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Abstract

As sessile organisms, plants are constantly challenged by a dynamic growing environment. This includes fluctuations in tem-
perature, water availability, light levels, and atmospheric conditions. In concert with changes in abiotic conditions, plants
experience changes in biotic stress pressures, including plant pathogens, viruses, and herbivores. Human-induced increases in
atmospheric carbon dioxide (CO 2) levels have led to alterations in plant growth environments that challenge their produc-
tivity and nutritional quality. Additionally, it is predicted that climate change will alter the prevalence and virulence of plant
pathogens, further challenging plant productivity. A knowledge gap exists in the complex interplay between plant responses to
biotic and abiotic stress conditions. Closing this gap is crucial for developing climate resilient crops in the future. Here, we
review the physiological responses of plants to elevated CO 2, temperature, tropospheric ozone (O 3), and drought conditions,
as well as the interaction of these abiotic stress factors with plant pathogen pressure. Additionally, we describe the crosstalk
and trade-offs involved in plant responses to both abiotic and biotic stress, and outline targets for future work to develop a
more sustainable future food supply in light of future climate change.
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ABSTRACT

As sessile organisms, plants are constantly challenged by a dynamic growing environment. This includes fluc-
tuations in temperature, water availability, light levels, and atmospheric conditions. In concert with changes
in abiotic conditions, plants experience changes in biotic stress pressures, including plant pathogens, viruses,
and herbivores. Human-induced increases in atmospheric carbon dioxide (CO2) levels have led to alterations
in plant growth environments that challenge their productivity and nutritional quality. Additionally, it is
predicted that climate change will alter the prevalence and virulence of plant pathogens, further challenging
plant productivity. A knowledge gap exists in the complex interplay between plant responses to biotic and
abiotic stress conditions. Closing this gap is crucial for developing climate resilient crops in the future. Here,
we review the physiological responses of plants to elevated CO2, temperature, tropospheric ozone (O3), and
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drought conditions, as well as the interaction of these abiotic stress factors with plant pathogen pressure.
Additionally, we describe the crosstalk and trade-offs involved in plant responses to both abiotic and biotic
stress, and outline targets for future work to develop a more sustainable future food supply in light of future
climate change.

INTRODUCTION

Anthropogenic increases in fossil fuel emissions have led to atmospheric concentrations of carbon dioxide
(CO2) that are unprecedented for the last 800,000 years (IPCC, 2021). This has led to unequivocal warming
of the global atmosphere, changes in precipitation patterns and extreme weather events, and increased sea
level rise leading to coastal flooding (IPCC, 2021). Additionally, other changes in atmospheric constituents,
such as the concentration of secondary air pollutants like tropospheric ozone (O3), are also predicted to
increase this century (IPCC, 2021). Global climate change will lead to more frequent and extreme heat
waves, drought, waterlogging, and associated changes in soil moisture (IPCC, 2021). While the predicted
negative impacts of global warming on agricultural productivity and the associated socioeconomic impact on
food systems have been well reviewed (e.g., Cushman et al., 2022; Fisher et al., 2005; Hatfield et al., 2011;
Vermeulen et al., 2012; Slattery & Ort, 2019), less is known about the significant interactions and trade-offs
between and among different climate change-associated abiotic stresses on plant productivity (Rivero et al.,
2022). For example, while global warming and associated changes in plant growing conditions have potential
negative impacts on yield and productivity especially for the latter half of the 21st century (Challinor et
al., 2014; Lobell et al., 2011), elevated CO2 concentrations [CO2] stimulates growth and harvestable grain
production in C3 crops (Ainsworth et al., 2008). This, however, comes at a cost of decreased nutritional
content in major crop plants (Myers et al., 2014; Soares et al., 2019), but has also been shown to be
ameliorated under elevated temperature (Kohler et al., 2019).

Even less is known about these interacting abiotic stress factors in perennial and specialty cropping systems
(Leisner, 2020), and about crosstalk between abiotic and biotic stress signaling pathways (Fujita et al.,
2006). While there are many unknowns related to the effects of climate change on pathogen spread, evidence
indicates there will be enhanced reproductive potential and increased geographic spread of pathogens, which
has the potential to lead to changes in disease dynamics and pathogen host ranges, raising concerns of
increased disease outbreaks (Garret et al., 2006; Kissoudis et al., 2014). Combined biotic and abiotic stresses
can lead to alterations in defense signaling pathways in plants, predisposing plants to increased susceptibility
to endemic pathogens, but also potentially new pathogens. Here we briefly review the physiological responses
of plants to climate-change related abiotic stress, outline the complex interplay of stress signaling pathways
between abiotic and biotic stress pathways related to climate change, and highlight trade-offs and targets for
future research efforts and work to enhance resilience in plant development and defense responses considering
future climate change.

PHYSIOLOGICAL RESPONSES OF PLANTS TO ABIOTIC STRESS

2.1 Drought stress

Human-induced changes in the atmosphere have led to increasing incidence of drought in many areas of
the world, such as Central and South America, Southeast Asia, and the Mediterranean basin (IPCC, 2021).
The incidence of drought in these regions is expected to worsen in the future (IPPC, 2021). By 2020, 5
billion people will be living in water scarce regions where crop production will be threatened by drought
(UN-DESA, 2011). As a result of an increasing population and intensification of agriculture in drought prone
areas, water demand for agriculture will double by 2050, while freshwater resources are expected to drop by
50% (Gupta et al., 2020). Drought significantly decreases crop growth and yield, and in the past decade has
produced a loss in crop income of approximately $30 billion (Gupta et al., 2020). For example, the drought of
summer 2012, is the most severe global drought recorded in recent years and caused $18 billion in crop losses
(Schnoor, 2012). This drought caused production losses in corn (Zea mays ) (52%) and sorghum (Sorghum
bicolor ) (51%) (Lal et al., 2012) led to significant yield reductions of 24-26% for these crops (Schnoor,
2012). Water is crucial for human and plant survival, and its deficit limits plant growth, development, and

2



P
os

te
d

on
A

ut
ho

re
a

1
O

ct
20

22
|T

he
co

py
ri

gh
t

ho
ld

er
is

th
e

au
th

or
/f

un
de

r.
A

ll
ri

gh
ts

re
se

rv
ed

.
N

o
re

us
e

w
it

ho
ut

pe
rm

is
si

on
.

|h
tt

ps
:/

/d
oi

.o
rg

/1
0.

22
54

1/
au

.1
66

46
20

27
.7

13
10

65
2/

v1
|T

hi
s

a
pr

ep
ri

nt
an

d
ha

s
no

t
be

en
pe

er
re

vi
ew

ed
.

D
at

a
m

ay
be

pr
el

im
in

ar
y.

ultimately yield. Drought negatively affects plant growth from the cellular to the whole-plant level. This
section will review the main effects of drought on plant physiological characteristics focusing on those that
may be relevant for plant-biotic interactions.

With drought, the soil water potential decreases, leading to drop in root and leaf water potential (Liu et
al., 2004). This drop in water potential is accompanied by tissue dehydration and loss in turgor (Reddy
et al., 2004). To adapt to this lower water potential, plants tend to accumulate osmotolerant substances
such as sugars, proline and other active amino acids that decrease the water potential in the cell allowing
for retention of water (Roosens et al., 2002). The decrease in turgor is associated with a reduction in cell
elongation and division. This results in stunted growth, observed as a reduction in leaf area and overall
aboveground biomass (Farooq et al., 2009; Asrar & Elhindi, 2011).

At the leaf level, the cuticle is one barrier that protects the leaf from desiccation and limits water loss through
the stomata. Drought increases cuticle thickness as an adaptation to reduce leaf transpiration (Bi et al.,
2017). In fact, cultivars that show higher increases in cuticle thickness under drought are considered drought
tolerant (Bi et al., 2017). Additionally, work in Arabidopsis has shown mutant lines (aldh2c4 ) with a 50%
reduction in leaf cuticle thickness have higher water loss than wild type plants (Liu et al., 2022). Alterations
in leaf thickness under drought stress also works to better regulate the balance between CO2 acquisition and
water loss (Li et al., 2021). For this reason, some species respond to drought by thickening their leaves while
others become thinner (Wellstein et al., 2016).

