed
.
N
o
re
u
se

w
it
h
ou

t
p
er
m
is
si
on

.
—

h
tt
p
s:
//
d
oi
.o
rg
/1
0.
22
54
1/
au

.1
66
52
28
76
.6
86
15
69
8/
v
1
—

T
h
is

a
p
re
p
ri
n
t
an

d
h
a
s
n
o
t
b
ee
n
p
ee
r
re
v
ie
w
ed
.
D
a
ta

m
ay

b
e
p
re
li
m
in
a
ry
.

A C

B D

A

C D

B

A BPB PF

24 hours

Absorbance reader

2



P
os
te
d
on

A
u
th
or
ea

8
O
ct

20
22

—
T
h
e
co
p
y
ri
gh

t
h
ol
d
er

is
th
e
au

th
or
/f
u
n
d
er
.
A
ll
ri
g
h
ts

re
se
rv
ed
.
N
o
re
u
se

w
it
h
ou

t
p
er
m
is
si
on

.
—

h
tt
p
s:
//
d
oi
.o
rg
/1
0.
22
54
1/
au

.1
66
52
28
76
.6
86
15
69
8/
v
1
—

T
h
is

a
p
re
p
ri
n
t
an

d
h
a
s
n
o
t
b
ee
n
p
ee
r
re
v
ie
w
ed
.
D
a
ta

m
ay

b
e
p
re
li
m
in
a
ry
.

x

A B

D EC

N
or

m
al

ize
d 

in
te

ns
ity

Initial PB frequency ( )ϕ

AM
P 

(
)

μg
/m

l

0
0.

2
0.

4
0.

6
0.

8
1

Fi
na

l P
B 

fre
qu

en
cy

α

0
1
2

2.5
3

3.5
4
6

0
1
2

2.5
3

3.5
4
6

AMP concentration ( )μg/ml

PB PF

Mix: PB + PFϕ (1 − ϕ)

24 hours

24 hours

Fluorescence 
reader

0 1 2 2.5 3 3.5 4 6

Data

Model
0 0.2 10.80.60.4

0 0.25 10.750.5 0 0.25 10.750.5
0

0.2

0.4

0.6

0.8

1

Fi
na

l P
B 

fre
qu

en
cy

PB frequency

A B C

E

D

3



P
os
te
d
on

A
u
th
or
ea

8
O
ct

20
22

—
T
h
e
co
p
y
ri
gh

t
h
ol
d
er

is
th
e
au

th
or
/f
u
n
d
er
.
A
ll
ri
g
h
ts

re
se
rv
ed
.
N
o
re
u
se

w
it
h
ou

t
p
er
m
is
si
on

.
—

h
tt
p
s:
//
d
oi
.o
rg
/1
0.
22
54
1/
au

.1
66
52
28
76
.6
86
15
69
8/
v
1
—

T
h
is

a
p
re
p
ri
n
t
an

d
h
a
s
n
o
t
b
ee
n
p
ee
r
re
v
ie
w
ed
.
D
a
ta

m
ay

b
e
p
re
li
m
in
a
ry
.

0.00 0.25 0.50 0.75 1.00
Antibiotic rate (AR)

0.0

0.2

0.4

0.6

0.8

1.0

En
tro

py

100 101 102

Plasmid size (Kb)

100

101

102

PC
N

Pearson = -0.876

4



P
os
te
d
on

A
u
th
or
ea

8
O
ct

20
22

—
T
h
e
co
p
y
ri
gh

t
h
ol
d
er

is
th
e
au

th
or
/f
u
n
d
er
.
A
ll
ri
g
h
ts

re
se
rv
ed
.
N
o
re
u
se

w
it
h
ou

t
p
er
m
is
si
on

.
—

h
tt
p
s:
//
d
oi
.o
rg
/1
0.
22
54
1/
au

.1
66
52
28
76
.6
86
15
69
8/
v
1
—

T
h
is

a
p
re
p
ri
n
t
an

d
h
a
s
n
o
t
b
ee
n
p
ee
r
re
v
ie
w
ed
.
D
a
ta

m
ay

b
e
p
re
li
m
in
a
ry
.

CBA GD E

H

F

I

5



Segregational instability of multicopy plasmids:
a population genetics approach
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ABSTRACT
1

2

Plasmids are extra-chromosomal genetic elements that encode a wide variety of phenotypes and can
be maintained in bacterial populations through vertical and horizontal transmission, thus increasing
bacterial adaptation to hostile environmental conditions like those imposed by antimicrobial sub-
stances. To circumvent the segregational instability resulting from randomly distributing plasmids
between daughter cells upon division, non-transmissible plasmids tend to be carried in multiple
copies per cell, with the added benefit of exhibiting increased gene dosage and resistance levels.
But carrying multiple copies also results in a high metabolic burden to the bacterial host, therefore
reducing the overall fitness of the population. This trade-off poses an existential question for plasmids:
What is the optimal plasmid copy number? In this manuscript, we address this question by postulating
and analyzing a population genetics model to evaluate the interaction between selective pressure,
the number of plasmid copies carried by each cell, and the metabolic burden associated with plasmid
bearing in the absence of selection for plasmid-encoded traits. Parameter values of the model were
estimated experimentally using Escherichia coli K12 carrying a multicopy plasmid encoding for a
fluorescent protein and blaTEM-1, a gene conferring resistance to β -lactam antibiotics. By numerically
determining the optimal plasmid copy number for constant and fluctuating selection regimes, we
show that plasmid copy number is a highly optimized evolutionary trait that depends on the rate of
environmental fluctuation and balances the benefit between increased stability in the absence of
selection with the burden associated with carrying multiple copies of the plasmid.
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1 Introduction22

Prokaryotes transfer DNA at high rates within microbial communities through mobile genetic elements
such as bacteriophages,1 transposons2 or extra-chromosomal DNA molecules known as plasmids.3

