
P
os
te
d
on

A
u
th
or
ea

30
S
ep

20
22

—
T
h
e
co
p
y
ri
gh

t
h
ol
d
er

is
th
e
au

th
or
/f
u
n
d
er
.
A
ll
ri
gh

ts
re
se
rv
ed
.
N
o
re
u
se

w
it
h
ou

t
p
er
m
is
si
on

.
—

h
tt
p
s:
//
d
oi
.o
rg
/1
0.
22
54
1/
au

.1
66
45
53
70
.0
78
23
79
9/
v
1
—

T
h
is

a
p
re
p
ri
n
t
an

d
h
a
s
n
o
t
b
ee
n
p
ee
r
re
v
ie
w
ed
.
D
a
ta

m
ay

b
e
p
re
li
m
in
a
ry
.

A review on student automatic grading system D

Diptiben Ghelani1

1Affiliation not available

September 30, 2022

1

A review on student automatic grading system

Diptiben Ghelani

Introduction

The majority of papers on automated grading hold keyword matching to be an important factor

for evaluating replies. Despite the fact that they are significant, it is normal for people to

overlook a few rare words and instead choose synonyms. In this research, a method for

automatically grading papers in theory-based topics is presented. This method makes use of

natural language processing. Semantic analysis and other machine learning approaches will be

used. Matching keywords is ineffective since different students may offer the same response in

various ways. Since it is now possible to check for the existence of keywords, synonyms, the

proper word combination, and concept coverage, utilising ontology to extract words and their

synonyms connected to the domain makes the evaluation process more comprehensive. The

aforementioned methods will be put into practise with ontologies and evaluated using common

input data made up of technical responses. Following analysis of the data, an automated grading

system that is fair, highly accurate, and has a very low mistake rate (compared to a differential

human-to-human error rate) will be created for a theory-based topic. The results of a poll of

instructors on the criteria they use while manually editing papers were used to develop the

algorithm.

Sentiment analysis can be conducted at a word, sentence, or a document level. However, due to

the large number of documents, manual handling of sentiments is impractical. Therefore,

automatic data processing is needed. Sentiment analysis from the text-based, sentence or

document-level corpora is employed using natural language processing (NLP). Most research

papers found in the literature published until 2016–2017 employed pure NLP techniques,

including lexicon and dictionary-based approaches for sentiment analysis. Few of those papers

used conventional machine learning classifiers. Recent years have seen a shift from pure NLP-

based approaches to deep learning-based modeling in recognizing and classifying sentiment, and

the number of papers published recently on the undertaken topic has increased significantly. The

popularity and importance of students’ feedback have also increased recently, especially in the

times of the COVID-19 pandemic, when most educational institutions have transcended

traditional face-to-face learning to the online mode.

The number of papers published recently indicates a growing interest towards the application of

NLP/DL/ML solutions for sentiment analysis in the education domain. However, to the best of

our knowledge, in order to establish the state of evidence, the body of literature is lacking a

review that systematically classifies and categorizes research and results by showing the

frequencies and visual summaries of publications, trends, etc. This gap in the body of literature

necessitated a systematic mapping of the use of sentiment analysis to study students’ feedback.

Thus, this article aims to map how this research field is structured by answering research

questions through a step-wise framework to conduct systematic reviews. In particular, we

formulated multiple research questions that cover general issues regarding investigated aspects in

sentiment analysis, models.

Ohio, Utah, and most US states are using AES systems in school education, like Utah compose

tool, Ohio standardized test (an updated version of PEG), evaluating millions of student’s

responses every year. These systems work for both formative, summative assessments and give

feedback to students on the essay. Utah provided basic essay evaluation rubrics (six

characteristics of essay writing): Development of ideas, organization, style, word choice,

sentence fluency, conventions. Educational Testing Service (ETS) has been conducting

significant research on AES for more than a decade and designed an algorithm to evaluate essays

on different domains and providing an opportunity for test-takers to improve their writing skills.

In addition, they are current research content-based evaluation. The evaluation of essay and short

answer scoring should consider the relevance of the content to the prompt, development of ideas,

Cohesion, Coherence, and domain knowledge.

 Proper assessment of the parameters mentioned above defines the accuracy of the evaluation

system. But all these parameters cannot play an equal role in essay scoring and short answer

scoring. In a short answer evaluation, domain knowledge is required, like the meaning of "cell"

in physics and biology is different. And while evaluating essays, the implementation of ideas

with respect to prompt is required. The system should also assess the completeness of the

responses and provide feedback.

Several studies examined AES systems, from the initial to the latest AES systems. In which the

following studies on AES systems are Blood (2011) provided a literature review from PEG

1984–2010. Which has covered only generalized parts of AES systems like ethical aspects, the

performance of the systems. Still, they have not covered the implementation part, and it’s not a

comparative study and has not discussed the actual challenges of AES systems. Burrows et al.

(2015) Reviewed AES systems on six dimensions like dataset, NLP techniques, model building,

grading models, evaluation, and effectiveness of the model. They have not covered feature

extraction techniques and challenges in features extractions.

This system not covered the comparative analysis of AES systems like feature extraction, model

building, and level of relevance, cohesion, and coherence not covered in this review. Ke et al.

(2019) provided a state of the art of AES system but covered very few papers and not listed all

challenges, and no comparative study of the AES model. On the other hand, Hussein et al. in

(2019) studied two categories of AES systems, four papers from handcrafted features for AES

systems, and four papers from the neural networks approach, discussed few challenges, and did

not cover feature extraction techniques, the performance of AES models in detail. Klebanov

et al. (2020). Reviewed 50 years of AES systems, listed and categorized all essential features that

need to be extracted from essays. But not provided a comparative analysis of all work and not

discussed the challenges.

Readability assessment is an important NLP issue with much application in the domain of

language education. The capability to automatically judge the readability of a text would greatly

help language teachers and learners, who currently spend a great deal of time skimming through

texts looking for a text at an appropriate reading level. Substantial previous work has been done

over the past decades(Klare1963,DuBay 2004a, 2004b). Early work generated measures based

on simple text statistics by assuming that these reflect the text reading level. For example,

Kincaid, Fishburne, and Rodgers (1975) assumed that the lengths of words and sentences

represent their respective difficulty. Chall and Dale (1995) used a manually constructed list of

words assumed to capture the difficulty of vocabulary. These measures are easy to use but

difficult to apply to languages other than English, because some features, such as word length,

are specific to alphabetic writing. Such methods, however, do not compete with recent methods

based on more sophisticated handling of language statistics. CollinsThompson and Callan (2004)

proposed a classification model by constructing different language models for different school

grades (Si and Callan 2001), and Schwarm and Ostendorf (2005) applied a support vector

machine (SVM). Both of these methods outperform classical methods and are less language-

dependent. These new methods, however, have a serious problem when implementation is

attempted for multiple languages: the lack of training corpora. data annotated with 12 school

grades have not been at all easy to obtain on a reasonable scale. Another possibility might have

been to manually construct such training data, but humans are generally unable to precisely

judge the level of a given text among 12 arbitrary levels. The corpora therefore have to be

constructed from academic texts used in schools. The amount of such data, however, is limited,

and its use is usually strictly limited by copyrights. Thus, it is crucial to devise a new method or

approach that allows readability assessment by using only generally available corpora, such as

newspapers. Given a single text, it is hard to attribute an absolute readability level from among

12 levels, but given two texts, there should be a better chance of judging which of them more

difficult is. This intuition led to the new model presented in this article.

Readability, in general, describes the ease with which a text document can be read and

understood. Readability is studied in at least two different domains, those of coherence (Barzilay

and Lapata 2008) and language learning. Readability in this article signifies the latter, for both a

mother tongue and a second language.

Every method of readability assessment extracts some features from a text and maps the feature

space to some readability norm. There are the two viewpoints regarding features and the

mapping of feature values to readability, and correspondingly there are two kinds of work in this

domain.

Regarding the first type, many researchers have reported how various features affect the

readability of text in terms of vocabulary, syntax, and discourse relations.

Recently,PitlerandNenkova(2008)presentedanimpressiveverificationoftheeffectsof each kind of

feature and found that vocabulary and discourse relations are prominent, although other features

are not negligible. Thefocusofthecurrentwork,however,isnotonwhatfeaturesettoconsider,sowe use

the same features throughout the article, as explained further in Section 3.1. Rather, the focus of

this article is on mapping the extracted feature values to a readability norm. So far, two models

have been used for this: regression and classification. In regression, readability is given by a

score based on a linearly weighted sum of feature values. Early methods, from the Wannetka

formula (Washburne and Vogel 1928), to the recent methods of Flesch–Kincaid (Kincaid,

Fishburne, and Rodgers 1975) and Dale–Chall (Chall and Dale 1995), are of this kind.