As the soil dries and soil and plant water potential decreases, the hormone abscisic acid (ABA) is synthesized
in roots and leaves, and consequently, the stomata close and transpiration is reduced (Buckley, 2019).
Additional drought adaptations include reductions in total stomatal number and size (Casson & Gray, 2008;
Pitaloka et al., 2022). It has been documented that rice mutants with decreased stomatal density and size
show higher yield and water use efficiency due to a reduced transpiration without any yield penalty under
drought (Pitaloka et al., 2022). As the stomata are one of the main points of entry of leaf pathogens, drought
acts to decrease pathogen entry through the stomatal pore, making the interaction of pathogens and drought
a key area of research for future climate resiliency in plants.

2.2 Elevated temperature stress

It is estimated that human activities have led to an approximate increase of 0.8°C to 1.3°C in global tem-
peratures since pre-industrial levels, with a likely increase to 1.0°C to 2.0°C by mid-century given current
rates of increase (IPCC, 2021). In addition to increases in mean temperature in most land and ocean regions,
regional climates are also likely to see an increase in extreme heat events (IPCC, 2021). This is predicted to
lead to a widespread and significant negative impact on crop yields if global warming exceeds 1.5 °C above
pre-industrial levels (Battisti & Naylor, 2009; Hatfield & Prueger, 2015; Perkins et al., 2012; IPCC, 2021;
Zhu et al., 2021). It is estimated that 3-12% of global crop yields will decline for every 1°C of warming for
major global crops (soybean (Glycine max ), rice (Oryza sativa ), wheat (Triticum aestivum ), and maize)
(Zhao et al., 2017; Zhu et al., 2021). Temperature (along with daylength) also signal significant physiological
transitions in plants, which is a major determinant of yield in grain crops (Ruiz-Vera et al., 2015; Zhu et al.,
2018) and proper developmental timing in perennial cropping systems (Leisner, 2020).

Due to this importance, much work has been done to understand the physiological response of crop plants
to elevated temperatures (for review see Hatfield & Prueger, 2015; Moore et al., 2021; Zhu et al., 2021). This
work has illustrated key impacts of elevated temperature on photosynthesis (Moore et al., 2021), growth,
development, and other biochemical and physiological processes (Hatfield & Prueger, 2015; Zhu et al., 2021).
From these reviews we enumerate a few key impacts of elevated temperature on photosynthesis (Moore et
al., 2021). First, C3 crop plants are sensitive to elevated temperature impacts on photosynthetic enzymes
involved in carbon assimilation. This is due to a decline in specificity of the key carboxylation enzyme
Rubisco (Ribulose-1,5- bisphosphate carboxylase/oxygenase), deactivating the enzyme under supra-optimal
temperatures (Moore et al., 2021). Second, regulation of Rubisco activity by Rubisco activase is another
possible area of improvement of plant photosynthetic responses to high temperatures, as manipulation of
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the thermostability of Rubisco activase at higher temperatures has been shown to increase photosynthetic
thermotolerance in Arabidopsis and rice (Kurek et al., 2007; Kumar et al., 2009; Shivhare & Mueller-Cajar,
2017; Scafaro et al., 2016; Scafaro et al., 2019; Wang et al., 2010).

Third, plant photosynthetic responses to heat stress can be modulated through changes in stomatal density
and size which in turn, affect rates of stomatal conductance, which is a key control point for gas exchange
between the leaf interior and the atmosphere (Moore et al., 2021). Elevated temperature also determines the
air vapor pressure deficit, plant transpiration rate, and plant water status, all of which affect stomatal beha-
vior and photosynthetic capacity (Moore et al., 2021). Work to improve stomatal anatomy and metabolism
is underway to improve stomatal resilience to heat stress (Moore et al., 2021).

Fourth, elevated temperature can negatively impact photosynthetic capacity through alterations in source-
sink relationships (Moore et al., 2021). Changes in the translocation of the products of photosynthesis
(carbohydrates) determines source-sink relationships, and changes in this relationship can also affect the
timing of vegetative and reproductive development, and ultimately affect yield. Previous work has found
that structural changes in the phloem, along with changes in activity and gene expression of key enzymes
involved in sucrose transport and metabolism effect source-sink relationship in plants exposed to heat stress
(Moore et al., 2021), and are future targets for developing heat-resistant cultivars of plants. Finally, increased
temperature has also been shown to cause denaturation of proteins and inhibition of protein synthesis,
degradation of chlorophyll, changes in membrane fluidity and permeability, and alterations in respiration
and cell death (Zhu et al., 2021), all of which directly affect plant photosynthesis, growth, development, and
productivity.

The ultimate impact of elevated temperature on plant growth and development is also dictated by the
timing of temperature stress during a plant’s life cycle (Hatfield & Prueger, 2015). Generally, vegetative
development has a higher temperature optimum than reproductive development, but a range of acceptable
maximum and minimum temperatures for growth and temperature extremes exist (Hatfield & Prueger,
2015; Zhu et al., 2021). Elevated temperatures during vegetative growth leads to accelerated development
in non-perennial crops, which can decrease yield potential by reducing vegetative growth and decreasing
the duration of reproductive growth (Hatfield & Prueger, 2015). Additionally, elevated temperature can
significantly negatively affect reproductive structures, including impacts on pollen viability, fertilization,
grain/fruit formation (CCSP, 2008; Hatfield et al., 2011), and chronic exposure to elevated temperatures
during pollination can lead to decreased grain/fruit set and yield (Hatfield & Prueger, 2015).

Previous work suggests crop plants that exhibit variation in flowering times during the day may be more
resilient to future elevated temperatures, as flowering at cooler times of the day would be beneficial (Caviness
& Fagala, 1973; Sha et al., 2011; Sheehy et al., 2005; Wiebbecke et al., 2012). Additionally, the length of
anthesis has a strong correlation with crop sensitivity to temperature extremes, as exhibited in the range
of anthesis times in maize, rice, sorghum, soybean, peanuts (Arachis hypogaea ), and cotton (Gossypium
hirsutum ), with longer anthesis times potentially leading to more resilience to extreme heat events (Hatfield
& Prueger, 2015). Taken together, these impacts on plant growth and development may cause declines in yield
in annual crop plants but are dependent on CO2 emission scenarios and crops evaluated (Hatfield et al., 2011;
Lobell et al., 2011; Schlenker & Roberts, 2009). Further work is needed to understand the complex interaction
of elevated CO2 and temperature, crop genetics, biotic stresses, and adaptive management strategies on
yield loss estimates (Hatfield & Prueger, 2015). Furthermore, precise evaluations of maximum andminimum
temperature, atmospheric water vapor demand and duration of heat stress in both annual and perennial
plants is needed to gain a more complete understanding of temperature impacts on plant productivity
(Hatfield & Prueger, 2015; Leisner, 2020).

2.3 Elevated tropospheric O3 stress

Tropospheric O3 is a harmful secondary air pollutant that negatively affects crop productivity through both
direct oxidative damage to plant cells, and through its role as a greenhouse gas and subsequent contribution
to global warming (Ainsworth, 2017). Tropospheric O3 concentrations ([O3]) have more than doubled since
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pre-industrial times (Monks et al., 2015) and while there is spatial heterogeneity in global tropospheric [O3],
O3 levels remain high in major agricultural growing regions during the crop-growing season (Ainsworth,
2017). It is estimated that on a global scale, O3 pollution has led to a 2-15% decrease in yield for crops such
as wheat, rice, maize, and soybean (Avnery et al., 2011; Van Dingenen et al., 2009).