Crucially, plasmids have core genes that allow them to replicate independently of the chromosome but
also encode for accessory genes that provide their bacterial hosts with new functions and increased
fitness in novel or stressful environmental conditions.4 Plasmids have been widely studied due to their
biotechnological potential5 and their relevance in agricultural processes,6 but also because of their
importance in clinical practice since they have been identified as significant factors contributing to the
current global health crisis generated by drug resistant bacterial pathogens.7
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Although the distribution of plasmid fitness effects is variable and context dependant,8 it is generally
assumed that in the absence of selection for plasmid-encoded genes, plasmids impose a fitness burden
on their bacterial hosts.9, 10 As a result, plasmid-bearing populations can have a competitive disad-
vantage compared to plasmid-free cells, thus threatening plasmids to be cleared from the population
through purifying selection.11 To avoid extinction, some plasmids can transfer horizontally to lineages
with increased fitness, with previous theoretical results establishing sufficient conditions for plasmid
maintenance, namely that the rate of horizontal transmission has to be larger than the combined effect
of segregational loss and fitness cost.12, 13 Also, some plasmids encode molecular mechanisms that
increase their stability in the population, for instance, toxin-antitoxin systems that kill plasmid-free
cells,14 or active partitioning mechanisms that ensure the symmetric segregation of plasmids upon
division.15
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To avoid segregational loss, non-conjugative plasmids lacking active partitioning and post-segregational
killing mechanisms tend to be present in many copies per cell, therefore decreasing the probability
of producing a plasmid-free cell when randomly segregating plasmids during cell division. But this
reduced rate of segregational loss is not sufficient to explain the stable persistence of costly plasmids in
the population, suggesting that a necessary condition for plasmids to persist in the population is to carry
beneficial genes for their hosts that are selected for in the current environment. However, regimes that
positively select for plasmid-encoded genes can be sporadic and highly specific, so plasmid persistence
is not guaranteed in the long term. Moreover, even if a plasmid carries useful genes for the host, these
can be captured by the chromosome, thus making plasmids redundant and rendering them susceptible to
be cleared from the population.16 This evolutionary dilemma has been termed the ‘plasmid paradox’.17
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In this paper, we use a population genetics modeling approach to evaluate the interaction between
the number of plasmid copies contained in each cell and the energetic cost associated with carrying each
plasmid copy. We consider a non-transmissible, multicopy plasmid (it can only be transmitted vertically)
that lacks active partitioning or post-segregational killing mechanisms (plasmids segregate randomly
upon division). We will also consider that plasmids encode a gene that increases the probability
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of survival to an otherwise lethal concentration of an antimicrobial substance, albeit imposing a
burden to plasmid-bearing cells in drug-free environments. To estimate parameters of our population
genetics model, we used an experimental model system consisting on Escherichia coli bearing a
multicopy plasmid pBGT (∼19 copies per cell) carrying blaTEM-1, a drug-resistance gene that produces
a β -lactamase that degrades ampicillin and other β -lactam antibiotics.7, 18
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We used computer simulations to evaluate the stability of a multicopy plasmid in terms of the
duration and strength of selection in favor of plasmid-encoded genes. This allowed us to numerically
estimate the number of copies that maximized plasmid stability under different environmental regimes:
drug-free environments, constant exposure to a lethal drug concentration, and intermittent periods of
selection. Altogether, our results confirm the existence of two opposing evolutionary forces acting on
the number of copies carried by each cell: selection against high-copy plasmids consequence of the
fitness cost associated with bearing multiple copies of a costly plasmid and purifying selection resulting
from the increased probability of plasmid loss observed in low-copy plasmids.
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Methods70

1.1 Serial dilution protocol71

We consider a serial dilution experiment with two types of bacteria: plasmid-bearing (PB) and plasmid-
free (PF). Let us denote by n the plasmid copy number (PCN) and argue that this is an important
parameter: in the one hand, the selective disadvantage of PB individuals due to the cost of carrying
plasmids is assumed to be proportional to n; on the other hand, the PCN determines the heritability of
the plasmid.

72
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In our schema, each day starts with a population of N cells that grow exponentially until saturation
is reached (i.e. until there are γN cells). At the beginning of the next day, N cells are sampled (at
random), transferred to new media and exponential growth starts again (Figure 1A).

77
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Day 1 Day 2 Day 2

PB

PF

Sampling Sampling
A B

80

Figure 1. Schematic diagram of the model. A) Serial dilution protocol. PB cell are represented in green
while PF cells are represented in gray. We show three days of the experiments. An antibiotic pulse is added
during day 3. B) Segregational loss. Upon cell division, plasmids are segregated at random between the two
daughter cells. Then the plasmids are replicated until the PCN is 4. When a cell inherits no plasmid, it becomes
plasmid free.
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1.2 Inter-day dynamics87

To model the inter-day dynamics, we consider a discrete-time model in which the population size is
fixed to N. Day i starts with a fraction Xi of PB cells (and 1−Xi of PF cells). We consider that the
fitness cost associated with plasmid maintenance, κn is proportional to the PCN, i.e. κn = κn. This
means that, at the end of day i, the number of PF cells is proportional to their initial frequency 1−Xi,
while the number of PB cells is proportional to their initial frequency Xi multiplied by (1−κn)< 1. So,
at the end of day i, the fraction of PB cells would be

(1−κn)Xi

(1−κn)Xi +1−Xi
.

In addition, PB cells can lose their plasmids an become PF and with probability µn, so, at the end of
day i, the fraction of PB cells needs to be multiplied by (1−µn).

88
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At the beginning of day i+1, we sample N individuals at random from the previous generation.
Since N is very large, we can neglect stochasticity and assume that the fraction of PB cells at the
beginning of day i+1 is equal to their fraction at the end of day i, i.e.

Xi+1 = f (Xi) :=
(1−κn)Xi

(1−κn)Xi +1−Xi
(1−µn), i≥ 1. (1)

99
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Additionally, we aim to modeling selection for plasmid-encoded genes. For plasmids carrying
antibiotic resistance genes, this is achieved by exposing the population to antibiotic pulses. Individuals
with no plasmids suffer more from this this treatment so, at each pulse, we observe an increment in the
relative frequency of the PB subpopulation. To model this phenomenon, we assume that, in the presence
of antibiotic, PF individuals exhibit a selective disadvantage represented by parameter α ∈ [0,1].

105
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For instance, if an antibiotic pulse occurs at day i, all PB cells survive, (there are NXi), but the PF
cells die with probability α , so only N(1−α)(1−Xi) survive. So, the fraction of PB individuals, right
after the antibiotic pulse becomes

g(Xi) :=
Xi

Xi +(1−α)(1−Xi)
.

Then, cells grow exponentially again, as in a normal day, so that, at the end of the day, the fraction of
PB cells is f (g(Xi)).

110
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117

If we consider that the pulses occur at generations T,2T, . . . , the frequency process becomes

Xi+1 =

 f (g(Xi)) =
(1−κn)Xi

1−α+(α−κn)Xi
(1−µn) if i = jT , j = 1,2 . . .

f (Xi) =
(1−κn)Xi

(1−κn)Xi+1−Xi
(1−µn) otherwise.

(2)
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1.3 Intra-day dynamics122

For the intra-day dynamics, day i starts with a population of N cells (N ∼ 105 in the experiment) that
grow exponentially until saturation is reached (i.e. until there are γN cells.). The initial fraction of PB
cells is Xi. We assume that, in the absence of antibiotic, the population evolves as a continuous time
multi-type branching process Zt = (Z0

t ,Z
1
t ), where Z0

t (resp Z1
t ) is the number of PB cells (resp. PF

cells). The reproduction rate (or Malthusian fitness) of PB (resp. PF) individuals is r (resp. r+ρn),
with ρn > 0 (since PB individuals have some disadvantage due to the cost of plasmid maintenance).
Following19 , we assume that ρn ∼N−b for some b∈ (0,1/2) (this regime is known as moderate-strong

selection).