Elaboration of such regression methods in a more modern context could proceed through a

generalized linear model based on estimation of the weights by machine learning, although we

have not found such an approach within the literature of readability assessment for language

learning. Our proposal is compared with such an enhanced version of regression in Section 8. In

classification, readability is segmented by academic grades, and the assessment is conducted as a

classification task. The first is implemented by means of statistical classification modeling, as

reported in Collins-Thompson and Callan (2004) and Si and Callan (2001). The authors used a

language model (unigrams) and a naive Bayes classifier by presuming different language models

for each reading level. A language model Mi is constructed for each level of readability i by

using different corpora for each level.

The readability of a given text T is assessed using the formula L(Mi|T) =

Σw∈TC(w)logPr(w|Mi), where w denotes a word in text T, C(w) denotes the frequency of w, and

Pr(w|Mi) denotes the probability of w under Mi.

 The second is based on an SVM (Schwarm and Ostendorf 2005) and the authors also studied the

effect of statistical features, such as n-grams and syntactic features. In these papers, the

readability norms are represented by means of scores and classes of readability. That is, given a

single text, the system assigns a value corresponding to a school grade. The result is easy to

understand, and various applications have been constructed with this type of scoring. This

solution only works, however, when a sufficient amount of training data with annotations

regarding multiple levels is provided. Usually, the availability of training data in readability

assessment is limited, even for school grading. This is due to the inherent difficulty of classifying

the readability of a text into12 grades, making it difficult to uniformly construct a large set of

training data. Moreover, the copyright issue is more serious for academic texts. Given this

situation, when readability assessment is modeled by regression or classification, a research team

wanting to apply these previous methods faces the problem of assembling training data, as we

did for over a year.

The readability norm is designed in a completely different way: Given two texts, a comparator

judges which more difficult is. By applying this comparator, a set of texts is sorted. The

readability of a text is assessed by searching for its position.

Gaining new knowledge, in both formal and informal environments, relies heavily on learning

from text. An important component of the comprehension process is the difficulty of the text

being read. Texts that are too difficult can impede comprehension. Educators find texts that are

grade appropriate and may also need to select texts that meet the need of individual student.

Given the abundance of text materials available, educators simply do not have the time to find

and thoroughly evaluate texts for this purpose. As such, educators depend on text difficulty

formulas to quickly identify appropriately challenging texts. Common readability formulas such

as Flesch-Kincaid Reading Ease (Flesch, 1948) that assess text difficulty are usually based on

number of syllables per word, number of words per sentence, and the number of sentences

(Klare, 1974). Though easy to use, these formulas are centered on relatively shallow lexical and

sentential indices. However, theories of reading comprehension suggest that deep features related

to syntax and semantics drive text difficulty (Dufty et al., 2006; Duran et al., 2007; McNamara,

Graesser, and Louwerse, 2012). To address this issue, researchers have developed natural

language processing (NLP) tools that extract richer information about the linguistic features of a

text that reflect complex dimensions such as narrativity, syntactic complexity, and cohesion (e.g.

Crossley et al., 2016; McNamara, et al., 2014). Researchers have also begun to employ

machinelearning approaches for measuring text readability (Collins-Thompson, 2014; Kate et al.,

2010; Kotani, Yoshimi, and Isahara, 2011; Pilán, Volodina, and Johansson, 2014). These

approaches have shown promise in more accurately assessing text difficulty as compared to

“classic” readability approaches (François and Miltsakaki, 2012). Though promising, most of

this work has focused on either determining the best set of linguistic features or comparing

regression and classification approaches (e.g., François and Miltsakaki, 2012; Heilman et al.,

2008). To our knowledge, there is little work investigating the potential for hierarchical

approaches in the classification of text difficulty. Hierarchical classification has been used in a

number of areas such as protein classification (Zimek et al., 2008), essays scoring (McNamara et

al., 2015), and automatic target recognition (Casasent and Wang, 2005). This study addresses

this gap in the literature by combining NLP and machine learning to compare multiple types of

classification in their accuracy of classifying text difficulty. We first provide brief description of

the relevant NLP tools and machine learning techniques and then present results of the

experiments.

LP intersects computational linguistics, computer science, and artificial intelligence to

understand, assess, and respond to naturally occurring human language. NLP has been used in

education to support student learning, for intelligent and automatic assessments, to improve

learning and teaching in massive open online courses (MOOCs), and to develop learning

systems. In this study, we employed the NLP tool, Coh-Metrix (McNamara et al., 2014), which

integrates a number of sophisticated tools such as advanced syntactic parsers, part-of-speech

taggers, distributional models, and psycholinguistic databases (Coltheart, 1981) to generate over

400 indices of language, text, and readability.

Machine learning algorithms are categorized as unsupervised and supervised. Unsupervised

learning uses data that is not labeled, whereas in supervised machine learning, the algorithms are

trained on labeled data. For supervised algorithms, regression is used to predict quantitative

variables, whereas classification is used to predict qualitative variables (Hastie, Tibshirani, and

Friedman, 2009; James et al., 2013). As our data involves human ratings of categories (i.e.

labeled categorical data), we adopted a supervised learning classification approach. Commonly

used classification algorithms include Decision Trees, Naïve Bayes, Linear Discriminant

Analysis (LDA), Support Vector Machines (SVM), Logistic Regression, Random Forests,

Neural Networks, and Boosting (for further description of these algorithms, see Balyan,

McCarthy, and McNamara, 2017; Hastie et al., 2009). Preliminary experiments with a number of

these algorithms indicated that SVM and LDA were the most accurate for the current data.

Most natural language processing (NLP) problems can be formulated as classification problems

(given some object and its context, decide on the class of this object). Typical instances of this

type of problem are part-of-speech tagging and word sense disambiguation. Supervised learning

methods work by extracting regularities from a set of examples (e.g. collected from an annotated

corpus). The reason why these methods are researched intensively is that, like statistical

approaches, they are often reported to achieve higher efficiency, more robustness, and better

coverage than handcrafting approaches. On top of this, they are reported to have a number of

advantages compared to statistical approaches. E.g., ILP systems allow easy integration of

linguistic background knowledge in the learning system, induced rule systems are interpretable,

memory-based learning methods incorporate smoothing by similarity-based learning, etc.

Machine learning is a multi-disciplinary field having a wide-range of research domains

reinforcing its existence. These are as shown in the following figure 1. The simulation of ML

models is significantly related to Computational Statistics whose main aim is to focus on making

predictions via computers. It is also co-related to Mathematical Optimization which relates

models, applications and frameworks to the field of statistics. Real world problems have high

complexity which make them excellent candidates for application of ML. Machine learning can

be applied to various areas of computing to design and program explicit algorithms with high

performance output, for example, email spam filtering, fraud detection on social network, online

stock trading, face & shape detection, medical diagnosis, traffic prediction, character recognition

and product recommendation amongst others. The self-driving Google cars, Netflix showcasing

the movies and shows a person might like, online recommendation engines—like friend

suggestions on Facebook, “more items to consider” and “get yourself a little something” on

Amazon, and credit card fraud detection, are all real-world examples of application of machine

learning.

Figure: The multidisciplinary machine learning

Data Science problems and Machine Learning

Machine learning is required to make the computers sophisticatedly perform the task without any

intervention of human beings on the basis of learning and constantly increasing experience to

understand the problem complexity and need for adaptability.

Machine learning has proven capabilities to inherently solve the problems of data science.

Hayashi and Chikio [3] define data science as, “a concept to unify statistics, data analysis,

machine learning and their related methods in order to understand and analyze actual

phenomena" with data”. Before taking to problem solving, the problem must be categorized

suitably so that the most appropriate machine learning algorithm can be applied to it.

Thus depending on the type of problem, an appropriate machine learning approach can be

applied. The various categories are explained below:

Classification Problem

A problem in which the output can be only one of a fixed number of output classes known

apriori like Yes/No, True/False, is called a classification problem. Depending on the number of

output classes, the problem can be a binary or multi-class classification problem.