Plant uptake of O3 occurs through both stomatal and non-stomatal pathways (soil and cuticular deposition),
with the primary form of O3 entry occurring through the leaf stomata (Ainsworth, 2017). Upon entry into
the intercellular air space of leaves O3 reacts to produce reactive oxygen species (ROS), leading to cellular
damage (Ahlfors et al., 2009; Grimes et al., 1983; Heath, 1987). Perception, signaling and detoxification of
O3 and ROS has been well reviewed (Ainsworth et al., 2012; Ainsworth, 2017; Vainonen & Kangasjarvi,
2015), and includes altered redox balance, increases in cytosolic calcium, mitogen-activated protein kinase
(MAPK) signaling cascades, and altered expression of genes involved in hormone and antioxidant metabolism,
respiration, and photosynthesis (Ainsworth, 2017).

The physiological response of plant responses to O3 and their agronomic consequences have also been pre-
viously reviewed (for list see Ainsworth, 2017; Montes et al., 2022), and demonstrate chronic elevated [O3]
decrease photosynthesis and stomatal conductance in C3 plants, and increase rates of respiration (Morgan
et al., 2003; Ainsworth, 2008; Feng et al., 2008). Additionally, decreased photosynthetic rates are associated
with a decrease in photosynthetic proteins, pigment, and nitrogen (N) content, and increased rates of respi-
ration are associated with changes in leaf antioxidant balance (Dutilleul et al., 2003). These reductions in
plant primary metabolism can lead to reduction in plant growth rates, leaf area and biomass accumulation
(both aboveground and belowground) (Morgan et al., 2003; Ainsworth, 2008; Feng et al., 2008).

As with other abiotic stresses, the timing of O3 stress can play a role in the overall impact on plant produc-
tivity; O3 can directly impact reproductive development in plants (Black et al., 2000; Leisner & Ainsworth,
2012) and O3 exposure during reproductive development can lead to a greater reduction in photosynthesis
than during vegetative development in some plants (Morgan et al., 2003; Ainsworth, 2008; Feng et al., 2008).
Overall, O3 impacts plants at the community, whole plant, leaf, and cellular level and can lead to reductions
in crop yield and overall biomass accumulation (Ainsworth et al., 2012). While there is significant within-
species variation in O3tolerance in crops (Ainsworth, 2017; Booker et al., 2009), future work is needed to see
successful gains in breeding and biotechnological approaches to improving resiliency to O3 in crops.

2.4 Elevated atmospheric CO2

Anthropogenic CO2 emissions have increased the atmospheric [CO2] since the beginning of the industrial
revolution, with the global concentration increasing from 340 ppm in 1980 to 417 ppm in February of 2022
(GML-NOAA, 2022). If CO2 emissions are maintained, the Representative Concentration Pathway model
(RCP) 8.5 predicts that atmospheric [CO2] could reach between 550-600 ppm by 2050 (IPCC, 2021). There-
fore, it is important to understand the effects of elevated CO2 on crop physiology, yield and its interaction
with other abiotic factors as well as biotic stresses such as crop diseases. The effects of elevated CO2 at the
crop, plant and genetic level have been widely studied before (for review see Ainsworth & Rogers, 2007;
Ainsworth & Long, 2020) but a better understanding of the interactive effects of CO2 with other abiotic and
biotic stress is needed.

As a substrate of photosynthesis, elevated concentrations of atmospheric CO2 increase photosynthesis of
C3 plants between 20 to 45% by saturating Rubisco and decreasing photorespiration (Ainsworth & Rogers,
2007; Leakey et al., 2009; Walker et al., 2016). Of these, C3 legume crops such as soybean, peanut, and peas
(Pisum sativum ) have higher photosynthetic rates than other C3 crops due to the benefits of biological
nitrogen fixation on plant N and sugar metabolic status (Ainsworth & Rogers, 2007; Sanz-Saez et al., 2015).
In C4 plants, however, elevated CO2 does not increase photosynthesis directly as they already possess a
CO2 concentration mechanism that saturates Rubisco and avoids photorespiration (Leakey et al., 2009). For
that reason, C4 crops such as maize, sorghum and other C4 grasses such as Panicum coloratumonly show
higher photosynthetic rates when grown under elevated CO2 when also exposed to drought stress. This is
a result of reduced transpiration that allows the crops to save more water in the soil and maintain higher
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photosynthetic rates during drought (Leakey et al., 2009).

The major function of stomata is to maximize CO2fixation while minimizing water loss. As atmospheric
[CO2] increase, the intercellular CO2 concentration in C3 and C4 plants increases as well, and therefore
plants respond by decreasing both stomatal aperture and stomatal density, resulting in lower water loss
at the leaf level (Leakey et al., 2009; Ainsworth & Long, 2020). This decrease in stomatal conductance
translates to a decrease in canopy evapotranspiration that results in increased soil moisture content (Leakey
et al., 2009). In some cases, however, elevated [CO2] stimulate leaf growth and canopy expansion and therefore
canopy transpiration is increased (Gray et al., 2016; Parvin et al., 2019). These factors need to be taken in
account when studying the interaction with diseases as a reduced stomatal conductance and number could
limit the entrance of leaf pathogens and reduce disease severity (Eastburn et al., 2011).

Under elevated [CO2], plants tend to produce more sugars due to increased photosynthetic rates (Ainsworth
et al., 2004). Feedback inhibition occurs if plants are not able to distribute those sugars from the sources
(leaves) to the sink organs (roots, flowers developing seeds) at the same pace that sugars are assimilated,
which in turn, inhibits the expression of photosynthetic genes and limits photosynthesis (Ainsworth et al.,
2004). This photosynthetic limitation at elevated [CO2] produced by a sink limitation is more common in
crops that produce more leaves (sources) and not as many seeds (sinks), as reproductive organs are stronger
carbon (C) sinks. This has been demonstrated in wheat, where cultivars with higher harvest index (produce
more seeds) were more responsive to elevated [CO2] than cultivars that produced more vegetative biomass
(Aranjuelo et al., 2013). Additionally, this increase in carbohydrate content is followed by a reduction in the
assimilation of N (Rubio-Asensio & Bloom, 2017; Bloom et al., 2020; Adavi & Shathee, 2021) that, combined,
results in a dilution of the N content in all plant tissues and an increase in the C/N ratio that could affect
disease growth (Ainsworth & Long, 2004).

Due to a reduction of the transpiration stream and the dilution effect produced by an increase in carbohydrate
concentration in seeds and leaves, mineral concentrations tend to decrease at elevated [CO2] (McGrath &
Lobell, 2013; Myers et al., 2014; Ebi & Loladze, 2019; Loladze et al., 2019; Ebi et al., 2021). The decrease of
micronutrients like iron (Fe), zinc (Zn), and selenium (Se) is significant, as they are essential nutrients for
human nutrition and its deficiency in diets affects more than 2 billion people in the world (Ebi & Loladze,
2019; Loladze et al., 2019; Ebi et al., 2021). This decrease in nutrient concentration due to a reduced
transpiration at elevated [CO2] can be significant for other nutrients that are important for the integrity of
membranes and cell walls such as silicone, calcium (Ca) and boron (B), as it could facilitate the infection of
some pathogens.

The stimulation of photosynthesis at elevated [CO2] usually results in biomass and yield increases in C3plants
(Bishop et al., 2014; Sanz-Saez et al., 2017; Hu et al., 2022). The magnitude of the positive effect depends on
the crop species and the interactions between biotic and abiotic factors (Ainsworth & Long, 2020). However,
genotypic variation in the biomass and yield response to elevated [CO2] has been found in several crops
under controlled and open environments (Aranjuelo et al., 2013; Bishop et al., 2014; Sanz-Saez et al., 2017).
Additionally, under elevated [CO2], leaf area is stimulated, and the canopy closes earlier in the season and is
denser than at ambient [CO2] (Srinivasan et al., 2017; Sanz-Saez et al., 2017). A canopy that closes earlier in
the season and is denser could produce a more humid microclimate that favors the appearance of diseases.