123

124
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130

We consider plasmids that lack active partitioning systems20 so, at the moment of cell division,
each plasmid randomly segregates into one of the two new cells. Once in the new host, the plasmids
replicates until reaching n copies. If, however, one of the two new cells has all the n copies, the other
one will not carry any plasmid copy and becomes PF. Thus, we make the simplifying assumption that
the daughter of a PB cell becomes PF with probability 2−n (segregational loss rate), as illustrated in
Figure 1B. Therefore, at every branching event, an individual splits in two. Plasmid-free individuals
only split in two PF individuals. Plasmid-bearing individuals can split in one PF individual and one
PB individual with probability 2−n (if all the plasmids go to one of them) or they can split in two
plasmid-bearing individuals with probability 1−2−n.

131

132

133

134

135

136

137

138

139

Let M(t) = {Mi, j(t) : i, j = 0,1} be the mean matrix given by Mi, j(t) = Eei(Z
j
t ), the average size

of the type j population at time t if we start with a type i individual. According to [21, Section V.7.2],
M(t) can be calculated as an exponential matrix

M(t) = etA where A =

(
r+ρn 0
r2−n r(1−2−n)

)
.

More precisely,

M(t) =

(
e(r+ρn)t 0

r2−n

r2−n+ρn
(e(r+ρn)t− er(1−2−n)t) er(1−2−n)t

)
.

Let σ be the duration of the growth phase. Since N is very large, one can assume that reproduction is
stopped when the expectation of the number of descendants reaches γN, i.e. that σ satisfies

γN =(1−Xi)N(M0,0(σ)+M0,1(σ))+ xN(M1,0(σ)+M1,1(σ))

=Nerσ

(
eρnσ +ρnXi

e−r2−nσ − eρnσ

r2−n +ρn

)
.
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Since ρn ∼ N−b, we have for large enough N that

σ ' logγ

r
.

140
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158

Since γN >> 1, we can assume that the number of PB (resp. PF) cells at the end of the day is equal
to its expected value. Therefore, the fraction of PB cells at the end of day i is equal to

XiM1,1(σ)

(1−Xi)(M0,0(σ)+M0,1(σ))+Xi(M1,0(σ)+M1,1(σ))
=

Xie−(r2−n+ρn)σ

(1−Xi)+Xi
r2−n+ρne−(r2−n+ρn)σ

r2−n+ρn

. (3)

This corresponds to equation (2) with parameters

κn =
ρn(1− e−(r2−n+ρn)σ )

r2−n +ρn
∼ σρn = σρn and µn = 1− r2−n +ρn

r2−ne(r2−n+ρn)σ +ρn
∼n→∞ rσ2−n.

(4)

The importance of these formulas is that they connect measurable quantities with theoretical parameters,
leading to a method to estimate the parameters of the model from experiments, which is the spirit of
the experiment described in the following section.
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1.4 Model parametrization171

Our goal is to use the inter-day model to evaluate the long-term dynamics of plasmid-bearing populations
in terms of the cost associated with carrying plasmids and the fitness advantage conferred by the plasmid
in the presence of positive selection. To quantify these parameters experimentally, our approach
consisted in two phases: (1) from growth kinetic experiments, we estimate parameters ρ , r and σ of
the inter-day model, and (2) we perform competition experiments in a range of drug concentrations to
obtain µn and κn using equation (4) of the intra-day model.

172

173

174

175

176

177

Our experimental model system consisted in Escherichia coli K12 carrying pBGT, a non-transmissible
multicopy plasmid used previously to study plasmid dynamics and drug resistance evolution.22–25

Briefly, pBGT is a ColE1-like plasmid with ∼19 plasmid copies per cell, lacking the necessary machin-
ery to perform conjugation or to ensure symmetric segregation of plasmids upon division. This plasmid
carries a GFP reporter under an arabinose-inducible promoter and the blaTEM-1 gene that encodes
for a β -lactamase that efficiently degrades β -lactam antibiotics, particularly ampicillin (AMP). The
minimum inhibitory concentration (MIC) of PB cells to AMP is 8,192 mg/l, while the PF strain has a
MIC of 4 mg/l (see Appendix A).

178
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180

181

182

183

184

185

A BPB PF

24 hours

Absorbance reader

186

Figure 2. Growth kinetic experiment. A) Schematic diagram illustrating a bacterial growth experiment
performed in drug-free media separately for PB and PF populations. We used an absorbance microplate reader to
measure the optical density (OD630) at different time-points during the 24-hour experiment. B) Growth curves of
PB (green) and PF (black) strains, with replicate experiments represented as shaded curves. The duration of the
exponential phase, σ , was estimated by identifying the start of exponential phase and the time elapsed before
reaching carrying capacity. Parameter ρ refers to the maximum growth rate of the PB population, while the
selective advantage of the PF strain is represented with r.
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193194
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Growth experiments were performed in 96-well plates with lysogeny broth (LB) rich media and
under controlled environmental conditions. Using an plate absorbance spectrophotometer, we obtained
bacterial growth curves that enabled us to estimate the maximal growth rate of the PB and PF strains,
corresponding to r and ρn in the intra-day model26 (Figure 2A and Appendix C). As expected, we
observed a reduction in bacterial fitness of the PB subpopulation, expressed in terms of a decrease in its
maximum growth rate when grown in isolation. The metabolic burden associated with carrying the
pBGT plasmid (n = 19) was estimated at 0.108±0.067 (Figure 2B).