Anomaly Detection Problem

Problems which analyze a certain pattern and detect changes or anomalies in the pattern fall

under this category. For example, credit card companies use anomaly detection algorithms to

find deviation from the usual transaction behavior of their client and raises alerts whenever there

is an unusual transaction. Such problems deal with finding out the outliers.

Regression Problem

 Regression algorithms are used to deal with problems with continuous and numeric output.

These are usually used for problems that deal with questions like, ‘how much’ or ‘how many’.

Clustering Problem

 Clustering falls under the category of unsupervised learning algorithms. These algorithms try to

learn structures within the data and attempt to make clusters based on the similarity in the

structure of data. The different classes or clusters are then labeled. The algorithm, when trained,

puts new unseen data in one of the clusters.

Reinforcement Problem

Reinforcement algorithms are used when a decision is to be made based on past experiences of

learning. The machine agent learns the behaviour using trial and error sort of interaction with

the continuously changing environment. It provides a way to program agents using the concept

of rewards and penalties without specifying how the task is to be accomplished. Game playing

programs and programs for temperature control are some popular examples using reinforcement

learning.

Development of Machine Learning

The words, Artificial Intelligence and Machine Learning are not new. They have been

researched, utilized, applied and re-invented by computer scientists, engineers, researchers,

students and industry professionals for more than 60 years. The mathematical foundation of

machine learning lies in algebra, statistics, and probability. Serious development of Machine

Learning and Artificial Intelligence began in 1950’s and 1960’s with the contributions of

researchers like Alan Turing, John McCarthy, Arthur Samuels, Alan Newell and Frank

Rosenblatt. Samuel proposed the first working machine learning model on Optimizing Checkers

Program. Rosenblatt created Perceptron, a popular machine learning algorithm based on

biological neurons which laid the foundation of Artificial Neural Network.

1950
Alan Turning created “Turning Test” to check a machine’s intelligence. In order to
pass the

Turning Test, the machine should be able to convince humans that there they are

actually talking to

 a human and not a machine.

1952
Samuel created a highly capable learning algorithm than can play the game of
Checkers with itself

 and get self-trained.

1956
Martin Minsky and John McCarty with Claude Shannon and Nathan Rochester
organized a

 conference in Dartmouth in 1956 where actually Artificial Intelligence was born.

1958
Frank Rosenblatt created Perceptron, which laid the foundation stone for the
development of

 Artificial Neural Network (ANN).

1967
The Nearest Neighbor Algorithm was proposed which could be used for “Pattern
Recognition”.

1979
Stanford University students developed “Stanford Cart”, a sophisticated robot that
could navigate

 around a room and avoid obstacles in its path.

1981
Explanation Based Learning (EBL) was proposed by Gerald Dejong, whereby, a
computer can

 analyze the training data and create rules for discarding useless data [7]

1985
NetTalk was invented by Terry Sejnowski, [8] which learnt to pronounce English
words in the

 same manner that children learn.

1990s
The focus of Machine Learning shifted from Knowledge-driven to Data Driven.
Machine Learning

 was implemented to analyze large chunks of data and derive conclusions from it [9]

1997:
IBM invented the Deep Blue computer which was able to beat World Chess
Champion Gary

 Kasparov.

2006
The term “Deep Learning” was coined by Geoffery Hinton which referred to a new
architecture of

 neural networks that used multiple layers of neurons for learning.

2011
IBM’s Watson, built to answer questions posed in a natural language, defeats a
Human Competitor

 at Jeopardy Game.

2012
Jeff Dean from Google, developed GoogleBrain, which isa Deep Neural Network
to detect patterns

2014
Facebook invented the “DeepFace” algorithm based on Deep Neural Networks
capable of

2015
Toyota Invests $1 Billion in Artificial Intelligence in U.S.

2016
The Year That Deep Learning Took Over the Internet

2017
Facebook & Microsoft Joined Forces To Enable AI Framework Interoperability

http://www.nytimes.com/2015/11/06/technology/toyota-silicon-valley-artificial-intelligence-research-center.html

2019
AI set to boost cybersecurity industry

2020 AI hardware continued to develop in 2020, with the launch of several AI chips

customized for specialized tasks.

2021

The NVIDIA DGX A100 is the first computer of its kind in New Zealand and is the

world's most advanced system for powering universal AI workloads

2022 the release of GPT-3 by OpenAI, the most advanced (and largest) language model

ever created,

 M4

The generic model of machine learning consists of six components independent of the algorithm

adopted. The following figure depicts these primary components.

Figure: Components of a Generic ML model

Each component of the model has a specific task to accomplish as described next.

i. Collection and Preparation of Data

The primary task of in the machine learning process is to collect and prepare data in a format

that can be given as input to the algorithm. A large amount may be available for any problem.

Web data is usually unstructured and contains a lot of noise, i.e., irrelevant data as well as

redundant data. Hence the data needs to be cleaned and pre-processed to a structured format.

ii. Feature Selection

https://www.itproportal.com/news/ai-set-to-boost-cybersecurity-industry/
https://bernardmarr.com/what-is-gpt-3-and-why-is-it-revolutionizing-artificial-intelligence/

The data obtained from the above step may contain numerous features, not all of which would be

relevant to the learning process. These features need to be removed and a subset of the most

important features needs to be obtained.

iii. Choice of Algorithm:

Not all machine learning algorithms are meant for all problems. Certain algorithms are more

suited to a particular class problem as explained in the previous section. Selecting the best

machine learning algorithm for the problem at hand is imperative in getting the best possible

results.

 iv. Selection of Models and Parameters:

 Most of machine learning algorithms require some initial manual intervention for setting the

most appropriate values of various parameters.

v. Training:

After selecting the appropriate algorithm and suitable parameter values, the model needs to be

trained using a part of the dataset as training data.

vi. Performance Evaluation:

Before real-time implementation of the system, the model must be tested against unseen data to

evaluate how much has been learnt using various performance parameters like accuracy,

precision and recall.

Machine Learning Paradigms Depending on how an algorithm is being trained and on the basis

of availability of the output while training, machine learning paradigms can be classified into ten

categories. These include: supervised learning, semi-supervised learning, unsupervised learning,

reinforcement learning, evolutionary learning, ensemble learning, artificial neural network,

Instance-based learning, dimensionality reduction algorithms and hybrid learning. Each of these

paradigms is explained in the following sub-sections.

Supervised Learning

Under supervised learning, a set of examples or training modules are provided with the correct

outputs and on the basis of these training sets, the algorithm learns to respond more accurately by

comparing its output with those that are given as input. Supervised learning is also known as

learning via examples or learning from exemplars. The following figure explains the concept.

Figure: Supervised learning

Supervised learning finds applications in prediction based on historical data. For example: to

predict the Iris species given a set of its flower measurements or a recognition system that

determines whether an object is a galaxy, a quasar or a star given a colored image of an object

through a telescope, or given an e-commerce surfing history of a person, recommendation of the

products by e-commerce websites. Supervised learning tasks can be further categorized as

classification tasks and regression tasks. In case of classification, the output labels are discrete

whereas they are continuous in case of regression.

Unsupervised Learning

The unsupervised learning approach is all about recognizing unidentified existing patterns from

the data in order to derive rules from them. This technique is appropriate in a situation when the

categories of data are unknown. Here, the training data is not labeled. Unsupervised learning is

regarded as a statistic based approach for learning and thus refers to the problem of finding

hidden structure in unlabeled data.

Reinforcement Learning

 Reinforcement learning is regarded as an intermediate type of learning as the algorithm is only

provided with a response that tells whether the output is correct or not. The algorithm has to

explore and rule out various possibilities to get the correct output. It is regarded as learning with

a Critic as the algorithm doesn’t propose any sort of suggestions or solutions to the problem.

Evolutionary Learning

It is inspired by biological organisms who adapt to their environment. The algorithm understands

the behavior and adapts to the inputs and rules out unlikely solutions. It is based on the idea of

fitness to propose the best solution to the problem.

Semi-Supervised Learning

These algorithms provide a technique that harnesses the power of both - supervised learning and

unsupervised learning. In the previous two types output labels areeither provided for all the

observations or no labels are provided. There might be situations when some observations are

provided with labels but majority of observations are unlabeled due to high cost of labeling and

lack of skilled human expertise. In such situations, semi-supervised algorithms are best suited for

model building. Semi supervised learning can be used with problems like classification,

regression and prediction.

It may further be categorized as Generative Models, Self-Training and Transductive SVM.