CROSSTALK BETWEEN ABIOTIC AND BIOTIC STRESS

Plants respond to individual biotic or abiotic stresses or simultaneous challenge by biotic and abiotic stresses
in a complex and unique manner at the physiological, transcriptional, and cellular levels (Suzuki et al., 2014;
Zhang et al., 2022). Common responses of plants to abiotic stresses are stomatal closure, reduced photosyn-
thesis, increased ROS scavenging activity, reduced leaf growth, and increased root length, as described above.
In response to biotic stress, plants respond to challenges by bacterial, fungal, and viral pathogens or nema-
todes in different ways depending on the biotrophic or necrotrophic lifestyle of pathogens. Some commonly
observed responses to these biotic stresses include stomata closure, reduced photosynthesis, production of
ROS, phytoalexin production, and local cell death. Overlap in the regulatory networks that control plant
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responses to both abiotic stress, pathogen recognition and defense therefore include ROS signaling, expres-
sion of plant hormones, changes in redox status and ion flux, and changes in cell wall integrity (Kissoudis et
al., 2014; Rivero et al., 2022), indicating crosstalk and convergence of mechanisms to combat general stress
(Walley et al., 2007; Atkinson & Urwin et al., 2012; Kissoudis et al., 2014).

With climate change comes the higher likelihood that plants might be challenged with simultaneous stressors
in agricultural fields and accompanied variable levels of pathogen pressure, as changes in the growing en-
vironment (i.e., temperature, water availability) can affect plant disease epidemics and other plant-microbe
interactions (Rivero et al., 2022). These combined stresses have the potential to pose an even greater threat
to global food security and climate resilience than each stress alone (Rivero et al., 2022). Previous work
has shown that susceptibility to hemibiotrophic or necrotrophic pathogens is increased under abiotic stress,
while susceptibility to biotrophic pathogens is reduced when combined with abiotic stress (Saijo & Loo,
2019). Therefore, to engineer a more sustainable future food supply we need to understand how biotic and
abiotic stress combinations act in combination. This includes understanding stress signaling crosstalk in
plant signaling, gene expression, metabolism, and development. Below we summarize our current knowledge
of crosstalk in signaling and plant metabolic pathways that occurs when plants are exposed to combined
abiotic and biotic stresses. In the following section we outline trade-offs between plant responses to combined
biotic and abiotic stress conditions with targets for future research efforts.

3. 1 Drought and plant biotic stress interactions

The interaction between drought and plant disease stress has been previously reviewed for a wide variety
of crops and disease systems (Kissoudis et al., 2014; Pandey et al., 2015a,b; Zarratini et al., 2021). From
these reviews it is apparent that the outcomes from plant biotic and drought stress interactions are going to
depend on environmental conditions that may favor the establishment and spread of the disease, the type
of microorganism’s mode of infection and virulence, and impacts of drought on plant defense mechanisms
(Kissoudis et al., 2014; Pandey et al., 2015a; Zarratini et al., 2021). Here we will review how drought can
affect plant-pathogen interactions by studying the effect of drought on pathogen fitness on plant physiology
which can affect the plant-pathogen interaction.

Many fungal and bacterial pathogens need high soil or leaf moisture levels to be able to survive in the plant
surface and infect it. Many root fungal pathogens such as root rot (Phytium sp.;Aphanomyces sp.) and downy
mildew (Plasmopara sp.) are reduced under drought conditions due to inadequate soil moisture (Pandey et
al., 2015a). For example, the occurrence of root rot and downy mildew in sunflowers (Helianthus annuus )
was less severe under drought conditions due to detrimental environmental conditions for the survival of the
pathogens (Pandey et al., 2015a). Similarly, foliar bacterial and fungal diseases can be impeded by drought,
as they favor high water content in the leaf apoplast, which is usually associated with high humidity (Freeman
& Beattie, 2009). Additionally, it has been observed that drought can reduce the spread of fungal pathogens
as rain is needed for the dispersal of fungal spores (Pandey et al., 2015a), as well as the incidence of many
bacterial leaf spot diseases, as they reproduce by water-soaked lesions (Rudolph, 1984).

Drought, however, can also enhance the severity of some root diseases, such as the incidence of smut on cereals
(Urocystis agropyri ; Colhoun, 1973), charcoal stalk rot in sorghum (Macrophomina phaseoli ; Pandey et
al., 2015a) and root rot in safflower (Phytophthora sp.; Duniway, 1977). The increased infection and severity
observed in these root fungal pathogens can be possibly related with a higher diffusibility of volatile fungal
attractors emitted by roots in dry soils (Kerr, 1964; Pandey et al., 2015a). Drought stress can also increase
herbivore performance, as seen in faba bean (Vicia faba minor L.), where yield was decreased when plants
experienced both water stress and herbivory pressure from black bean aphids (Aphis fabae ) (Raderschall et
al., 2021). This could increase the infection of viruses that are transmitted by aphid vectors.

Drought can also impair disease tolerance traits in plants, thereby limiting their defense mechanisms. Low
levels of ROS have been related with the production of ABA in leaves and the regulation (closing) of stomatal
opening and pathogen attack (Qi et al., 2018). ABA is a plant hormone that is synthesized during abiotic
stress conditions, including water stress, and helps the plant to maintain its turgor and water potential by
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closing stomata, accumulating osmotolerant solutes, and reducing leaf expansion at the expense of reduced
growth (Kissoudis et al., 2014). ABA production under drought is of special interest as it downregulates the
salicylic acid (SA) and jasmonic acid (JA) defense mechanisms against plant pathogens (Kissoudis et al.,
2014; Pandey et al., 2015b). For example, drought induces the ABA signaling pathway, which downregulates
Calmodulin-binding protein 60g (CBP60g) and Systemic Acquired Resistance Deficient 1 (SARD1). These
two transcription factors are important nodes in the crosstalk since they are needed for SA production,
required for suppression of pathogens (Choudhary & Senthil-Kumar, 2021), as well as for other defense
related proteins. CBP60g plays a role early during defense response and SARD1 later during the infection
(Wang et al., 2011). Additionally, drought stress has been shown to enhance the susceptibility of Arabidopsis
to Pseudomonas syringae by increasing ABA signaling, which suppress SA-mediated defense responses (Mohr
& Cahill, 2003, 2007; Choudhary & Senthil-Kumar, 2022).

Oxidative damage produced by ROS accumulation under severe drought can also produce membrane and
cellular damage which results in plant solute leakage through the membrane, making plants vulnerable to
more severe pathogen infection. For example, charcoal rot (Macrophomina phaseolina ) can use osmotolerant
amino acids, such as proline and asparagine, produced by common bean (Phaseolus vulgaris ) to tolerate
drought, and therefore exacerbate the severity of the infection and disease (Mayek-Perez et al., 2002; Ijaz et
al., 2013).

As drought stress decreases the water potential of the whole soil-plant-atmosphere continuum, this can result
in damage in the structure of the xylem, such as the pit membranes, which reduce xylem conductivity and
transpiration (Ladjal et al., 2005; Hillabrand et al., 2016). This in turn can increase susceptibility of plants
to disease, such as Xylella fastidiosa which causes Pierce’s disease, as the bacteria has better access to the
xylem when the pit membranes are damaged (Newman et al., 2003; Thorne et al., 2006).

Drought can also lead to improved disease tolerance traits in plants. Under drought, ABA-induced stomatal
closure can lead to decreased pathogen infection, as seen with P. syringae (Melotto et al., 2006). ABA
also stimulates pre-invasion defense mechanisms such as callose deposition in the phloem which reduces the
spread of vascular pathogens such as Phytium irregulare (Adie et al., 2007). In addition, increased ABA levels
during early drought have been shown to increase the resistance of Nicotiana benthamiana to white mold
(Sclerotinia sclerotiorum ) and tomato (Solanum lycopersicum ) to gray mold (Botrytis cinerea ) (Achuo et
al., 2006; Ramegowda et al., 2013). Increased cuticle thickening caused by drought can also limit pathogen
infection (Tang et al., 2007; Bi et al., 2017). Finally, pathogen stress can lead to improved plant responses to
drought. Previous work has shown drought tolerance has been improved in plants exposed to RNA viruses
(Xu et al., 2008) and Arabidopsis plants exposed to Verticillium spp. demonstrated enhanced tolerance to
drought due to increased water flow from de novo xylem formation upon pathogen infection (Reusche et al.,
2012).