195

196

197

198

199

200

201

We then performed a one-day competition experiment consisting of mixing PB and PF subpopula-
tions with a range of relative abundances and exposing the mixed populations to environments with
increasing drug concentrations (see Figure 3A for a schematic of the experimental protocol). Previous
studies have used a similar approach to determine a selection coefficient,27 a quantity that was used
to show that selection of resistance can occur even at sub-lethal antibiotic concentrations.28 Figure
3B shows the final PF frequency obtained for different initial population structures and strengths of
selection.
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208

The fitness cost associated with carrying plasmids in our inter-day model was estimated from the
proportion of PB cells at the end of a competition experiment. This quantity can be obtained from the
normalized fluorescent intensity of the bacterial culture, measured with a fluorescent spectrophotometer
or with flow cytometry (Figure 3C shows a linear relationship between both quantities). Figure 3D
shows the end-point bacterial density resulting from competition experiments with different initial
fractions of PB cells exposed to a range of AMP concentrations. Note that, at low AMP concentrations
(blue lines), the frequency of plasmid-bearing is below the identity, consistent with plasmids imposing
a fitness cost to PB cells. In contrast, at high AMP concentrations (red lines), plasmid-free cells are
killed and the population is almost exclusively conformed by PB cells.
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In the model, since PCN is a fixed parameter, the PB fraction resulting from a competition
experiment in the absence of selection only depends on the cost associated with plasmid bearing.
Therefore, by fitting equation (1), we estimated that the cost associated with carrying n = 19 copies
of pBGT was κn = 0.272. Furthermore, by fixing this parameter and incorporating antibiotics, we
estimated the selective pressure α for different antibiotic concentrations by fitting equation (2) to
the experimental data. Figure 3E illustrates that at low antibiotic concentrations (small values of α)
the frequency of the population is low, while higher values of α result in an increased PB frequency.
Table 1 summarizes parameter values estimated for each strain in our model, and Table 2 shows the
correspondence between antibiotic concentrations and α .
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Figure 3. Competition experiment under a range of drug concentrations. A) Schematic diagram
illustrating an experiment where PB and PF are mixed at different relative abundances and submitted to a range
of ampicillin concentrations (0, 1, 2, 2.5, 3, 3.5, 4, and 6 µg/ml). We use a fluorescence spectrophotometer to
estimate the relative abundance of plasmid bearing cells in the population after 24 hours of growth. B) Final PF
frequency (illustrated in a gradient of green) for different initial fraction of PB cells and selection coefficients
(top: data; bottom: model). C) Control experiment illustrating that normalized fluorescence intensity is
correlated with the fraction of the population carrying plasmids. Each dot present a replica and the dotted line a
linear regression (R2=0.995). D) Experimental iterative map showing the existence of a minimum drug
concentration that rescues the PB population (red lines). At low drug concentrations (blue lines), the PB
population decreases in frequency. E) Theoretical iterative map obtained by numerically solving equation (2) for
a range of strength of selections and initial PB frequencies. By fixing κn (previously estimated by growing each
strain in monoculture), we fitted parameter α in equation (2) to the experimental data. Colors indicate the
strength of selection (in blue, values of α where the cost of carrying plasmids is stronger than the benefit
resulting from positive selection, yielding curves below the identity line. Red curves represent simulations
obtained with values of α strong enough to kill PF cells, thus increasing PB frequency in the population.
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2 Results244

2.1 Segregational instability in the absence of selection245

Our first aim was to evaluate the stability of a costly multicopy plasmid in the absence of selection for
plasmid-encoded genes (i.e. without antibiotics). By numerically solving equation (1), we evaluated the
stability of the PB subpopulation in terms of the mean PCN and the fitness cost associated with carrying
each plasmid copy (see Appendix C). As expected, in the absence of selection, plasmids are always
cleared from the population with a decay rate that depends on PCN. We define the time-to-extinction as
the time when the fraction of PB cells goes below an arbitrary threshold.
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For cost-free plasmids (i.e. when κ = 0), the time-to-extinction appears to be correlated to PCN
(Figure 4A). In contrast, if we consider a costly plasmid (κ > 0) and that the total fitness cost is
proportional to the PCN (i.e. if PCN = n, the total cost is κn = κn), then extinction occurs in a much
faster timescale (Figure 4B – notice the difference of timescales with Figure 4A). As shown in Figure
4B, small PCN values are associated with a high probability of segregational loss, and therefore the
time-to-extinction increases with PCN. However, large values of PCN are associated with higher levels
of instability due to the detrimental effect on host fitness resulting from carrying multiple copies of a
costly plasmid.
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This observation indicates the existence of a non-linear relationship between stability of plasmids
and the mean PCN of the population. To further explore this association, we computationally estimated
the time-to-extinction in a long-term setting (simulations running up to 500 days) for different values
of PCN and fitness cost. As expected, Figure 4C shows an accelerated rate of plasmid loss in costly
plasmids. Crucially, there appears to be a critical PCN that maximizes the time-to-extinction, that
depends on the per-cell plasmid cost. The time-to-extinction gives a notion of the stability of plasmids,
but this measure may not apply if we introduce antibiotics, and therefore avoid plasmid extinction.
For this reason, we also quantified plasmid stability by measuring the area under the curve (AUC) of
simulation trajectories similar to those in Figure 4B. The heatmap illustrated in Figure 4D shows this
measure highlighting the existence of a region in the cost-PCN plane, at intermediary PCN values,
where plasmid stability is maximized.
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252

Figure 4. Numerical results for the model without selection for plasmid-encoded genes. A) Plasmid
frequency as a function of time for a cost-free plasmid (κ = 0). Note how, as the PCN increases, the stability of
plasmids also increases, although eventually all plasmids will be cleared from the system. B) Dynamics of
plasmid loss for strains bearing a costly plasmid (κ = 0.0143). In this case, low-copy plasmids (light blue lines)
are highly unstable, but so are high-copy plasmids (dark blue lines). C) Time elapsed before plasmid extinction
for a range of PCNs. A very costly plasmid (κ = 5%) is represented in dark purple, while the light purple line
denotes a less costly plasmid (κ = 0.5%). D) Plasmid stability for a range of fitness costs and PCNs (discrete
colormap indicates level of stability, yellow denotes higher stability, while dark purple denotes rapid extinction).
Stability is measured as the area under the curve (AUC) of trajectories similar to those in B, expressed in log10
scale. Notice that, for intermediate fitness costs, the PCN that maximizes plasmid stability can be found at
intermediate values.
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2.2 Evaluating the role of selection in the stability of plasmids272

To study the interaction between plasmid stability and the strength of selection in favor of PB cells,
we assumed that the plasmid carries a gene that confers a selective advantage to the host in specific
environments (e.g. resistance to heavy metals or antibiotics). For the purpose of this study, we will
consider a bactericidal antibiotic (e.g. ampicillin) that kills PF cells with a probability that depends
on the antibiotic dose. This results in a competitive advantage of the PB cells with respect to the PF
subpopulation in this environment. We denote the intensity of this selective pressure by α .
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Figures 5A-G illustrate plasmid dynamics over time for different values of α , obtained numerically
by solving equation (2) with a fixed PCN (n = 19) and drug always present in the environment
(T = 1). In our model, the we found a critical dose that stabilizes plasmids in the population, that is,
the minimum selective α , MSα = κn + µn(1−κn) (see Appendix B). The existence of a minimum
selective concentration (MSC) that maintains plasmids in the population is a feature used routinely
by bioengineers to stabilize plasmid vectors through selective media.29 Recall that the in our model
the PF MIC is α = 1, therefore the MSα can be directly compared to the MSC/MIC ratio previously
proposed28, 30 as a concern factor on selection of resistant strains in the environment.
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As illustrated in Figure 5H, both low-copy and high-copy plasmids are inherently unstable and
therefore the selective pressure necessary to stabilize them is relatively high, particularly for costly
plasmids. Interestingly, at intermediate PCN values, the selective conditions necessary to stabilize
plasmids are considerably less stringent than for low- and high-copy plasmids. This is the result of
the non-linear relationship between MSα and n; since µn decreases exponentially with n, while κn

increases only linearly with n.
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Figure 5I shows the time elapsed before converging to a steady-state (either extinction or persistence)
for different values of α and PCN. As α increases, the cost of plasmid-bearing is compensated by the
benefit of carrying the plasmid and therefore plasmids are maintained in the population for longer. Note
that at large values of α , plasmid-free cells are killed immediately independently of the mean PCN of
the population, resulting very fast in a population composed almost exclusively of plasmid-bearing
cells. Note that, in the case, the steady state x∗ = 1−µn