5.6. Ensemble Learning It is a machine learning model in which numerous learners (individual

models) are trained to solve a common problem. Unlike other machine learning techniques

which learn a single hypothesis from the training data, ensemble learning tries to learn by

constructing a set of hypotheses from the training data and by combining them to make a

prediction model [15,19] in order to decrease bias(boosting), variance (bagging), or improve

predictions(stacking). Ensemble learning can be further divided into two groups:

Sequential ensemble approaches

These are the methods in which the base learners are constructed sequentially (AdaBoost). This

method exploits the dependence between the base learners.

Parallel ensemble approaches

In these, the base learners are independent of each other, so this relationship is exploited by

constructing the base learners in parallel (e.g. Random Forest)

Bagging: It stands for bootstrap aggregation. It implements homogenous learners on sample

populations and takes the mean of all predictions. For example, M different trees can be trained

on dissimilar subsets of data and compute the ensemble as:

Boosting: It is an iterative technique that adjusts the observation’s weight on the basis of last

classification. It tries to fit a sequence of weak learner models that performs a little better than

just random predicting e.g. small decision trees. AdaBoost stands for adaptive boosting and is the

most widely used boosting algorithm.

Artificial Neural Network

Artificial neural networks (ANNs) are encouraged by the biological neural network. A neural

network is an interconnection of neuron cells that help the electric impulses to propagate through

the brain. The basic unit of learning in a neural network is a neuron, which is a nerve cell. A

neuron consists of four parts, namely dendrites (receptor), soma (processor of electric signal),

nucleus (core of the neuron) and axon (the transmitting end of the neuron). Analogical to a

biological neural network, an ANN works on three layers: input layer, hidden layer and output

layer. This type of network has weighted interconnections and learns by adjusting the weights of

interconnections in order to perform parallel distributed processing. The Perceptron learning

algorithm, Back-propagation algorithm, Hopfield Networks, Radial Basis Function Network

(RBFN) are some popular algorithms. Based on learning behavior, ANN can be further classified

as:

Supervised Neural Network

The inputs and the outputs are presented to the network as training data. The network is trained

with this data by adjusting the weights to get accurate results. When it is fully trained, it is

presented with unseen data to predict the output.

 Unsupervised Neural Network

 In unsupervised neural network, the network is not provided with any output. It tries to find

some structure or correlation among the input data and group those data together in a group or

class. When new data is presented to it as input, it identifies its features and classifies it in one of

the groups based on similarities.

Reinforcement Neural Network

As humans interact with their environment and learn from mistakes, a reinforcement neural

network also learns from its past decisions by way of penalties for wrong decisions and rewards

for good decisions. The connection weights producing correct output are strengthened, while

those producing incorrect responses are weakened.

Unlike other machine learning methods where clear definition of the target function are provided

from the training data, this lerning method does not describe any target function in the beginning.

Rather it simply stores the training instance and generalizing is postponed until a new instance is

classified. Hence it is also known as lazy learner. Such methods build up a database of training

instances and whenever new data is presented as input it compares that data with other instances

in the database using a similarity measure to find the nearest match and make the prediction [4].

The lazy learner estimates the target function differently and locally for every new instance to be

classified instead of estimating it globally for the whole instance space hence it is faster to train

but, takes time in making prediction [16]. KMeans, k-medians, hierarchical clustering and

expectation maximization are some popular instancebased algorithms.

Dimensionality reduction algorithms

 During the past few decades, intelligent machine learning models have been adopted in

numerous complex and data intensive applications like climatology, biology, astronomy,

medical, economy and finance. However, existing ML based systems are not sufficiently

efficient and extensible enough to deal with massive and voluminous data. High dimensionality

of data has proved to be a curse for data processing. Another challenge is sparsity of data. Global

optimum is costly to find for such data. A dimensionality reduction algorithm helps in reducing

the computational cost by reducing the number of dimensions of the data. It does so by reducing

the redundant and irrelevant data and cleaning the data so as to improve the accuracy of results.

Dimensionality reduction works in an unsupervised manner to search and exploit the implicit

structure in the data [4, 5]. There are many algorithms for dimensionality reduction that can be

adapted with classification and regression algorithms like Multidimensional scaling (MDS),

Principal component analysis (PCA), Linear Discriminant Analysis (LDA), Principal component

regression (PCR), and Linear Discriminant Analysis (LDA).

Hybrid Learning

Though ensemble learning appeared as a relief to researchers dealing with the common problems

of computational complexity, over fitting and sticking to local minima in classification

algorithms, researchers have found problems with ensemble learning. Complicated ensemble of

multiple classifiers makes it difficult to implement and difficult to analyze the results. Instead of

improving accuracy of the model, ensembles may tend to increase error at the level of individual

base learner. Ensembles may result in poor accuracy as a result of selection of poor classifiers in

combination. Recent approach to deal with such problems is hybridization i.e. creating ensemble

of heterogeneous models. In this, more than one method is combined for example, combining

clustering and decision tree or clustering and association mining etc.

Machine Learning Algorithms

 In this section, we focus on some popular machine learning algorithms from the different

paradigms explained in the preceding section. Although the number of algorithms falling within

each paradigm are numerous and reported across pertinent literature, in this study we consider

only few of these. The following table briefly explains few of these algorithms.

Supervised Learning Decision Tree Decision Tree is a technique for approximating discrete

valued target function which represents the

learnt function in the form of a decision tree

[10]. A decision tree classifies instances by

sorting them from root to some leaf nodes on

the basis of feature values. Each node

represents some decision (test condition) on

attribute of the instance whereas every branch

represents a possible value for that feature.

Classification of an instance starts at the root

node called the decision node. Based on the

value of node, the tree traverse down along

the edge which corresponds to the value of the

output of feature test. This process continues

in the sub-tree headed by the new node at the

end of the previous edge. Finally, the leaf

node signifies the classification categories or

the final decision. While using a decision tree,

focus is on how to decide which attribute is

the best classifier at each node level.

Statistical measure like information gain, Gini

index, Chi-square and entropy are calculated

for each node to calculate the worth of that

node [10]. Several algorithms are used to

implement decision trees. The most popular

ones are: Classification and Regression Tree

(CART), Iterative Dichotomiser 3 (ID3),

Automatic Interaction Detection (CHAID),

Chi-Squared C4.5 and C5.0 and M5

 Support Vector Machines SVMs can be used for classification as well

as regression problems. It is a supervised

learning algorithm. It works on the concept

of margin calculation. In this algorithm, each

data item is plotted as a point in n-

dimensional space (where n is the number of

features we have in our dataset). The value of

each feature is the value of the corresponding

coordinate. It classifies the data into different

classes by finding a line (hyper plane) which

separates the training datasets into classes. It

works by maximizing the distances between

the nearest data point (in both classes) and

the hyper plane that we can call as margin.

Regression analysis Regression analysis is a predictive modelling

technique which investigates the relationship

between a dependent (target) and

independent variable(s) (predictor). It is an

important tool for analysing and modeling of

data. In this method, we try to fit the

line/curve to the data points so as to

minimize the differences between distances

of data points from the curve or line. There

are various kinds of regression analysis like

linear, logistic and polynomial.

Unsupervised

Learning

K-Means Clustering K-means is a popular unsupervised machine

learning algorithm for cluster analysis. Its

goal is to partition ‘n’ observations into ‘k’

clusters in which each observation belongs

to the cluster having the nearest mean,

serving as a prototype of the cluster. The

mean of the observations in a particular

cluster defines the center of the cluster.

Ensemble Learning Random Forest It is an ensemble learning method used in

classification and regression. It uses

bagging approach to create a bunch of

decision trees with random subset of data.

The output of all decision trees in the

random forest is combined to make the final

decision trees. There are two stages in

Random Forest Algorithm, one is to create

random forest, and the other is to make a

prediction from the random forest classifier

created in the first stage.

Dimensionality

Reduction

Principal Component

Algorithm

It is primarily used for reducing

dimensionality of data set. It helps in

reducing the number of features of the data

set or the number of independent variables

in the data set. It uses orthogonal

transformation to convert correlated

variables into a set of linearly uncorrelated

variables called principal components.

Literature Review:

Yannakoudakis et al. (2011) developed corpora that contain 1244 essays and ten prompts. This

corpus evaluates whether a student can write the relevant English sentences without any

grammatical and spelling mistakes. This type of corpus helps to test the models built for GRE

and TOFEL type of exams. It gives scores between 1 and 40. Bailey and Meurers (2008),

Created a dataset (CREE reading comprehension) for language learners and automated short

answer scoring systems. The corpus consists of 566 responses from intermediate students.