3.2 Elevated temperature and plant biotic stress interactions

High temperature conditions, along with high humidity, can facilitate plant disease development by promo-
ting pathogen growth, affecting the virulence in pathogens, and dampening plant disease resistance responses
(Fujita et al., 2006; Desaint et al., 2020; Zarattini et al., 2021). High temperature has been shown to increase
virulence of pathogens across diverse plant species (see reviews Cohen & Leach, 2020; Desaint et al., 2020;
Zarattini et al., 2021). For example, resistance of rice to the fungal pathogen Magnaporthe oryzae is com-
promised when plants are pre-exposed to heat stress (Onaga et al., 2017), and barley (Hordeum vulgare )
is more susceptible to powdery mildew disease (Blumeria graminis f. sp. hordei ) when exposed to elevated
temperature and CO2 stress (Mikkelsen et al, 2015). This is also seen in Arabidopsis, where immunity is
suppressed in plants exposed to high temperatures, decreasing resistance of Arabidopsis toP. syringae (Jan-
da et al., 2019). Resistance toXanthomonas in pepper (Capsicum annum ) conferred bybs5, bs6 resistance
genes is compromised at elevated temperatures (Vallejos et al. , 2010). Conversely, pathogen infection has
the potential to compromise heat tolerance, as seen in Tomato yellow leaf curl virus (TYLCV) in tomatoes
(Anfoka et al., 2016).
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Virulence in pathogens can also be affected by high temperature stress. For example, the pathogen responsi-
ble for soft rot in potato crops (Dickeya solani ) causes more severe symptoms in high temperatures due to
an upregulation of genes in D. solani involved in biofilm production (Czajkowski et al., 2016). Temperature
maximums have been observed however, beyond which pathogen virulence is decreased, as seen in the phy-
topathogenic bacterium Pectobacterium carotovorum which causes bacterial soft rot in a wide range plant
species (Saha et al., 2015). Taken together, there is a complex interaction between environmental conditions
affecting both host plant susceptibility to pathogen stress and the virulence of the pathogen. For additional
review of heat-dependent plant immune mechanisms and pathogen thermosensory processes please see De-
saint et al., (2020). The authors review plant-pathogen interactions under elevated temperature stress that
have a negative, neutral, or positive effect on plant resistance,

Work has also been done to identify unique and overlapping responses in the plant transcriptome to singular
and combined temperature and abiotic stress. A key point of interaction between high temperature and
disease resistance is R protein stability (Fujita et al., 2006; Cohen & Leach, 2020). Previous work has shown
that plant resistance is maintained or enhanced at high temperatures, as seen in expression of several R genes
to wheat stem rust and bacterial blight, however the mechanism for this enhanced temperature-dependent
resistance is not known (Cohen & Leach, 2020). Conversely, disease resistance mediated by receptor-like
kinase (RLK)-type R genes are also compromised by high temperature, indicating the stability of RLK-
type R proteins might also be decreased, weakening key components of defense signaling in plants (Fujita
et al., 2006). Other common plant transcriptomic responses to combined heat and pathogen stress include
activation of transcription factors, increased expression of stress responsive genes, and downregulation of
photosynthetic and C metabolism genes (Desaint et al., 2020).

There is also an elaborate crosstalk between elevated temperature stress and plant hormone signaling. The
activation of plant defense to biotic stress involves regulation of several phytohormone pathways, including
SA, JA, and ethylene (ET) (Zarattini et al., 2021). For example, previous work has shown defense responses
in Arabidopsis to P. syringae mediated by SA can increase under low temperatures (Li et al., 2020) but are
compromised at elevated temperature (Wang et al., 2009; Huot et al., 2017; Janda et al., 2019). Resistance
was compromised at elevated temperatures in Arabidopsis due to increased expression of genes that regulate
SA, specifically JA signaling (Huot et al., 2017). When exposed to low temperature stress, however, SA-ET
crosstalk regulates SA-dependent plant responses (Zarattini et al., 2021). This indicates there are complex
temperature-phytohormone signaling interactions that lead to novel outcomes based on the treatment and
pathosystem. Future work is needed to understand the synergistic outcomes from the combined stress, as
the transcriptional and phytohormone response from the combined stress is often unpredictable and specific
to different pathosystems (Cohen & Leach, 2020; Desaint et al., 2020; Zarattini et al., 2021).

3.3 Elevated [O3] and plant biotic stress interactions

Increased O3 exposure has shown to have secondary impacts on plants by altering the incidence of pests or
pathogens, or by mediating the ability of a plant to respond to these biotic pressures (Fuhrer, 2009; Eastburn
et al., 2011). Plants exposed to elevated O3 have been shown to be more prone to attacks by necrotrophic
pathogens, root-rot fungi as well as insects such as bark beetles, while obligate biotrophic infections may
be lessened on plants pre-exposed to elevated O3 (Karnosky et al., 2002; Sandermann, 2000; Tiedemann
& Firsching, 2000). These differential effects have been shown to stem from physiological differences (such
as reduced net photosynthesis and premature ripening and senescence) and corresponding gene expression
changes in the plant (different signaling pathways involved in responding to necrotrophic vs. biotrophic
pathogens). Conclusions drawn for specific pests and disease interactions with elevated O3 are controversial,
however (Fuhrer, 2009), as responses can differ even within fungal genera. For example, wheat plants infected
with leaf rust (Puccinia reconditaf. sp. tritici ) showed symptoms of O3 damage earlier and with higher
severity compared to plants without rust infection (Tiedemann & Firsching, 2000), whereas O3-fumigated
plants showed resistance towardsBipolaris in barley (Plazek et al. 2000).

Changes in the leaf surface topography, and in turn, chemical composition, in response to O3, result in
alterations in leaf wettability and solute retention (Karnosky et al., 2002). These alterations can influence
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attachment of pathogens to the leaf surface. Leaf surface attachment and successful epiphytic colonization is
a crucial step during pathogenesis of foliar bacterial pathogens (Lindow & Brandl 2003; Potnis et al., 2014).
For example, studies involving the foliar bacterial pathogen P. glycinea on soybean exposed to elevated [O3]
both pre- and post-inoculation showed reduced bacterial infection severity and a reduced number of lesions
(Laurence & Wood, 1978), while there was no effect or protection against bacterial blight (X. phaseoli ) on
white bean (P. vulgaris ) when plants were exposed to elevated [O3] (Temple & Bisessar, 1979). This indicates
future work looking at O3 impacts on specific plant-pathogen systems is needed to obtain a comprehensive
view of plant resilience to future climate.

At the molecular level, the signaling pathways altered by elevated [O3] can influence the plant defense-growth
trade-off/dilemma that plants face when attached by the pathogen (Kangasjärvi et al., 1994; Eastburn et
al. 2011). Plant defense signaling pathways in response to pathogen infection and elevated O3 have been
shown to share components such as ROS production. The oxidative burst caused by elevated O3was also
shown to affect antagonistic and synergistic interactions between JA, SA, ET, and ABA, all of which are
plant growth regulators, as well as important components of the plant defense network against biotrophic
and necrotrophic pathogens (Eastburn et al. 2011; Kangasjärvi et al., 1994). Plant exposure to O3 also
increases the activity of several enzymes in the phenylpropanoid, flavonoid and lignin pathways, which play
a role in plant defense (Kangasjärvi et al., 1994). Reaction of O3 with the plant apoplastic space and cell
membrane causes increased production of linoleic acid (Mudd, 1998), and in turn biosynthesis of JA, which
may attenuate SA-dependent hypersensitive response (HR) and cell death pathways in plants (Rao et al.
2000a,b). Suppression of SA-dependent HR would mean that disease resistance against pathogens would be
compromised. Functional SA-signaling pathways are also required for O3-induced ET biosynthesis, which is
also needed for induction of HR-like cell death (Rao et al., 2002). O3-induced ET biosynthesis is also linked
to increased biosynthesis of ABA, which regulates both stomatal conductance in plants and sugar signaling
(Ahlfors et al., 2004; Leon & Sheen, 2003). This crosstalk can lead to trade-offs in plant growth and defense,
which may ultimately affect the plant’s ability to respond to biotic stresses.