1−κn
α−κn

is achieved independently of the initial
fraction of PB cells (see Appendix B), which is consistent with previous results.31
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Figure 5. Numerical results illustrating the effect of a constant selective pressure in the stability of
non-transmissible multicopy plasmids. A-G) Each box illustrates the temporal dynamics of the
plasmid-bearing subpopulation in a pairwise competition experiment inoculated with equal initial fractions of
PF and PB. From left to right, α = 0,0.2,0.26,0.28,0.6 and 1. The dotted line denotes MSα = κn +µn(1−κn)
for n = 19 and κn = 0.27. Note that for values of α < MSα , plasmids are unstable and eventually cleared from
the population, while for α > MSα the plasmid-bearing subpopulation increases in frequency until reaching
fixation. For α = MSα , the selective pressure in favor of the plasmid compensates its fitness cost and therefore
the plasmid fraction remains constant throughout the experiment. H) Minimum selective pressure required to
avoid plasmid loss for a range of PCNs. Different curves represent plasmids with different fitness costs (light
purple denotes cost-free plasmids and dark purple a very costly plasmid). Note that, for costly plasmids, there
exists a non-monotone relationship between MSα and PCN. I) Time elapsed before plasmid fraction in the
population is stabilized, for different copy numbers (5 in magenta, 19 in black, and 30 in cyan). Dotted lines
represent plasmid fixation, while dashed lines denote stable co-existence between plasmid-free and
plasmid-bearing subpopulations, and solid lines plasmid extinction. The vertical line indicates MSα , the
minimum selective pressure that stably maintains plasmids in the population. Black letters indicate the parameter
values used in the examples shown in A-G.
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2.3 Plasmid stability in periodic environments318

The purpose of this section is to understand the ecological dynamics of the plasmid-bearing population
in fluctuating environments, i.e. when periodic antibiotic pulses are administered. We started by
exploring the time duration a PB population can survive without antibiotics before being rescued by a
strong antibiotic pulse (Figure 6A). Consistently with the results from the first section, lower plasmid
costs result in increased rescue times, suggesting that a lesser rate of antibiotic exposure is required for
their maintenance. In Figure 6B, we quantified this minimal period as a function of PCN and α . Note
that higher values of α correspond to longer periods, which follows from the fact that a higher selective
pressure increases the PB frequency. Figure 6D illustrates this critical period for PCN = 19.
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Figure 6. Numerical results of the model in periodic environments. A) Maximum time a plasmid
population can grow without antibiotics to avoid plasmid loss when applying a strong antibiotic pulse. Curves
represent how this time is affected by PCN. Blue intensity represents plasmid cost, and black line indicates
results using the pBGT parameters. B) Minimal period required to avoid plasmid extinction. Simulations were
performed using the pBGT measured cost (κ = 0.014). Red intensity represents different values of α . Note that
higher values of α increase the minimal period. C) Time required for trajectories to stabilize for copy numbers 5,
19, and 30 using α = 0.99 and the measured cost per plasmid. Note that there is a critical period that defines
fixation or coexistence marked by red and blue circles on the PCN=19 (black) curve. D) Trajectories for the
critical periods of PCN=19 starting from 0.5 PB-PF frequency. Note that one day period difference leads to
opposite outcomes.
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In periodic environments, the relative abundance of the PB population is driven to zero (extinction)
or reaches a steady state in which the plasmid fraction oscillates around an equilibrium frequency
(persistence). In Figure 6C, times to stabilization were estimated for the strong selection regime
(α = 0.99), using the same PCNs as in Figure 5I. Notice that the time-to-extinction is larger than the
time to reach the periodic attractor. In both cases, the maximal time to rescue and the minimum period
to avoid loss, we observe a non-monotone effect of PCN and, therefore, a range of PCNs whereby
plasmid stability is maximized. This is consistent with what we observed without antibiotics (Figure
4C) and with constant environments (Figure 5H).
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2.4 Optimal PCN depends on the rate of environmental fluctuation347