Mohler and Mihalcea (2009). Created a dataset for the computer science domain consists of 630

responses for data structure assignment questions. The scores are range from 0 to 5 given by two

human raters. Dzikovska et al. (2012) created a Student Response Analysis (SRA) corpus. It

consists of two sub-groups: the BEETLE corpus consists of 56 questions and approximately

3000 responses from students in the electrical and electronics domain. The second one is the

SCIENTSBANK (SemEval-2013) (Dzikovska et al. 2013a; b) corpus consists of 10,000

responses on 197 prompts on various science domains. The student response ladled with

"correct, partially correct incomplete, Contradictory, Irrelevant, Non-domain.

In the Kaggle (2012) competition, released total 3 types of corpuses on an Automated Student

Assessment Prize (ASAP1) (“https:// www. kaggle. com/c/ asap- sas/”) essays and short answers.

It has nearly 17,450 essays, out of which it provides up to 3000 essays for each prompt. It has

eight prompts that test 7th to 10th grade US students. It gives scores between the [0–3] and [0–

60] range. The limitations of these corpora are: (1) it has a different score range for other

prompts. (2) It uses statistical features such as named entities extraction and lexical features of

words to evaluate essays. ASAP ++ is one more dataset from Kaggle. It is with six prompts, and

each prompt has more than 1000 responses total of 10,696 from 8th-grade students. Another

corpus contains ten prompts from science, English domains and a total of 17,207 responses. Two

human graders evaluated all these responses. Correnti et al. (2013) created a Response-to-Text

Assessment (RTA) dataset used to check student writing skills in all directions like style,

mechanism, and organization. 4–8 grade students give the responses to RTA. Basu et al. (2013)

created a power grading dataset with 700 responses for ten different prompts from US

immigration exams. It contains all short answers for assessment. The TOEFL11 corpus

Blanchard et al. (2013) contains 1100 essays evenly distributed over eight prompts. It is used to

test the English language skills of a candidate attending the TOFEL exam. It scores the language

proficiency of a candidate as low, medium, and high. International Corpus of Learner English

(ICLE) Granger et al. (2009) built a corpus of 3663 essays covering different dimensions. It has

12 prompts with 1003 essays that test the organizational skill of essay writing, and13 prompts,

each with 830 essays that examine the thesis clarity and prompt adherence. Argument Annotated

Essays (AAE) Stab and Gurevych (2014) developed a corpus that contains 102 essays with 101

prompts taken from the essayforum2 site. It tests the persuasive nature of the student essay. The

SCIENTSBANK corpus used by Sakaguchi et al. (2015) available in git-hub, containing 9804

answers to 197 questions in 15 science domains. Table 3 illustrates all datasets related to AES

systems.

Regression based methods

The goal of the regression task is to predict the score of an essay. The classification task is to

classify the essays belonging to (low, medium, or highly) relevant to the question’s topic. Since

the last three years, most AES systems developed made use of the concept of the neural network.

Mohler and Mihalcea (2009). proposed text-to-text semantic similarity to assign a score to the

student essays. There are two text similarity measures like Knowledge-based measures, corpus-

based measures. There eight knowledge-based tests with all eight models. They found the

similarity. The shortest path similarity determines based on the length, which shortest path

between two contexts. Leacock & Chodorow find the similarity based on the shortest path’s

length between two concepts using node-counting. The Lesk similarity finds the overlap between

the corresponding definitions, and Wu & Palmer algorithm finds similarities based on the depth

of two given concepts in the wordnet taxonomy. Resnik, Lin, Jiang&Conrath, Hirst& St-Onge

find the similarity based on different parameters like the concept, probability, normalization

factor, lexical chains. In corpus-based likeness, there LSA BNC, LSA Wikipedia, and ESA

Wikipedia, latent semantic analysis is trained on Wikipedia and has excellent domain

knowledge. Among all similarity scores, correlation scores LSA Wikipedia scoring accuracy is

more. But these similarity measure algorithms are not using NLP concepts. These models are

before 2010 and basic concept models to continue the research automated essay grading with

updated algorithms on neural networks with content-based features. Adamson et al. (2014)

proposed an automatic essay grading system which is a statisticalbased approach in this they

retrieved features like POS, Character count, Word count, Sentence count, Miss spelled words,

n-gram representation of words to prepare essay vector. They formed a matrix with these all

vectors in that they applied LSA to give a score to each essay. It is a statistical approach that

doesn’t consider the semantics of the essay. The accuracy they got when compared to the human

rater score with the system is 0.532. Cummins et al. (2016). Proposed Timed Aggregate

Perceptron vector model to give ranking to all the essays, and later they converted the rank

algorithm to predict the score of the essay. The model trained with features like Word unigrams,

bigrams, POS, Essay length, grammatical relation, Max word length, sentence length. It is multi-

task learning, gives ranking to the essays, and predicts the score for the essay. The performance

evaluated through QWK is 0.69, a substantial agreement between the human rater and the

system. Sultan et al. (2016). Proposed a Ridge regression model to find short answer scoring

with Question Demoting. Question Demoting is the new concept included in the essay’s final

assessment to eliminate duplicate words from the essay. The extracted features are Text

Similarity, which is the similarity between the student response and reference answer. Question

Demoting is the number of repeats in a student response. With inverse document frequency, they

assigned term weight. The sentence length Ratio is the number of words in the student response,

is another feature. With these features, the Ridge regression model was used, and the accuracy

they got 0.887. Contreras et al. (2018). Proposed Ontology based on text mining in this model

has given a score for essays in phases. In phase-I, they generated ontologies with ontoGen and

SVM to find the concept and similarity in the essay. In phase II from ontologies, they retrieved

features like essay length, word counts, correctness, vocabulary, and types of word used, domain

information. After retrieving statistical data, they used a linear regression model to find the score

of the essay. The accuracy score is the average of 0.5. Darwish and Mohamed (2020) proposed

the fusion of fuzzy Ontology with LSA. They retrieve two types of features, like syntax features

and semantic features. In syntax features, they found Lexical Analysis with tokens, and they

construct a parse tree. If the parse tree is broken, the essay is inconsistent—a separate grade

assigned to the essay concerning syntax features. The semantic features are like similarity

analysis, Spatial Data Analysis. Similarity analysis is to find duplicate sentences—Spatial Data

Analysis for finding Euclid distance between the center and part. Later they combine syntax

features and morphological features score for the final score. The accuracy they achieved with

the multiple linear regression model is 0.77, mostly on statistical features. Süzen Neslihan et al.

(2020) proposed a text mining approach for short answer grading. First, their comparing model

answers with student response by calculating the distance between two sentences. By comparing

the model answer with student response, they find the essay’s completeness and provide

feedback. In this approach, model vocabulary plays a vital role in grading, and with this model

vocabulary, the grade will be assigned to the student’s response and provides feedback. The

correlation between the student answer to model answer is 0.81.

Classification based Models

Persing and Ng (2013) used a support vector machine to score the essay. The features extracted

are OS, N-gram, and semantic text to train the model and identified the keywords from the essay

to give the final score. Sakaguchi et al. (2015) proposed two methods: response-based and

reference-based. In response-based scoring, the extracted features are response length, n-gram

model, and syntactic elements to train the support vector regression model. In reference-based

scoring, features such as sentence similarity using word2vec is used to find the cosine similarity

of the sentences that is the final score of the response. First, the scores were discovered

individually and later combined two features to find a final score. This system gave a remarkable

increase in performance by combining the scores. Mathias and Bhattacharyya (2018a; b)

Proposed Automated Essay Grading Dataset with Essay Attribute Scores. The first concept

features selection depends on the essay type. So the common attributes are Content,

Organization, Word Choice, Sentence Fluency, Conventions. In this system, each attribute is

scored individually, with the strength of each attribute identified. The model they used is a

random forest classifier to assign scores to individual attributes. The accuracy they got with

QWK is 0.74 for prompt 1 of the ASAS dataset (https:// www. kaggle. com/c/ asap- sas/). Ke

et al. (2019) used a support vector machine to find the response score. In this method, features

like Agreeability, Specificity, Clarity, Relevance to prompt, Conciseness, Eloquence,

Confidence, Direction of development, Justification of opinion, and Justification of importance.

