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Abstract

Background and Purpose: The aromatase enzyme plays a fundamental role in addressing the development of estrogen receptors

and giving attention to the therapy of reproductive disorders and cancer diseases. In clinical use, the objectionable effects

found in these target inhibitors are indispensable in finding novel aromatase inhibitors with more selective, less toxic, and more

effective drug potency. Experimental Approach: The research framework of this study is to identify a potent inhibitor for the

aromatase target by profiling molecular descriptors of the ligand and finding a functional pocket of the target by docking and

MD simulations. For assessing cellular metabolic activities as an indicator of cell viability and cytotoxicity, in-vitro studies

were performed by using colorimetric MTT assay. Cell morphology was assessed by phase-contrast light microscope. Cell cycle

distribution and apoptosis were determined by flowcytometry and Annexin V-FITC/PI staining assay. Key Results: This study

reported herein the most promising compound CHEMBL598797 (Ziprasidone) showed excellent activity potential to inhibit

aromatase in search of finding the novel compound based on better drug design methods and experimental studies and could be

effective as the high potential drug candidate against aromatase enzyme. Conclusion and Implications: We concluded that the

compound ziprasidone effectively blocks the cell cycle at the G1-S phase and induces cancer cell death. Further in-vivo studies

can be evaluated for developing this compound as an anticancer agent. Overall, our outcomes based on the in-silico and the

high-quality experimental results may pave the way for identifying effective drug candidates for better therapeutic interest for

breast cancer.
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Abstract: 45 

Background and Purpose: The aromatase enzyme plays a fundamental role in addressing the 46 

development of estrogen receptors and giving attention to the therapy of reproductive disorders 47 

and cancer diseases. In clinical use, the objectionable effects found in these target inhibitors 48 

are indispensable in finding novel aromatase inhibitors with more selective, less toxic, and 49 

more effective drug potency.  50 

Experimental Approach: The research framework of this study is to identify a potent inhibitor 51 

for the aromatase target by profiling molecular descriptors of the ligand and finding a 52 

functional pocket of the target by docking and MD simulations. For assessing cellular 53 

metabolic activities as an indicator of cell viability and cytotoxicity, in-vitro studies were 54 

performed by using colorimetric MTT assay. Cell morphology was assessed by phase-contrast 55 

light microscope. Cell cycle distribution and apoptosis were determined by flowcytometry and 56 

Annexin V-FITC/PI staining assay. 57 

Key Results: This study reported herein the most promising compound CHEMBL598797 58 

(Ziprasidone) showed excellent activity potential to inhibit aromatase in search of finding the 59 

novel compound based on better drug design methods and experimental studies and could be 60 

effective as the high potential drug candidate against aromatase enzyme.  61 

Conclusion and Implications: We concluded that the compound ziprasidone effectively 62 

blocks the cell cycle at the G1-S phase and induces cancer cell death. Further in-vivo studies 63 

can be evaluated for developing this compound as an anticancer agent. Overall, our outcomes 64 

based on the in-silico and the high-quality experimental results may pave the way for 65 

identifying effective drug candidates for better therapeutic interest for breast cancer.  66 

Keywords: Aromatase, Molecular docking, Molecular Dynamics simulation, MTT assay, 67 

Apoptosis. 68 

 69 



1. Introduction: 70 

Breast cancer (BC) is an utmost form of cancer globally, reported primarily in females 71 

(>99%) and very rarely in males (<1%) population. The development and progression of 72 

breast carcinoma depend on genetic abnormality and hormonal deregulation (Smith and 73 

Dowsett, 2003). The worldwide incidence of BC is 25 % of all cancers in women. In regions 74 

of lesser economic status, it is women's most common cause of death. The incidence of breast 75 

cancer is most common after menopause (World Cancer Research Federation WCRF 76 

(https://www.wcrf.org/dietandcancer/breast-cancer). Numerous pathophysiological reasons 77 

like gene mutations (especially breast cancer gene BRAC1 and BRAC2), inherited genetic 78 

predisposition, exposure to the hormone (estrogen and progesterone), diet-related, and 79 

environmental/lifestyle exposures lead to breast cancer development (Michels, 2002; Travis 80 

and Key, 2003). Several potential targets, such as vascular endothelial growth factor, epidermal 81 

growth factor receptor, and tremendous enzymes, were reported to identify cancers and 82 

reproductive diseases (Atalay et al., 2003; Arora and Scholar, 2005; Appert-Collin et al., 2015). 83 

Aromatase hemo protein-containing enzymatic complex in the endoplasmic reticulum 84 

of estrogen-producing cells, also known as Cytochrome P450 19A1, comprises a prosthetic 85 

heme group and a polypeptide chain of 503 residues (Shaheenah et al., 2008; Kumavath et al., 86 

2016). It consists of 9 exons and a 5′-untranslated region on the human CYP19 gene 87 