In this section, we aim at exploring the concept of optimal PCN and how it depends on the environment.
To do so, we define the optimal PCN (hereafter denoted PCN∗) as the PCN that maximizes the area
under the curve (AUC) of the PB frequency over time. This notion of stability was already introduced
in Figure 4D and has the advantage that it can be used when the PB fraction goes to 0, to a fixed
equilibrium, or when it oscillates.
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First, we calculated PCN∗ for a range of plasmids fitness costs in the absence of selection (black
solid line of Figure 7A) and found that PCN∗ is inversely correlated with the plasmid fitness cost. In
order to compare the optimal PCN predicted by the model with PCN values found in other experimental
plasmid-host associations, we searched the literature for studies that measure both PCN and fitness cost.
These values are summarized in Table 3 and illustrated in Figure 7A. The values of PCN found in the
literature were below the predicted PCN∗ in an antibiotic-free regime (black solid line), suggesting that
plasmids would be unstable in the absence of selection. But, crucially, PCN values obtained from the
literature are within the blue-shaded area that represents the PCN∗ estimated for different environments
(observe the non-linear relationship between α , PCN∗, and cost, in line with our previous findings).
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These observations would be consistent with the constant use of antibiotics at low doses that reduces
the optimal PCN. However, similar PCN∗ values can be achieved by administering higher doses of
antibiotics periodically, as illustrated in Figure 7B for the case of pBGT. Notice again the non-linear
relationship between PCN∗ and the frequency of antibiotic exposure. At very low frequencies, the PB
population goes extinct before the first antibiotic pulse and intermediate PCNs maximize the AUC as
in Figure 4D. At high antibiotic frequencies, the PB population persists and oscillates around some
value that increases with PCN. This is consistent with a previous experimental study that evaluated the
stability of costly plasmids in terms of the frequency of environmental fluctuation.32
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Periodic environments provided us with insights into how selection acts on the mean PCN of the
population, but natural environments are not periodic but randomly alternate between intervals of
positive and negative selection. The role of environmental stochasticity in the stability of multicopy
plasmids23, 33 and, in general, in the population dynamics of asexual populations has been widely
studied.34, 35 In our model, we generated stochastic environments that randomly switch from antibiotic-
free to antibiotic for a period of 1,000 days. Each random environment is represented by a sequence
of 1s and 0s, corresponding to days with and without antibiotics, respectively. Therefore stochastic
environments can be characterized by their Shannon’s entropy (environmental entropy, H) and the
fraction of days with drug exposure (antibiotic rate, AR) (see Appendix C). Environments were
classified into "High" and "Low" depending on whether the AR was greater or lower than 0.5. Mind
that each value of H corresponds to two AR values AR and 1−AR.
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Panels on Figures 7D-E show the PCN∗ found by applying the stochastic environments ordered by
entropy (or by AR), for different values of α . For low values of α , only high antibiotic rates lead to
plasmid persistence. Notice the non-linear relationship between PCN∗ and AR, similar to the observed
for the period in the deterministic setting; PCN∗ decreases with AR at low values (corresponding to
extinction) but increases with AR at high values (corresponding to persistence). For higher values of α ,
we observed that high AR always leads to persistence, while low AR can lead to extinction if entropy is
low. In fact, these low values of the entropy corresponded to long periods without antibiotics that drove
the PB population to extinction. Another interesting remark is that the distribution of obtained PCN∗s
is multi-modal; at fixed entropy, plasmid persistence is achieved by high values of AR that correspond
to high PCN∗, or by low values of AR that correspond to a small value of PCN∗. Similarly, a fixed
value of α corresponds to two values of PCN∗ depending on the antibiotic rate (Figure 7C).
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Figure 7. Optimal PCNs in fluctuating environments. A) Optimal plasmid copy number (PCN∗) as the
number of copies that maximizes the area under the curve of Figure 4B. PCN∗ decreases exponentially as we
increase the fitness cost associated with carrying plasmids, as indicated in black-solid line. Black dots show
some PCN-costs data obtained from the literature. Red dots indicate the values of pBGT. Blue-scale lines
indicate optimal PCN curves for many values of α . Light-blues indicate higher values of α whereas dark-blues
indicate lower values of α . Gray line shows the max PCN for the corresponding plasmid cost. B) Optimal PCN
in periodic environments. Each curve corresponds to a value of α . Black line shows α = 0. Observe that for very
short periods optimal PCNs are high, then for certain period the optimal PCN reaches a minimum then as period
increases, the optimal PCN tends to the optimal of α = 0. C-E) Optimal PCNs using random environments. C)
Environments are classified by their rate of days with antibiotics, the rate differences produce a multi-modal
outcome, where higher rates increases the optimal PCN and vice-versa. Simulations using the same
environments were made for different αs. Note that α intensity increases the separation of the modes. Modes are
also classified by their stability, persistence marked with a solid border line and extinction with a dashed border
line. D) Panel of optimal PCNs plotted by the environment entropy for sample α . Environments are classified by
their antibiotic rate. E) Panel of optimal PCNs plotted by the environment antibiotic rate for sample α .
Environments are classified by their entropy.
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3 Discussion410

In this work, we used a population genetics modeling approach to study how non-transmissible
plasmids are maintained in bacterial populations exposed to different selection regimes. In particular,
we considered a small multicopy plasmid that lacks an active partitioning mechanism and therefore
segregates randomly upon cell division. Multicopy plasmids are prevalent in clinical bacteria and usually
carry antimicrobial resistance genes that can be transferred between neighboring bacterial cells,36 as
well as other evolutionary benefits that go well beyond horizontal transfer.37 For instance, as multicopy
plasmids are present in numerous copies per cell, the mutational supply increases proportionately
and, once a beneficial mutation appears, its frequency can be amplified during plasmid replication.
This results in an accelerated rate of adaptation to adverse environmental conditions7 and enables
evolutionary rescue.38 Also, multicopy plasmids increase the genetic diversity of the population, thus
enhancing survival in fluctuating environments25 and allowing bacterial populations to circumvent
evolutionary trade-offs.23
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While the benefits of carrying plasmids may be clear under certain circumstances, their maintenance
can be associated with a considerable energetic cost in the absence of selection for plasmid-encoded
genes. This trade-off between segregational stability and fitness cost has been shown to drive ecological
and evolutionary dynamics in plasmid-bearing populations,39 resulting from multi-level selection acting
on extrachromosomal genetic elements.40, 41 Plasmid population dynamics resulting from random
segregation and replication result in a complex interaction between plasmid copy number, genetic
dominance, and segregational drift, with important consequences in the fixation probability of beneficial
mutations42 and the repertoire of genes that can be carried in mobile genetic elements.43 Besides a
reduction in segregational instability, increasing the number of plasmids each cell carries also results
in an increase in gene dosage44, 45 and expression variability of plasmid-encoded genes.25, 46 For
this reason, plasmid control in wild-type bacteria is a tightly regulated process47 that depends on the
environment and the host’s genetics.8 Precise PCN control is also an important feature of synthetic
genetic circuits that use plasmids as vectors for the production of recombinant substances.48
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To explore the interaction between the strength of selection and PCN, in this manuscript we
postulated discrete-time and Wright-Fisher diffusion models with the following biological assumptions:
1) Plasmids encode for accessory genes that confer an advantage in harsh environments, for instance,
antibiotic resistance genes; 2) Bearing plasmids is associated with a fitness cost in the absence of
selection for plasmid-encoded genes; 3) Each plasmid segregates randomly to a daughter cell upon
division; thus, plasmid bearing bacteria can produce plasmid-free cells with a probability of 1/2n,
where n is the PCN; 4) The cost associated with plasmid-bearing is constant in time (no compensatory
adaptation). We parameterized the model using a well-characterized multicopy plasmid, pBGT,22–24