First, the individual parameter score obtained was later combined with all scores to give a final

response score. The features are used in the neural network to find whether the sentence is

relevant to the topic or not. Salim et al. (2019) proposed an XGBoost Machine Learning

classifier to assess the essays. The algorithm trained on features like word count, POS, parse tree

depth, and coherence in the articles with sentence similarity percentage; cohesion and coherence

are considered for training. And they implemented K-fold cross-validation for a result the

average accuracy after specific validations is 68.12.

Neural network models

Shehab et al. (2016) proposed a neural network method that used learning vector quantization to

train human scored essays. After training, the network can provide a score to the ungraded

essays. First, we should process the essay to remove Spell checking and then perform

preprocessing steps like Document Tokenization, stop word removal, Stemming, and submit it to

the neural network. Finally, the model will provide feedback on the essay, whether it is relevant

to the topic. And the correlation coefficient between human rater and system score is 0.7665.

Kopparapu and De (2016) proposed the Automatic Ranking of Essays using Structural and

Semantic Features. This approach constructed a super essay with all the responses. Next, ranking

for a student essay is done based on the super-essay. The structural and semantic features derived

helps to obtain the scores. In a paragraph, 15 Structural features like an average number of

sentences, the average length of sentences, and the count of words, nouns, verbs, adjectives, etc.,

are used to obtain a syntactic score. A similarity score is used as semantic features to calculate

the overall score. Dong and Zhang (2016) proposed a hierarchical CNN model. The model builds

two layers with word embedding to represents the words as the first layer. The second layer is a

word convolution layer with max-pooling to find word vectors. The next layer is a sentence-level

convolution layer with max-pooling to find the sentence’s content and synonyms. A fully

connected dense layer produces an output score for an essay. The accuracy with the hierarchical

CNN model resulted in an average QWK of 0.754. Taghipour and Ng (2016) proposed a first

neural approach for essay scoring build in which convolution and recurrent neural network

concepts help in scoring an essay. The network uses a lookup table with the one-hot

representation of the word vector of an essay. The final efficiency of the network model with

LSTM resulted in an average QWK of 0.708. Dong et al. (2017). Proposed an Attention-based

scoring system with CNN + LSTM to score an essay. For CNN, the input parameters were

character embedding and word embedding, and it has attention pooling layers and used NLTK to

obtain word and character embedding. The output gives a sentence vector, which provides

sentence weight. After CNN, it will have an LSTM layer with an attention pooling layer, and this

final layer results in the final score of the responses. The average QWK score is 0.764. Riordan

et al. (2017) proposed a neural network with CNN and LSTM layers. Word embedding, given as

input to a neural network. An LSTM network layer will retrieve the window features and

delivers them to the aggregation layer. The aggregation layer is a superficial layer that takes a

correct window of words and gives successive layers to predict the answer’s sore. The accuracy

of the neural network resulted in a QWK of 0.90. Zhao et al. (2017) proposed a new concept

called Memory-Augmented Neural network with four layers, input representation layer, memory

addressing layer, memory reading layer, and output layer. An input layer represents all essays in

a vector form based on essay length. After converting the word vector, the memory addressing

layer takes a sample of the essay and weighs all the terms. The memory reading layer takes the

input from memory addressing segment and finds the content to finalize the score. Finally, the

output layer will provide the final score of the essay. The accuracy of essay scores is 0.78, which

is far better than the LSTM neural network. Mathias and Bhattacharyya (2018a; b) proposed

deep learning networks using LSTM with the CNN layer and GloVe pre-trained word

embeddings. For this, they retrieved features like Sentence count essays, word count per

sentence, Number of OOVs in the sentence, Language model score, and the text’s perplexity.

The network predicted the goodness scores of each essay. The higher the goodness scores, means

higher the rank and vice versa. Nguyen and Dery (2016). Proposed Neural Networks for

Automated Essay Grading. In this method, a single layer bi-directional LSTM accepting word

vector as input. Glove vectors used in this method resulted in an accuracy of 90%. Ruseti et al.

(2018) proposed a recurrent neural network that is capable of memorizing the text and generate a

summary of an essay. The Bi-GRU network with the maxpooling layer molded on the word

embedding of each document. It will provide scoring to the essay by comparing it with a

summary of the essay from another Bi-GRU network. The result obtained an accuracy of 0.55.

Wang et al. (2018a; b) proposed an automatic scoring system with the bi-LSTM recurrent neural

network model and retrieved the features using the word2vec technique. This method generated

word embeddings from the essay words using the skip-gram model. And later, word embedding

is used to train the neural network to find the final score. The softmax layer in LSTM obtains the

importance of each word. This method used a QWK score of 0.83%. Dasgupta et al. (2018)

proposed a technique for essay scoring with augmenting textual qualitative Features. It extracted

three types of linguistic, cognitive, and psychological features associated with a text document.

The linguistic features are Part of Speech (POS), Universal Dependency relations, Structural

Well-formedness, Lexical Diversity, Sentence Cohesion, Causality, and Informativeness of the

text. The psychological features derived from the Linguistic Information and Word Count

(LIWC) tool. They implemented a convolution recurrent neural network that takes input as word

embedding and sentence vector, retrieved from the GloVe word vector. And the second layer is

the Convolution Layer to find local features. The next layer is the recurrent neural network

(LSTM) to find corresponding of the text. The accuracy of this method resulted in an average

QWK of 0.764. Liang et al. (2018) proposed a symmetrical neural network AES model with Bi-

LSTM. They are extracting features from sample essays and student essays and preparing an

embedding layer as input. The embedding layer output is transfer to the convolution layer from

that LSTM will be trained. Hear the LSRM model has self-features extraction layer, which will

find the essay’s coherence. The average QWK score of SBLSTMA is 0.801. Liu et al. (2019)

proposed two-stage learning. In the first stage, they are assigning a score based on semantic data

from the essay. The second stage scoring is based on some handcrafted features like grammar

correction, essay length, number of sentences, etc. The average score of the two stages is 0.709.

Pedro Uria Rodriguez et al. (2019) proposed a sequence-to-sequence learning model for

automatic essay scoring. They used BERT (Bidirectional Encoder Representations from

Transformers), which extracts the semantics from a sentence from both directions. And XLnet

sequence to sequence learning model to extract features like the next sentence in an essay. With

this pre-trained model, they attained coherence from the essay to give the final score. The

average QWK score of the model is 75.5. Xia et al. (2019) proposed a two-layer Bi-directional

LSTM neural network for the scoring of essays. The features extracted with word2vec to train

the LSTM and accuracy of the model in an average of QWK is 0.870. Kumar et al. (2019)

Proposed an AutoSAS for short answer scoring. It used pre-trained Word2Vec and Doc2Vec

models trained on Google News corpus and Wikipedia dump, respectively, to retrieve the

features. First, they tagged every word POS and they found weighted words from the response. It

also found prompt overlap to observe how the answer is relevant to the topic, and they defined

lexical overlaps like noun overlap, argument overlap, and content overlap. This method used

some statistical features like word frequency, difficulty, diversity, number of unique words in

each response, type-token ratio, statistics of the sentence, word length, and logical operator-

based features. This method uses a random forest model to train the dataset. The data set has

sample responses with their associated score. The model will retrieve the features from both

responses like graded and ungraded short answers with questions. The accuracy of AutoSAS

with QWK is 0.78. It will work on any topics like Science, Arts, Biology, and English. Jiaqi Lun

et al. (2020) proposed an automatic short answer scoring with BERT. In this with a reference

answer comparing student responses and assigning scores. The data augmentation is done with a

neural network and with one correct answer from the dataset classifying reaming responses as

correct or incorrect. Zhu and Sun (2020) proposed a multimodal Machine Learning approach for

automated essay scoring. First, they count the grammar score with the spaCy library and

numerical count as the number of words and sentences with the same library. With this input,

they trained a single and Bi LSTM neural network for finding the final score. For the LSTM

model, they prepared sentence vectors with GloVe and word embedding with NLTK. BiLSTM

will check each sentence in both directions to find semantic from the essay. The average QWK

score with multiple models is 0.70.

Ontology based approach

Mohler et al. (2011) proposed a graph-based method to find semantic similarity in short answer

scoring. For the ranking of answers, they used the support vector regression model. The bag of

words is the main feature extracted in the system. Ramachandran et al. (2015) also proposed a

graph-based approach to find lexical based semantics. Identified phrase patterns and text patterns

are the features to train a random forest regression model to score the essays. The accuracy of the

model in a QWK is 0.78. Zupanc et al. (2017) proposed sentence similarity networks to find the

essay’s score. Ajetunmobi and Daramola (2017) recommended an ontology-based information

extraction approach and domain-based ontology to find the score.