(localisation of 15q21.1 region), stretching ~123 kb. It catalyses the conversion of androgens 88 

precursors to aromatic estrogens (Anthoni et al., 2012; Lephart, 2015). The aromatase enzyme 89 

does this conversion, becoming a promising target that addresses reproductive disorders and 90 

malignancies (Mori et al., 2018). The transformation occurs in the androgen-specific cleft 91 

containing polar hydrophobic residues that stimulate cellular proliferation in breast cancer 92 

(Altundag and Ibrahim, 2006; Lephart, 2015). This reaction oxidises and subsequently removes 93 

the methyl group at the A ring to bring it into an aromatic state, thus converting androgen into 94 

https://www.wcrf.org/dietandcancer/breast-cancer


estrogen (Lephart, 2015). Estrogen surge in the breast tissues is the primary hormonal 95 

requirement for the progression of tumorigenesis. 96 

Aromatase is a rate-limiting enzyme found in several human tissues subcutaneous fat, 97 

placental syncytiotrophoblasts, ovarian granulosa cells, skin fibroblasts, adipose tissue, 98 

osteoblasts of bone, brain and cancerous as well as normal breast tissues (Nelson and Bulun, 99 

2001; Czajka-Oraniec and Simpson, 2010; Mori et al., 2018). The source of residual estrogen 100 

is solely non-glandular especially subcutaneous fat. The estradiol level in breast carcinoma 101 

tissues is several times higher than in the blood because of its overexpression in such tissues 102 

(Travis and Key, 2003; Chan et al., 2016). This increases the significance of therapeutic 103 

monomeric aromatase enzyme inhibition as a front-line therapeutic intervention in estrogen 104 

hormone-dependent breast cancer. Only influential post-menopausal women (Altundag and 105 

Ibrahim, 2006; Santen et al., 2009) have less effectiveness in inhibiting ovarian peripheral 106 

estrogen formation or local estrogen production. Consequently, they are most frequently used 107 

to inhibit tumour growth and breast cancer cell proliferation.  108 

A drug discovery process originates with some clinical conditions to find suitable 109 

pharmaceutical drugs. The initial step of the research process starts via bioinformatics analysis 110 

with the identification and validation of biological targets (Cava and Castiglioni, 2020) that 111 

cover the biological entities, including protein, gene and RNA, which can be quantified by the 112 

experimental method in-vitro and in-vivo models. The protein's functioning can be studied at 113 

the atomic level using different techniques and algorithms for molecular docking, ADMET 114 

profile, and simulation of their three-dimensional structures. The development of new 115 

compounds for the inhibition of aromatase enzymes is essential for biomedicinally drug 116 

designing. Herein, we selected the compound from ChEMBL databases as a vital source for 117 

drug discovery in the biological system. The biocomputational tools are the key technology for 118 

computational biology and health informatics to develop lead compounds (Davies et al., 2015). 119 



The selecting appropriate protein structures and searchable drug databases requires molecular 120 

docking strategies to find biological and chemical features. It is widely known that in-silico-121 

based docking studies, residue-protein interaction patterns, ADMET properties, and MD 122 

simulation help identify the appropriate drugs/molecules to avoid the time, cost, and adverse 123 

consequences of preclinical studies (Paul et al., 2010). Thus, high-performing computational 124 

algorithms for the drug design process are required. Molecular docking and MD simulation 125 

strategies were used to identify a potent inhibitor of the aromatase target.  126 

This study aims to identify aromatase inhibitors using an in-silico approach. This research 127 

will be outlined from the ChEMBL database screening with the aromatase target protein and 128 

explore the various in-silico strategies for regulating the biological processes involved in breast 129 

cancer progression to find a better outcome. Then, the study was extended to validate the 130 

compound in in-vitro conditions.  131 

2. Materials and Methods: 132 

Our studies are comprised of a regress in-silico analysis and in-vitro analysis. The in-silico 133 

analysis that are from data collection, preparation and validation, molecular docking, 134 

MM\GBSA, molecular dynamics simulation and ADMET analysis. At the same time, the in-135 

vitro analyses are cell culture and drug treatment, cell proliferation assay, cell cycle analysis, 136 

and Annexin V-FITC/PI staining assay for Apoptosis. A graphical abstract represents to 137 

understand the complete methods. 138 

 139 
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 154 

Graphical abstract of the complete computer-aided drug discovery and in vitro approaches 155 

2.1 Protein Structure Prediction and Validation: 156 

Numerous experimental structures are discovered in the protein data bank (PDB). The best 157 

matching structure of aromatase enzyme was chosen from the RCSB PDB, freely available at 158 

www.rcsb.org (Berman et al., 2000), based on the different parameters such as resolution, 159 

organism(s), methods (x-ray crystallographic structure, EM structure), mutation and other 160 

features. A three-dimensional structure of aromatase target protein (PDB ID 3EQM) defined 161 

as a target was selected, which contains Cytochrome P450 19A1 with X-ray diffraction 2.9Å 162 

resolution, and the sequence length consists of 503 amino acid residues. The structure was 163 

optimised, and energy minimisation was performed by default constraint of 0.3 A of Root mean 164 

Standard Deviation (RMSD) with OPLS force field using Macro model, Schrodinger suite, 165 