and estimated the maximal growth rates of plasmid-bearing and plasmid-free cells by analyzing growth
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kinetics of each strain grown in isolation. From the growth curves, we obtained estimates for the fitness
cost associated with plasmid bearing and the fitness advantage of the plasmid-bearing cells for a range
of antibiotic concentrations. We also performed one-day competition experiments between different
subpopulations of PB and PF cells and evaluated how this fraction changed after a day of growth in
media supplemented with antibiotics. Using this approach we obtained theoretical and experimental
iterative maps that we used to predict the long-term dynamics of the system.
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Altogether, our results suggest that plasmid population dynamics in bacterial populations is predom-
inantly driven by the existence of a trade-off between segregational loss and plasmid cost. We found
that selection is necessary for the persistence of costly plasmids in the long term, and that the strength
of selection is highly correlated with the final fraction of plasmids in the entire population. As a result,
whether plasmids are maintained or lost in the long term results from the complex interplay between
PCN and its fitness cost, as well as the intensity and frequency of positive selection. As shown in the
exhaustive exploration of parameters performed in this study, these relationships are highly non-linear,
thus resulting in the existence of an optimal PCN that depends on the rate of environmental fluctuation,
the number of plasmids carried in each cell, and the fitness burden conferred by each plasmid-encoded
gene in the absence of selection. In random environments, we observed a bimodal PCN∗ distribution,
similar to the plasmid size distribution described for non-transmissible plasmids49 and for conjugative
plasmids.50
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Although both our theoretical and experimental models consider a multicopy plasmid with random
segregation, the existence of an optimal PCN should also hold for non-random segregation (e.g. active
partitioning), as this would decrease the probability of segregational loss (which corresponds to having
a smaller value of µn in our model) so its optimal copy number will likely be lower than a plasmid
that relies on random segregation.51 In contrast, compensatory adaptation that reduces the fitness cost
associated with plasmid bearing (in our model, a lower value of κn), would result in an increase in PCN∗.
We conclude by arguing that, as the existence of plasmids in natural environments requires intermittent
periods of positive selection, the presence of plasmids contains information on the environment in which
a population has evolved. Indeed, the plasmid copy number associates the frequency of selection with
the energetic costs of plasmid maintenance. That is, there is a minimum frequency of drug exposure
that allows multiple copies to persist in the population, and, for each environmental regime, there is an
optimal number of plasmid copies.
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4 Appendix A: Experimental methods605

4.1 Bacterial strains and media606

The plasmid free strain we used was E. coli K12 MG1655 and the plasmid bearing strain was MG/pBGT
carrying the multicopy plasmid pBGT with the β -lactamase blaTEM-1 which confers resistance to
ampicillin and the fluorescent protein GFP under an arabinose inducible promoter. Mean plasmid copy
number in the population is PCN = 19.1±3.8.22 Overnight cultures were grown in flasks with 20 ml of
lysogeny broth (LB) (Sigma L3022) with 0.5 % w/v L-(+)-Arabinose (Sigma A91906) for fluorescence
induction, in a shaker-incubator at 220 RPM at 37 ◦C. For the plasmid bearing strain, 25 mg/l of
ampicillin (Sigma A0166) were added to eliminate segregant cells. Ampicillin stock solutions were
prepared at 100 mg/ml directly in LB and sterilized by 0.22 µm (Millex-GS SLGS033SB) filtering.
Arabinose stock solutions were prepared at 20% w/v in DD water and sterilized by filtration.
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4.2 Bacterial growth experiments616

Growth kinetics measurements of each strain were performed in 96 well plates with 200 µl of LB
with 0.5% w/v arabinose without antibiotics, plates were sealed using X-Pierce film (Sigma Z722529),
each well seal film was pierced in the middle with a sterile needle to avoid condensation. Plates were
grown at 37degC and reading for OD and fluorescence were made every 20 minutes in a fluorescence
microplate reader (BioTek Synergy H1), after 30 seconds linear shaking.

617

618

619

620

621

4.3 Competition experiments622

Competition experiments were performed using 96-well plates with 200 µl of LB with 0.5% w/v
arabinose, and respective ampicillin concentrations: 0, 1, 2, 2.5, 3, 3.5, 4, and 6 mg/l was implemented
by plate rows. To construct our inoculation plate, overnight cultures of the plasmid-free strain and the
plasmid bearing strain were adjusted to an OD of 1 (630 nm) using a BioTek ELx808 Absorbance
Microplate Reader diluted with fresh ice cooled LB. Appropriate volumes were mixed to make co-
cultures at fractions 0, 0.1, 0.2, ..., 1 and set column-wise on a 96-well plate (Corning CLS3370).
We then used a 96 pin microplate replicator (Boekel 140500) with flame sterilization before each
inoculation. Four replicates plates were grown in static incubator at 37◦C. After 24 hours growth,
plates were read in a fluorescence microplate reader (BioTek Synergy H1) using OD (630 nm) and
eGFP (479,520 nm) after 1 minute of linear shaking.
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4.4 Plasmid fraction determination633

To calculate the fluorescence intensity, we first subtracted the background signal of LB for fluores-
cence and OD respectively, then the debackgrounded the fluorescence signal was scaled by dividing
by the debackgrounded OD. The measurements for our inoculation plate showed a strong linear
correlation (R2 = 0.995) between co-cultures fractions and fluorescence intensity (Figure 3B). This
allowed to directly approximate the populations plasmid fractions from the readings of our compe-
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tition experiments. We normalized the data independently for each antibiotic concentration taking
the average measurements of the 4 replicates. Plasmid fractions, PF , were inferred by normalizing
the mean fluorescence intensity for each well, fi, to the interval [0,1] using the following formula:
PFi = ( fi− fmin)/( fmax− fmin) were fmax and fmin are the mean fluorescence intensities at fractions 1
and 0 respectively.
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5 Appendix B: Mathematical model644

5.1 Fixed points of equation (2)645

Let f = f ◦g. We want to study the fixed points of f and their domains of attraction. It is not hard to
see that 0 is always fixed point, and once the frequency reaches 0 it stays at 0. In addition, if x 6= 0,

646

647

f (x) =
x(1−κn)(1−µn)/(α−κn)

(1−α)/(α−κn)+ x
= x

⇔ x2 +
1−α

α−κn
x =

(1−κn)(1−µn)

α−κn
x

⇔ x =
(1−κn)(1−µn)− (1−α)

α−κn
= 1−µn

1−κn

α−κn
.

648
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Denote x∗ := 1− µn(1−κn)/(α −κn). Since the frequencies are in [0,1], this fixed point only
exists if α > κn + µn(1−κn). As n increases, µn decreases exponentially, while κn increases only
linearly, so there is a non linear relationship between n and the minimum α required for the existence
of a second fixed point x∗.
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Let us analyze the stability of x∗. Let us assume that α > κn +µn(1−κn).

f (x)− x =
x(1−κn)(1−µn)/(α−κn)− x(1−α)/(α−κn)− x2

(1−α)/(α−κn)+ x
> 0

⇔ (1−κn)(1−µn)

(α−κn)
− 1−α

α−κn
− x > 0

⇔ x < x∗.

So, the frequency increases if it is below x∗ and decreases otherwise, meaning that it is a stable fixed
point. In addition, the domain of attraction is (0,1], meaning that this equilibrium fraction is reached
for any initial state.
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To sum up, 0 is always a fixed point. If α > κn +µn(1−κn) then there is an additional stable fixed
points x∗.
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5.2 Choice of the model665

In this section, we compare two types of mathematical models for the evolution of plasmid-bearing
frequencies, the discrete time model used in this paper (eq (2)) and the Wright-Fisher diffusion.