Speech response scoring

Automatic scoring is in two ways one is text-based scoring, other is speech-based scoring. This

paper discussed text-based scoring and its challenges, and now we cover speech scoring and

common points between text and speech-based scoring. Evanini and Wang (2013), Worked on

speech scoring of non-native school students, extracted features with speech ratter, and trained a

linear regression model, concluding that accuracy varies based on voice pitching. Loukina et al.

(2015) worked on feature selection from speech data and trained. SVM. Malinin et al. (2016)

used neural network models to train the data. Loukina et al. (2017). Proposed speech and text-

based automatic scoring. Extracted text-based features, speech-based features and trained a deep

neural network for speech-based scoring. They extracted 33 types of features based on acoustic

signals. Malinin et al. (2017). Wu Xixin et al. (2020) Worked on deep neural networks for

spoken language assessment. Incorporated different types of models and tested them.

Ramanarayanan et al. (2017) worked on feature extraction methods and extracted punctuation,

fluency, and stress and trained different Machine Learning models for scoring. Knill et al.

(2018). Worked on Automatic speech recognizer and its errors how its impacts the speech

assessment.

AES approaches into three categories. Regression models, classification models, and neural

network models. The regression models failed to find cohesion and coherence from the essay

because it trained on BoW(Bag of Words) features. In processing data from input to output, the

regression models are less complicated than neural networks. There are unable to find many

intricate patterns from the essay and unable to find sentence connectivity. If we train the model

with BoW features in the neural network approach, the model never considers the essay’s

coherence and coherence. First, to train a Machine Learning algorithm with essays, all the essays

are converted to vector form. We can form a vector with BoW and Word2vec, TF-IDF. The

BoW and Word2vec vector representation of essays represented in Table 6. The vector

representation of BoW with TF-IDF is not incorporating the essays semantic, and it’s just

statistical learning from a given vector. Word2vec vector comprises semantic of essay in a

unidirectional way. In BoW, the vector contains the frequency of word occurrences in the essay.

The vector represents 1 and more based on the happenings of words in the essay and 0 for not

present. So, in BoW, the vector does not maintain the relationship with adjacent words; it’s just

for single words. In word2vec, the vector represents the relationship between words with other

words and sentences prompt in multiple dimensional ways. But word2vec prepares vectors in a

unidirectional way, not in a bidirectional way; word2vec fails to find semantic vectors when a

word has two meanings, and the meaning depends on adjacent words. Table 7 represents a

comparison of Machine Learning models and features extracting methods. In AES, cohesion and

coherence will check the content of the essay concerning the essay prompt these can be extracted

from essay in the vector from. Two more parameters are there to access an essay is completeness

and feedback. Completeness will check whether student’s response is sufficient or not though the

student wrote correctly.

Students’ feedback is an effective tool that provides valuable insights concerning various

educational entities including teachers, courses, institutions, etc. and teaching aspects related to

these entities. The identification of these aspects as expressed in the textual comments of

students is of great importance as it aids decision makers to take the right action to specifically

improve them. In this context, we examined and classified the reviewed papers based on the

aspects that concerned students and that the authors aimed to investigate. In particular, we found

three categories and their related teaching aspects which were objects of investigation in these

papers: the first category comprised studies dealing with the comments of students concerning

various aspects of the teacher entity, including the teacher’s knowledge, pedagogy, behavior, etc;

the second category contained papers concerning various aspects of the three different entities,

such as courses, teachers, and institutions. Course-related aspects included dimensions such as

course content, course structure, assessment, etc., whereas aspects associated to the institution

entity were tuition fees, the campus, student life, etc.; the third category included papers dealing

with capturing the opinions and attitudes of students toward institution entities. Python-based

NLP and machine learning packages, libraries, and tools (colored in blue) are among the most

popular solutions due to the open-source nature of the Python programming language.

Specifically, the NLTK (Natural Language Toolkit) package is the dominant solution, and it was

used in 12 different articles for pre-processing tasks including tokenizing, part-of-speech,

normalization, the cleaning of text, etc. Java-based NLP and machine learning packages,

frameworks, libraries, and tools constitute the second group of solutions used for sentiment

analysis. Rapidminer is the most common Java-based framework and was used in three articles.

The third group is composed of NLP and machine learning solutions based on the R

programming language. Only three studies used solutions in this group to conduct the sentiment

analysis task.

Extracting and Generating Text with Part-of-Speech Tags

Almost every NLP application needs to extract specific information from a text and generate new

text that is relevant to a particular situation. For example, a chatbot must be able carry on a

conversation with a user, which means it must be able to identify specific parts of a user’s text

and then generate its own appropriate response. Let’s look at how to do all of those using

linguistic features.

Part-of-speech tags can help you retrieve specific kinds of information from a text, and they can

also help you generate entirely new sentences based on a submitted one.

Numeric, Symbolic, and Punctuation Tags In addition to part-of-speech tags for nouns, verbs,

and other words in a sentence, spaCy has tags for symbols, numbers, and punctuation marks.

Let’s look at these by processing the following sentence:

Elon Musk earned $200 Billion.

To begin, let’s extract the coarse-grained part-of-speech features from the tokens in the sentence

to see how spaCy distinguishes between different part-of-speech categories. We can do this with

the following script:

We create a Doc object for the submitted sentence and then output the coarse-grained part-of-

speech tags ➊. We also use the spacy.explain() function, which returns a description for a given

linguistic feature ➋.

Now, for the sake of comparison, let’s output both coarsegrained and fine-grained part-of-speech

tags for this sample sentence along with a description column for the fine-grained tags:

The output should look as follows:

The second and third columns contain the coarse-grained and fine-grained part-of-speech tags,

respectively. The fourth column gives descriptions of the fine-grained tags provided in the third

column. The fine-grained tagging divides each category into subcategories. For example, the

coarse-grained category SYM (symbols) has three fine-grained subcategories. These are $ for

currency symbols, # for the number sign, and SYM for all the other symbols, such as +, −, ×, ÷,

=. This sub-dividing can be useful when you need to distinguish between different types of

symbols. For example, you might be processing articles about math and want your script to

recognize symbols commonly found in math formulas. Or you might be writing a script that

needs to recognize currency symbols in financial reports.

Turning Statements into Questions

Suppose your NLP application must be able to generate a question from a submitted statement.

For example, one way chatbots maintain conversations with the user is by asking the user a

confirmatory question. When a user says, “I am sure,” the chatbot might ask something like,

“Are you really sure?” To do this, the chatbot must be able to generate a relevant question. Let’s

say the user’s submitted sentence is this:

I can promise it is worth your time.

This sentence contains several verbs and pronouns, each with different morphologies. To see this

more clearly, let’s look at the part-of-speech tags spaCy assigned to the tokens in this sentence:

We print the tokens, their coarse-grained part-of-speech tags, and their fine-grained part-of-

speech-tags, producing the following output:

From the fine-grained part-of-speech tags, you can distinguish between the morphological

categories of the verbs and pronouns present in the sentence. For example, the finegrained part-

of-speech tag PRP marks personal pronouns and PRP$ marks possessive pronouns, allowing you

to distinguish between these two types of pronouns programmatically. We’ll need this

information when working on this example. A confirmatory question to the sentence discussed

here might be as follows (another statement would require another confirmatory question, of

course):

Can you really promise it is worth my time?

From a human perspective, forming this question from the statement looks pretty

straightforward: you change the order of some words, alter the pronouns accordingly, and add

the adverbial modifier “really” to the main verb (the one that comes right after the subject). But

how can you accomplish all these operations programmatically? Let’s look at some part-of-

speech tags. In the sample sentence, the verbs involved in forming the question are “can” and

“promise”. The fine-grained part-of-speech tags mark the first one, “can”, as a modal auxiliary

verb and the second one as a verb in the base form. Notice that in the preceding confirmatory

question, the modal auxiliary verb has switched places with the personal pronoun, a process

called inversion. We’ll have to implement this in the script. When it comes to the pronouns, the

chatbot should follow a pattern common to regular conversations. Table 4-1 summarizes the use

of pronouns in such an application.