3.4 Atmospheric elevated [CO2] and plant biotic stress interactions

As elevated [CO2] does not directly affect thein vitro growth of plant pathogens (Zhang et al., 2015), the
observed interactions between disease and elevated [CO2] are due to the physiological changes that elevated
CO2 exerts on plants and the consequences that this has on pathogen severity and incidence. The plant
response to infection with different microorganisms (bacteria, fungi, and viruses) under elevated [CO2] can
be very variable and depending on primary and secondary effects of elevated [CO2] on plants.

Elevated CO2 reduces stomatal density and aperture and therefore infectivity of different bacterial and fungal
diseases that infect plants through stomata may be reduced (Ainsworth & Rogers, 2007; Eastburn et al.,
2011; Li et al., 2015). In a growth chamber study investigating the interactions of P. syringae in tomato it was
observed that under elevated [CO2] stomatal aperture was reduced approximately 30%, and the pathogen
was not able to reverse stomatal closure to pre-infection levels, which is a strategy used by the pathogen
in ambient [CO2] (Li et al., 2015). It is hypothesized that this defense against disease under elevated [CO2]
is also due to a stimulation of the SA defense pathway that results in the production of nitric oxide that
stimulates stomatal closure. The increased SA defense under elevated [CO2] has been demonstrated to reduce
infection and severity of Tomato Mosaic Virus and P. syringae in tomatoes (Zhang et al., 2015). However,
the JA defense pathway is not stimulated at elevated [CO2] and a disequilibrium between the SA and JA
pathways produces an increase in incidence and severity of diseases that are controlled by the JA defense,
such as B. cinerea (Zhang et al., 2015). This demonstrates the complexity of hormone signaling responses to
the combined abiotic and biotic stress conditions and that more research is needed to understand the effects
of elevated [CO2] on the plant defense system and the interaction with multiple diseases.

Additional work has shown the decrease in disease susceptibility in the field. A 3-year field experiment per-
formed under elevated [CO2] conditions found the incidence of powdery mildew (Peronospora manshurica )
was reduced by 60% in soybean. It was hypothesized this was likely due to decreased stomatal conductance
in soybean plants grown under elevated [CO2], lowering the pathogen’s ability to enter through the stoma-
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ta. Additionally, the decrease in stomatal conductance may have led to lower transpiration and therefore
decreased humidity in the canopy, which leads to less favorable conditions for mildew growth (Eastburn et
al., 2010, 2011). Conversely, the incidence of brown spot (Septoria glycines ) and sudden death syndrome
(Fusarium viguliforme ) were not affected by elevated [CO2] (Eastburn et al., 2010). This indicates that a
reduction in stomatal conductance and transpiration in plants grown under elevated [CO2] may not always
benefit the host in detriment of the pathogen.

Work done on rice blast fungus (Pyricularia oryzae ) found leaf lesions increased by 65% in plants grown
in elevated [CO2], which was attributed to disruption in the leaf cuticle and cell wall (Cruz-Mirieles et al.,
2021). Silicate accumulation in rice leaves increases cuticle strength and therefore resistance to rice blast
(Kim et al., 2002; Rodrigues et al., 2004). Additionally, when plants are grown at elevated levels of CO2,
plant transpiration is reduced due to lower stomatal conductance (Leakey et al., 2009) reducing the bulk
of nutrients that reach the canopy (McGrath & Lobell, 2013). This decreases the amount of silicate in rice
leaves debilitating the cuticles and cell walls which facilitates the infection of rice blast fungus (Kobayasi et
al., 2006).

When considering the infection of pathogens that are carried by insect vectors, the physiological effects
of elevated CO2 on plant growth may also impact the fitness of the insect vector. For example, aphids
(Ropalosiphum padi ) are insect vectors for barley yellow dwarf virus (BYDV), which can decrease yield
and quality up to 70% in infected wheat plants (Smith & Sward, 1982). As elevated CO2 increases the
carbohydrate content and reduces the amino acid content of leaves and phloem sap (Ainsworth & Long,
2005; Trebicki et al., 2016), the growth and reproduction of aphids may be reduced as they need a higher
proportion of N than C for proper development (Trebicki et al., 2016). In non-infected plants grown under
elevated CO2, this has been demonstrated, as growth and reproduction of aphids is slower in comparison
with plants grown under ambient [CO2]. However, when the plants are infected with BYDV, the quantity
of amino acids in the phloem sap and the aphid’s gut was higher than non-infected plants. This would
suggest that BYDV may cause metabolic changes in wheat that favor the growth and reproduction of the
aphid under elevated CO2 (Trebicki et al., 2016). This has been further demonstrated in field experiments
where wheat plants grown in elevated [CO2] in Australia have shown higher incidence of BYDV in a 4-year
experiment (Trebicki et al., 2017).

It has been hypothesized that the higher virus incidence observed under elevated [CO2] could also be caused
by a secondary effect of elevated CO2 over the plants and insects that facilitate virus transmission (Ainsworth
& Long, 2020). As elevated CO2 decreases stomatal conductance and transpiration (Leakey et al., 2009),
canopy temperature can increase by 1-2 °C at midday in comparison with the ambient CO2 plots (Bernacchi
et al., 2007) which can increase aphid performance and therefore the spread viruses (O’Neill et al., 2011;
Trebicki et al., 2017; Ainsworth & Long, 2020).

In this review we have shown with different examples that the disease effect on crops under elevated [CO2]
depends on how elevated CO2 both directly and indirectly affects the plant and is also dependent on the type
of pathogens and the mechanisms of infection and defense. Although the research on how the interaction
between disease and elevated [CO2] affects plants has increased in the last 20 years, more information is
necessary to evaluate how a CO2-enriched atmosphere will affect the plant-pathogen interactions. To do
so, more research needs to be done to understand the interaction between different abiotic stresses such as
drought and high temperature and plant pathogens under elevated [CO2].

TRADE-OFFS AND FEEDBACKS IN PLANT RESPONSES TO ABIOTIC AND BIOTIC
STRESSES

Responding to multiple stresses is costly because plants need to balance efficient resource allocation between
defense and growth, which may compromise plant productivity and ultimately yield. Increased resistance to
pathogens can be accompanied by a decrease in plant fitness that decreases tolerance to both abiotic stress
and ambient growth conditions (Huang et al., 2010; Todesco et al., 2010; Kissoudis et al., 2014). Plants have
developed mechanisms that allow them to sense biotic/abiotic stresses and respond to them, minimizing
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damage while conserving valuable resources for growth and reproduction. Identifying genes that are involved
in balancing a plant’s response to multiple stresses while restoring its fitness in growth is a challenging task
for breeding programs focused on developing stress-tolerant plant varieties (Ashraf & Aisha, 2009; Fukuoka
et al., 2015; Cohen & Leach, 2020).