666

667

There had been several attempts to adapt the classical theory of Wright Fisher models to this
experimental setting (see for example52). A mathematical rigorous way to do this was developed
in.19 In53 an heuristic and applicable to data framework was introduced. Recently, in,54 the two
methodologies had been paired in order to have a rigorous and applicable way to use classic population
genetics to study evolutionary experiments. In this work, days take the role of generations, and as
the number of individuals after each sampling is more or less constant, the assumption of constant
population size becomes reasonable.
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Let us assume that the mutation rate µN,n = 2−n and the cost κN,n are parameterized by N. To see
the accumulated effects of plasmid costs, segregational loss and genetic drift, we need κN,n and µN,n to
be of order 1/N (see e.g. Chapter 5 in55). The first condition is fulfilled if the cost per plasmid is very
low, for example when κN,n = κn/N. The second one stands if n is of order log2(N), which is the case,
for example, if n = 20 and N = 106, or if n = 15 and N = 105. In that case we set µ = N2−n. Under
this setting, when time is accelerated by N, the frequency process of individuals with plasmids can be
approximated by the solution of the stochastic differential equation (SDE)

dXt =−µXtdt−κXt(1−Xt)dt +
√

Xt(1−Xt)dBt , (5)

where B is a standard Brownian motion. This is known as the Wright-Fisher diffusion with mutation
and selection. When antibiotic is added, at times {T,2T, . . .}, then (5) modifies to

dXt = ∑
j≥1

αX jT−(1−X jT−)

1−α(1−X jT−)
1 jT≤t−µXtdt−κXt(1−Xt)dt +

√
Xt(1−Xt)dBt . (6)
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However, in our experimental setting, the cost that we measure (κn ' 0.27) is much higher than the
inverse population size, so we are in the regime of strong selection. In other words, for plasmids that
have a very small cost, of the order of 1/N, genetic drift would play an important role, and the above
Wright-Fisher diffusion with mutation, selection and antibiotic peaks (6) would be the most suitable
model. But in our setting, selection (plasmid costs) is so high that genetic drift becomes negligible.
Recall that equation (2) does not need any time rescaling, whereas, in the diffusion (6) time is measured
in units of N generations. Under strong selection, the frequencies evolve much faster.
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6 Appendix C: Numerical simulations697

6.1 Computer implementation698

The model was implemented in Python, using standard scientific computing libraries (Numpy, Mat-
plotLib, and the Decimal library was required to resolve small numbers conflicts). In general, all
simulations started at PB frequency 1 (unless stated otherwise). Numeric simulations were defined
to reach a steady state when values first repeat. In the case of periodic environments, the repetition
must happen at antibiotic peaks days. We considered extinction if the end point of the realization
dropped below a threshold adjusted to the simulations times, the highest being 1×10−7 and the lowest
1×10−100.

699
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6.2 Random environments706

Environmental sequences of size 1000 (days) using a binomial distribution varying the probability of
success. For each environment created we also bit-flipped (so 101... turns into 010...) and two measures
was applied to each resulting environments. First, we used Shannon entropy, H(Env) =−∑

n
i pilogn(pi),

with two states, n = 2 (antibiotic or no-antibiotic) and pi equal to the probability of finding an state day,
i.e. the fractions of days with antibiotics and without antibiotics. We classified environments by their H

and by the fraction of antibiotic days, as being this an important feature. This two measures are in the
[0,1] interval so we binned the intervals into 20 bins and 1,000 environments were created for each bin.
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6.3 Model parametrization714

Growth kinetics parameters were estimated using the R56 package growth rates.57 Exponential phase
duration, σ , was calculated by finding lag phase duration and the time to reach carrying capacity using
the non-linear growth model Baranyi. Maximum growth rates, r and r+ρn, were estimated using the
Nonparametric smoothing splines method. κn value was estimated using equation (1) and the data from
the antibiotic-free competition experiment using a curve fitting algorithm from the SciPy library in
a custom Python script. Respective values of α were found in the same manner using equation (2)
and fixing κn. κn was also calculated using the formula in equation 4 with a very similar result. The
parameters are summarized in Tables 1 and 2.
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Parameter Measured value Formula Estimated value Description
r 0.435435 NA NA plasmid strain growth rate
ρ 0.052334 NA NA WT growth rate advantage
σ 6.074089 NA NA exponential phase duration
µn NA µn = 1− r2−n+ρ

r2−ne(r2−n+ρ)σ+ρ
5.938e-06 1-day fraction of segregants

κn NA κn =
ρ(1−e−(r2−n+ρ)σ )

r2−n+ρ
0.272313 fitness cost

n 19 NA NA plasmid copy number

723

Table 1. Model parameters estimated using growth curves experiments in the absence of antibiotics.724725

Amp κn α

0.0 0.272276 0.0
1.0 0.272276 -0.37781
2.0 0.272276 -0.332662
2.5 0.272276 -0.058457
3.0 0.272276 0.992911
3.5 0.272276 0.9801
4.0 0.272276 0.992075
6.0 0.272276 0.99373

726

Table 2. Model parameter estimated by fitting equation (4) to experimental data obtained for a range
of ampicillin concentrations.

727

728729

Name Plasmid Type Species PCN PCN SD Cost Cost SD Reference
pB1006 ColE1 Haemophilus influenzae RdKW20 10.530 1.112 0.021 0.012 58

pB1005 ColE1 Haemophilus influenzae RdKW20 20.450 2.590 0.05 0.013 58

pB1000 ColE1 Haemophilus influenzae RdKW20 25.020 1.920 0.054 0.002 58

pNI105 Pseudomonas aeruginosa 18.000 2.400 0.132 0.025 59

2-uM Saccharomyces cerevisiae 52.000 0.000 0.0884 0.00416 17

pNUK73 Pseudomonas aeruginosa 11.030 1.890 0.214 0.008 59

pBGT ColE1 Escherichia coli 19.120 1.560 0.057 0.013 22

pBGT R164S ColE1 Escherichia coli 21.100 0.850 0.057 0.003 22

pBGT G54U ColE1 Escherichia coli 44.500 3.810 0.207 0.019 22

pBGT G55U ColE1 Escherichia coli 88.930 15.650 0.443 0.116 22

pBGT R164S G54U ColE1 Escherichia coli 52.300 2.190 0.238 0.016 22

pBGT R164S G55U ColE1 Escherichia coli 127.290 4.580 0.491 0.082 22

730

Table 3. Plasmid copy number and plasmid costs from literature. SD Standard Deviation.731732
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