The following steps outline what we need to do to generate a question from the original

statement:

The following script implements these steps:

We perform the first four steps in separate for loops. First, we iterate over the tokens in the

sentence and change the order of the subject and verb to make the sentence a question. In this

example, we’re looking for the modal auxiliary verb (tagged MD) that follows a personal

pronoun and is followed by an infinitive verb ➊. Once we find this sequence of words, we move

the modal auxiliary verb immediately before the personal pronoun, placing it at the beginning of

the sentence ➋. To compose a new sentence, we use a technique known in Python as slicing that

allows us to extract a subsequence from a sequence object, such as a string or a list, by

specifying the start and end indices. In this case, we can apply slicing to a Doc object to extract a

given subsequence of tokens from it. For example, slice doc[2:] will contain the doc’s tokens

starting from the token at index 2 through the end of the doc, which in this case, is “promise it is

worth your time.” ➌. Once we move the modal verb to a new position, we exit the for loop ➍.

You might wonder why we don’t just use the personal pronoun and auxiliary modal verb’s

indices to perform inversion. Because we know the personal pronoun is at index 0 and the

modal verb is at index 1, why do we have to use a loop that iterates over the entire set of tokens

to find the modal verb’s position? Won’t the verb always follow the subject and so be the second

word in the sentence? The fact is that a sentence doesn’t always start with the subject. For

example, what if the sentence were “Sure enough, I can promise it is worth your time.”? In that

case, the script would know to omit the first two words and start processing with the subject. As

a result of the inversion, we get the new sentence as a string. To make this sentence available for

further processing, we need to obtain a Doc object for it ➎. Next, we create a new for loop that

will replace the personal pronoun “I” with the personal pronoun “you.” To do this, we search for

personal pronouns (tagged PRP). If the personal pronoun is “I,” we replace it with “you” ➏.

Then we quit the for loop. We repeat this process to replace the possessive pronoun “your” with

“my” by searching for the PRP$ tag ➐. Then, in a new for loop, we find a verb in the infinitive

form and insert the adverbial modifier “really” before it ➑. Finally, we replace the sentence’s

period with a question mark. This is the only step where we don’t need to use a loop. The reason

is that in all possible sentences, the period and the question mark go at the end of a sentence, so

we can reliably find them using their indices with len(doc)-1

Can you really promise it is worth my time?

This script is a good start, but it won’t work with every submitted statement. For example, the

statement might contain a personal pronoun other than “I,” but our script doesn’t explicitly check

for that. Also, some sentences don’t contain auxiliary verbs, like the sentence “I love eating ice

cream.” In those cases, we’d have to use the word “do” to form the question instead of a word

like “can” or “should,” like this: “Do you really love eating ice cream?” But if the sentence

contains the verb,

“to be,” as in the sentence “I am sleepy,” we’d have to move that verb to the front, like this: “Are

you sleepy?” A real implementation of this chatbot would have to be able to choose the

appropriate option for a submitted sentence. You’ll see a “do” example in “Deciding.

Understanding word vectors

Word vectors are the series of real numbers that represent the meanings of natural language

words. When building statistical models, we map words to vectors of real numbers that reflect

the words’ semantic similarity. You can imagine a word vector space as a cloud in which the

vectors of words with similar meanings are located nearby. For instance, he vector representing

the word “potato” should be closer to the vector of the word “carrot” than to that of the word

“crying.” To generate these vectors, we must be able to encode the meaning of these words.

There are a few approaches to encoding meaning, which we’ll outline in this section.

We’ve distributed the meaning of each word between its coordinates in a four-dimensional

space, representing the categories “Country,” “Capital,” “Greek,” and “Italian.” In this simplified

example, a coordinate value can be either 1 or 0, indicating whether or not a corresponding word

belongs to the category. Once you have a vector space in which vectors of numbers capture the

meaning of corresponding words, you can use vector arithmetic on this vector space to gain

insight into a word’s meaning. To find out which country Athens is the capital of, you could use

the following equation, where each token stands for its corresponding vector and X is an

unknown vector:

Italy - Rome = X – Athens

This equation expresses an analogy in which X represents the word vector that has the same

relationship to Athens as Italy has to Rome. To solve for X, we can rewrite the equation like this:

X = Italy - Rome + Athens

We first subtract the vector Rome from the vector Italy by subtracting the corresponding vector

elements. Then we add the sum of the resulting vector and the vector Athens.

Using Dimensions to Represent Meaning

Although the vector space we just created had only four categories, a real-world vector space

might require tens of thousands. A vector space of this size would be impractical for most

applications, because it would require a huge wordembedding matrix. For example, if you had

10,000 categories and 1,000,000 entities to encode, you’d need a 10,000 × 1,000,000 embedding

matrix, making operations on it too timeconsuming. The obvious approach to reducing the size

of the embedding matrix is to reduce the number of categories in the vector space. Instead of

using coordinates to represent all categories, a real-world implementation of a word vector space

uses the distance between vectors to quantify and categorize semantic similarities. The individual

dimensions typically don’t have inherent meanings. Instead, they represent locations in the

vector space, and the distance between vectors indicates the similarity of the corresponding

words’ meanings. The following is a fragment of the 300-dimensional word vector space

extracted from the fastText, a word vector library, which you can download at

https://fasttext.cc/docs/en/englishvectors.html:

Each line contains a word represented as a vector of real numbers in multidimensional space.

Graphically, we can represent a 300-dimensional vector space like this one with either a 2D or

3D projection. To prepare such a projection, we can use first two or three principal coordinates

of a vector, respectively. Figure 5-1 shows vectors from a 300-dimensional vector space in a 2D

projection.

https://fasttext.cc/docs/en/englishvectors.html

Figure : A fragment of a 2D projection of a multidimensional vector space

One interesting detail you might notice here is that the lines connecting Greece with Athens and

Italy with Rome, respectively, are almost parallel. Their lengths also look comparable. In

practice, this means that if you have three out of the above four vectors, you can calculate an

approximate location of the missing one, since you know where to shift the vector and how far.

The vectors in the diagram illustrate a country-capital relation, but they could easily have another

type of relation, such as male-female, verb tense, and so on.

Using Semantic Similarity for Categorization Tasks

Determining two objects’ syntactic similarity can help you sort texts into categories or pick out

only the relevant texts. For example, suppose you’re sorting through user comments posted to a

website to find all the comments related to the word “fruits.” Let’s say you have the following

utterances to evaluate:

I want to buy this beautiful book at the end of the week.

Sales of citrus have increased over the last year.\

 How much do you know about this type of tree?

You can easily recognize that only the second sentence is directly related to fruits because it

contains the word “citrus.” But to pick out this sentence programmatically, you’ll have to

compare the word vector for the word “fruits” with word vectors in the sample sentences. Let’s

start with the simplest but least successful way of doing this task: comparing “fruits” to each of

the sentences. As stated earlier, spaCy determines the similarity of two container objects by

comparing their corresponding word vectors. To compare a single token with an entire sentence,

spaCy averages the sentence’s word vectors to generate an entirely new vector. The following

script compares each of the preceding sentence samples with the word “fruits”:

We first create a Token object for the word “fruits” ➊. Then we apply the pipeline to the

sentences we’re categorizing, creating a single Doc object to hold all of them ➋. We shred the

doc into sentences ➌, and then print each of the sentences and their semantic similarity to the

token “fruits,” which we acquire using the token object’s similarity method ➍.

The output should look something like this (although the actual figures will depend on the model

you use):

The degree of similarity between the word “fruits” and the first sentence is very small, indicating

that the sentence has nothing to do with fruits. The second sentence—the one that includes the

word “citrus”—is the most closely related to “fruits,” meaning the script correctly identified the

relevant sentence. But notice that the script also identified the third sentence as being somehow

related to fruits, probably because it includes the word “tree,” and fruits grow on trees. It would

be naive to think that the similarity measuring algorithm “knows” that orange and citrus are

fruits. All it knows is that these words (“orange” and “citrus”) often share the same context with

word “fruit” and therefore they’ve been put close to it in the vector space. But the word “tree”

can also often be found in the same context as the word “fruit.” For example, the phrase “fruit

tree” is not uncommon. For that reason the level of similarity calculated between “fruits” (or

“fruit” as its lemma) and “tree” is close to the result we got for “citrus” and “fruits.” There’s

another problem with this approach to categorizing texts. In practice, of course, you might

sometimes have to deal with texts that are much larger than the sample texts used in this section.

If the text you’re averaging is very large, the most important words might have little to no effect

on the syntactic similarity value.