4.1 Photosynthesis as a hub for crosstalk and feedback responses

Pathogen infection has been shown to decrease photosynthesis and water use efficiency, as well as affect
stomatal patterning, all of which decrease plant productivity and tolerance to abiotic stress (Bilgin et al.
2010; Grimmer et al., 2012; Kissoudis et al., 2014). Downregulation of photosynthesis-related genes is a core
response of plants to abiotic stress, as well as during damage due to biotic agents, including arthropods, fungi,
bacterial or viral pathogens (Bilgin et al., 2010; Cohen & Leach, 2020). Overexpression of a master-regulator
gene of photosynthesis, HYR (HIGHER RICE YIELD), enhanced drought tolerance in rice (Ambavaram et
al., 2014). Mutants of protein phosphatases, localized to the chloroplast and involved in photosynthetic pa-
thways, showed reduced lesion development and pathogen multiplication, indicating regulatory genes involved
in both photosynthesis and plant immune suppression could be key targets to understand plant growth and
defense trade-offs (Akimoto-Tomiyama et al., 2018). Such downregulation of photosynthesis when exposed
to stress along with upregulation of genes involved in defense marks the transition from growth/reproduction
to defense, as has been explained in the growth-differentiation hypothesis (Herms & Mattson, 1992). Meta-
analytic studies involving transcriptome surveys from several different plant species and biotic stress factors
indicated slow turnover of various photosynthesis-related proteins and supported the hypothesis that plants
invest resources in immediate defense needs but without long-term losses in photosynthetic capability and
productivity (Bilgin et al., 2010; Akimoto-Tomiyama et al., 2018). In addition to photosynthesis being a hub
of crosstalk, downregulation of these genes is likely a protective mechanism against photooxidative damage
during abiotic stress (Dalal & Tripathy, 2018).

4.2 Complex biotic and abiotic stress interactions and feedbacks

In addition to trade-offs between growth and defense, increasing tolerance to one stress may be at the expense
of tolerance to another stress (Rizhsky et al., 2004; Mittler, 2006; Atkinson & Urwin, 2012). For example,
heat stress causes stomata to open, but having open stomata could lead to more water loss, which would be
detrimental under drought conditions. Such interaction of stress factors is said to occur when the presence of
the initial stress leads to an acclimation response which alters the plant’s normal response when subjected
to a second stress. Recent reviews looking at the interactive effects of two or more stresses have found
outcomes of these combined stresses can be positive, negative, or neutral depending on timing, nature, and
severity of each stress (Mittler & Blumwald, 2010; Suzuki et al., 2014; Rivero et al., 2022). Additionally, the
presence of abiotic stress has been found to enhance host susceptibility towards some pathogens, or reduce
susceptibility to some pathogens, thus, the effect of multiple stresses is not simply additive. Thus, challenging
growth conditions associated with climate change necessitates breeding programs need to evaluate durability
of resistant cultivars in presence of abiotic stresses.

Abiotic stress can also have a positive impact on the outcome of pathogen stress. In barley, increasing salt-
induced osmotic stress directly correlates with resistance to powdery mildew (Blumeria graminis f. sp. hordei
race A6) (Wiese et al. 2004), and drought stress can enhance resistance to B. cinere a in tomatoes (Achuo
et al. 2006). Additionally, pathogens interfere with water relations during pathogenesis by inducing stomatal
closure to reduce water loss from infected tissue, which can have a positive effect on plant tolerance against
abiotic stress conditions (Goel et al. 2008; Beattie, 2011). Drought-stressed tomato leaves accumulate high
levels of defense compounds that reduce the herbivore Spodoptera exigua ’s ability to feed (English-Loeb
et al. 1997). Additionally, infection with plant viruses can provide protection against drought stress (Xu
et al. 2008), as seen with tobacco (Nicotiana ), beet (Beta vulgaris ), and rice. This was shown to be due
to virus-induced accumulation of osmoprotectants and antioxidants anthocyanins. Future work is needed to
identify key targets for breeding which address the complex nature of the plant growth environment with
responses to both abiotic and biotic stress.
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TARGETS FOR FUTURE RESEARCH EFFORTS

Several studies have been done at the whole genome level to analyze gene expression under single and
combined abiotic and biotic stresses (Vos et al., 2015; Coolen et al., 2016; Davila et al., 2017; also see Fujita
et al., 2006; Atkinson & Urwin, 2012, and Suzuki et al., 2014; Rivero et al., 2022 for review). From this work
and subsequent meta-analytic studies, key signaling pathways and genes sit at the intersection of biotic and
abiotic stress responses. Below we outline those key targets, understanding that plant response to multiple
stresses often produces gene expression and signaling patterns unique to those of a singular stress (Zarattini
et al 2021).

5.1 Transcription factors

Previous reviews had identified several transcription factor families as hubs for plant responses to multiple
stresses (Fujita et al., 2006; Atkinson & Urwin, 2012; Rivero et al., 2022). MYC2 is a central player in plant
responses to biotic and abiotic stress (Anderson et al., 2004), and plays a role in JA-induced defense genes and
is a key regulator by which ABA controls signaling related to biotic stress (Atkinson & Urwin, 2012). MYB
transcription factors are also a key group, as they have been shown to be induced by drought, UV-B radiation,
cold stress as well as biotic stress (Atkinson & Urwin, 2012). Additionally, NAC and AP2/ERF transcription
factors have broad spectrum responses to biotic and abiotic stress in multiple species (Atkinson & Urwin,
2012). More targets for future research include WRKY, bZIP, TCP, and calmodulin-binding transcription
factor activator (CAMTA) transcription factors (Atkinson & Urwin, 2012; Kissoudis et al., 2014 Rivero et
al., 2022). Several members of these transcription factor families (ERF, MYB, bHLH, NAC, and WRKY)
have been suggested to act as switches controlling transcriptional reprogramming during plant development
as well as in tolerance to biotic and abiotic stresses. These transcription factors are ideal candidates for
engineering stress-tolerant plants (Erpen et al. 2017, Baillo et al. 2019)

Furthermore, understanding post-translational regulation of transcription factors is important, as this im-
pacts expression of downstream genes that can be key regulators of plant stress response. These downstream
genes include proline-rich proteins. For example, when proline-rich proteins from pigeonpea (Cajanus cajan
L.) were constitutively expressed in Arabidopsis they provided enhanced tolerance to multiple abiotic stres-
ses such as osmotic, salt, and heat stress. Meta-analyses of transcriptome datasets have revealed additional
core abiotic stress responsive genes (Dossa et al., 2019, Saidi et al., 2022), include genes belonging to a
member of the late embryogenesis abundant family (LEA) (Huang et al. 2016, Chen et al. 2019), and alcohol
dehydrogenase (ADH) family members (Shi et al. 2017). Additionally, the resistance gene, Xa7 , conferring
bacterial blight resistance in rice functions better at high temperatures, indicating elevated temperature can
have a positive impact on plant defense responses to pathogens (Cohen et al., 2017). These genes could be
key targets for future research efforts.

5.2 Hormone signaling

Significant work has been done to investigate plant hormone signaling crosstalk between biotic and abiotic
stresses (for review see Shigenaga et al., 2017; Ku et al., 2018). This work has found ABA is a key regulator
of abiotic stress and biotic stress responses. ABA is considered “the” abiotic stress hormone (Shigenaga et
al., 2017), and through its antagonistic relationships with SA and JA/ET signaling pathways, it allows for
crosstalk at multiple levels in biotic stress responses for both necrotrophic and biotrophic pathogens (Atkinson
& Urwin, 2012; Kissoudis et al., 2014). Future research efforts should focus on ABA signaling pathways,
along with their interaction with SA, JA/ET, to increase plant resilience to climate change. Other growth
hormones have been implicated in biotic and abiotic stress responses, including gibberellin, cytokinin, auxin,
and brassinosteroids (Kissoudis et al., 2014). Additionally, it has been recently demonstrated through genetic
analysis that modification of epistatic interactions between the hormone jasmonate and the photoreceptor
phyB uncoupled the plant growth and defense trade-off in Arabidopsis (Campos et al., 2016). This indicates
that future breeding efforts involving hormone signaling may overcome growth-defense tradeoffs associated
with combined biotic-abiotic stress responses.

5.3 MAPK cascades and heat shock factors (HSFs)
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MAPK cascades are a key step in transduction of environmental cues to internal signaling pathways (Rod-
riguez et al., 2010). MAPK signaling cascades are involved in biotic stress and abiotic stress responses in a
range of plant species, including Arabidopsis, rice, tomato and cotton, and link other pathways related to
ROS and hormone signaling (Fujita et al., 2006; Atkinson & Urwin, 2012; Kissoudis et al., 2014; Rivero et al.,
2022). This integration of signals from multiple stresses and plant hormones indicates MAPK cascades are
particularly important in regulating biotic-abiotic stress crosstalk. Heat shock proteins (HSPs) are molecular
chaperones that protect and stabilize proteins during stressful conditions (Bartels & Sunkar, 2005). HSPs
are controlled by HSFs, which are induced under biotic and abiotic stresses, including heat, high light, and
drought, across multiple species (Atkinson & Urwin, 2012). HSFs also protect plants from oxidative stress
and serve as sensors for ROS to activate stress-responsive genes downstream (Atkinson & Urwin, 2012). For
example, recent work has shown increased expression of specific HSF (HSFA1b ) in oilseed rape led to incre-
ased resistance to stress and maintenance of yield (Mullineaux et al., 2011). Taken together, both MAPKs
and HSFs are key potential regulators for conferring resiliency to biotic and abiotic stress conditions under
future climate change.

5.4 ROS signaling

ROS scavenging and signaling play a key role in plant responses to both biotic and abiotic stress conditions
(Pastori & Foyer, 2002; Fujita et al., 2006; Ton et al., 2009; Atkinson & Urwin, 2012; Kissoudis et al., 2014;
Morales et al., 2016). During abiotic stress conditions, such as osmotic stress and high light, elevated levels
of ROS must be detoxified by the plant to prevent damage to cell membranes and degradation of proteins,
including important protein complexes related to photosynthesis (Staehelin & van der Staay, 1996; Wu et
al., 2013; van Eerden et al., 2015; Kobayashi, 2016). Detoxification occurs through the action of antioxidants,
including superoxide dismutase (SOD), enzymes and metabolites from the ascorbate-glutathione cycle, and
catalase (CAT) (see de Carvalho et al., 2013 for review). During biotic stress conditions, plants generate
ROS to limit pathogen spread by initiating the hypersensitive response and cell death (Atkinson & Urwin,
2012). In both cases, ROS serve as a signal of stress conditions and elicit downstream ROS-responsive genes.
This includes transcription factors, ABA biosynthetic genes, and antioxidant metabolism genes (Atkinson
& Urwin, 2012). Additionally, many biotic and abiotic stresses activate ROS production through NADPH
oxidase (RBOH) proteins. RBOH proteins are regulated through several post-translational mechanisms by
both biotic (aphid, bacterial, fungal infection) and abiotic stresses (salinity, heat, high light), making them
a central hub for integrating multiple stress conditions (Rivero et al., 2022). Therefore, master regulators of
ROS signaling mechanisms would be key targets for future research.

5.5 Other signaling mechanisms

Another key area for future research is small RNAs, which can play important regulatory roles in plant
responses to stress. Work done in Arabidopsis has indicated microRNAs (miRNA) are involved in response
to phosphate stress, while miRNAs are responsive to cold stress inBrachypodium distachyon (Fujii et al.,
2005; Chiou et al., 2006; Zhang et al., 2009). Gene expression analysis in soybean indicates miRNAs play
a role in mediating drought and fungal stress (soybean rust fungus) through modulation of regulation of
ROS (Kulcheski et al., 2011). Small interfering RNAs (siRNAs), including nat-siRNAs, have also been
shown to regulate both abiotic and biotic stress responses in Arabidopsis and rice (Atkinson & Urwin,
2012). Additionally, small RNAs play a role in plant developmental processes, including flowering time
and fertility (Atkinson & Urwin, 2012), indicating their key role at the intersection of plant defense and
productivity. This indicates small RNAs would be a viable future area of research to understand plant
responses to combined stresses. Additional pathways of interest for future work include genes involved in
calcium signaling, mitochondrial functions, vesicle trafficking, apoptosis, as well as pathway regulation of
the hyper-sensitivity response, epigenetic regulation, and the role of cis -regulatory elements (CREs) (Fujita
et al., 2006; Atkinson & Urwin, 2012; Kissoudis et al., 2014; Nejat & Mantri, 2017; Shigenaga et al., 2017;
Romero-Puertas et al., 2021; Singh et al., 2021; Zarratini et al., 2021).

ADDRESSING GAPS IN OUR KNOWLEDGE
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In addition to the future research targets outlined above, additional experimental approaches and techniques
could be used to enhance our understanding of crosstalk and trade-offs of plant biotic and abiotic stress
responses imposed by climate change.

I. Experiments in both controlled environments and in the field that address realistic depictions of future
climate. This includes evaluating regional versus global impacts of specific abiotic and biotic stress inter-
actions. By assessing climate scenarios that have resolution at the regional scale, we can more accurately
predict the impacts of future growing conditions on crops of interest (Leisner, 2020), as well as gain a better
understanding of the mechanisms involved in crop responses to stress combinations at the physiological,
molecular, and genetic level (Rivero et al., 2022). Additionally, knowledge gaps related to different plant
pathosystems should be addressed, to expand our understanding to specific plant-pathogen interactions un-
der future climate scenarios. II. Modeling and predictive tools for decision making. Precision agriculture is a
large field that is focused on using advanced robotics, image analysis, and mapping technologies to improve
a farmer’s ability to make decisions regarding soil and water supplies in real-time (Cisternas et al., 2020).
This can help make decision support tools available for stakeholders to manage plant responses to climate
change. We need to increase efforts to utilize the same concepts of precision agriculture to the management
of pathogen infection. This includes predicting climate change effects on pathogen emergence using artificial
intelligence and giving decision-makers automated analyses of risk to make educated decisions during the
growing season (Garrett et al., 2022). III. Interdisciplinary research to tackle complex problems. We need
to take a systems biology approach to gain a complete picture of how plants interact with their changing
environment. This includes addressing issues of physiological responses of plants to their environment, how
these are linked to changes at the genetic level, and how these changes at the whole plant level might trans-
late into ecological impacts in natural or agroecosystems. Additionally, links between belowground factors
(soil composition, rhizosphere interactions) and the plant microbiome (Hacquard et al., 2022) will be key to
increasing plant health, defense, and productivity under future climate conditions.

CONCLUSIONS

Plants must adapt and respond to an ever-changing environment. Human influence has led to increased CO2
in our atmosphere, warming of our land, and changes in precipitation patterns. These changes to our global
ecosystem will also lead to changes in the prevalence and virulence of plant pathogens, and plant herbivores.
To ensure sustainable future food production, we must understand the crosstalk and trade-offs resulting
from combined abiotic and biotic stress impacts on plant growth and defense. Outcomes from experiments
where plants are exposed to multiple stresses are often unique from the individual stress alone, especially at
the level of gene expression. There is, however, significant crosstalk among these stresses, with key hubs of
integration of signals across stresses involving transcription factors, hormones (ABA, SA, JA), ROS, small
RNAs, and MAPK cascades. These are key targets for future research efforts. More combinatorial stress
work is needed in the future to understand growth and defense trade-offs and crosstalk among plant biotic
and abiotic stress responses. This work should incorporate realistic depictions of future climate, leverage
interdisciplinary teams of researchers, and employ advanced tools in precision agriculture and predictive
tools for decision making (Fig. 1 ).
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FIGURE LEGENDS

Figure 1. Targets for future research and approaches to assess crosstalk and trade-offs of combined abiotic
and biotic stress in plants. Abiotic and biotic stresses covered in this review are illustrated, along with gene
targets and areas of future work needed to advance our capability for sustainable future food production
under future climate change conditions.

Figure 1.
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