LLC, New York, NY, 2015. Added hydrogen atoms to the targeted protein to retain the 166 

tautomeric states and stabilise the ionisation of amino acid residues (Sastry et al., 2013). The 167 

PROCHECK Ramachandran Plot server was applied to analyse the geometry of the amino 168 

acids in the target protein, the conformation of the residual angle, and the interactions between 169 
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the atoms (Laskowski et al., 1993; Sahu et al., 2017) and the prepared protein is shown in 170 

Figure 1. 171 

2.2 Database preparation for bioactive conformation: 172 

Database preparation is crucial to finding the lead compound in the screening campaign. 173 

Researchers have constructed many drugs-like compounds library from the large-scale 174 

bioactivity database ChEMBL (https://www.ebi.ac.uk/chembl/). This library of the ligands is 175 

a dictionary of small molecule entities with over 2 million compounds recorded. The LigPrep 176 

(Schrodinger suite 2015) module was used for ligand preparation to assign the protonation 177 

states at biologically relevant pH. We prepared the library of 8506 compounds from the 178 

ChEMBL version 26 database, representing a significant source of chemical and biological 179 

information such as binding, functional, cellular activity, and ADMET data (Gaulton et al., 180 

2012; Davies et al., 2015). The library was downloaded in SDF format.  181 

2.3 Active Site Prediction: 182 

The binding site of the amino acids is required for further molecular docking studies (Ghosh 183 

et al., 2010). The protein's active site was determined using Schrodinger's Sitemap Programme 184 

(Friesner et al., 2004). Specific interaction of aromatase protein with five top-ranking surface 185 

pockets was identified as a suitable binding site responsible for its drug-like compound cavity. 186 

The site with a Site score close to one was chosen for grid generation. The grid was generated 187 

using Glide v6.6, Schrodinger 2015. 3.1.  188 

2.4 Molecular docking: 189 

Docking experiments were conducted on Glide XP (extra precision) docking mode v6.6 190 

module (Friesner et al., 2004, 2006; Ferreira et al., 2015) and the molecular mechanics\ 191 

Generalized Born Surface Area (MM\GBSA) (Genheden and Ryde, 2015; Wang et al., 2019) 192 

for the interaction of suitable complex of receptor-ligand structure has been calculated via post 193 

docking analysis called Prime in v3.6 Schrodinger Suite 2020. The ligand docking protocol 194 

https://www.ebi.ac.uk/chembl/


examined the compound's crucial phase of binding free energies (Alonso et al., 2006; Torres et 195 

al., 2019). It determines whether a combination will bind or separate from the protein surface 196 

and return to its unbound state (Elokely and Doerksen, 2013; Torres et al., 2019). The docked 197 

complex was performed by evaluating the hydrogen bond interaction, hydrophobic interaction, 198 

pi-pi interaction, and pi cation interaction in Schrodinger software.  199 

Additionally, the docked complex was refined to calculate ΔG from MM-GBSA analysis 200 

(Zhang et al., 2017). The "MMGBSA ∆G Bind" calculation [dG(1)] was done by following an 201 

equation:  202 

dG(1) = E_complex (minimized) ‐ (E_ligand (minimized) + E_receptor (minimized)) 203 

where the formula of MMGBSA designates molecular mechanics energies combined with 204 

the generalized Born and surface area continuum solvation; dG bind denotes the computed free 205 

energy of ligand and receptor; E_complex is the MM/GBSA energy of the minimized complex, 206 

E_receptor represents MM/GBSA energy of protein (unbound, minimized) without ligand and 207 

E_ligand denotes the MM/GBSA energy of the ligand after removing it from the complex. We 208 

obtained reliable top compounds based on docking score, MM-GBSA, and Qikprop module. 209 

The results are given in Table 1 and Table 2. Further, molecular dynamic simulation was 210 

performed on docked protein-ligand complex.  211 

2.5 ADMET investigation: 212 

ADME/Tox studies continue to drive the success of biological functions for creating a 213 

target for drug candidates. There are many reasons to estimate that 50% of drug candidates fail 214 

to win approval due to the lack of potential efficacious and that up to 40% of drug candidates 215 

have failed in the past due to toxicity. The analytical software Qikprep module from 216 

Schrodinger suite 2020 was used for predicting the pre-assessing the Adsorption, Distribution, 217 

Metabolism, and Elimination (ADME) properties which provide some important information 218 

related to the drugs/molecules. All compounds were calculated using QikProp 3.4 modules to 219 

identify promising molecules that follow the bioavailability characteristics and ADMET 220 



profiling (Norinder and Bergström, 2006; Cheng et al., 2013). The criteria for ADME 221 

properties include SASA, FOSA, and FISA. Acceptable ranges are 300-1000, 0-750, and 7-222 

330, respectively (Dasari et al., 2017), total solvent-accessible volume range from 500-2000; 223 

QPlogKhsa favourable range -1.5−1.5; molecular weight (mol MW) less than 500; Hydrogen 224 

bond donor and acceptor with the range of 0.0-6.0 and 2.0-20.0; QPlogHERG with an 225 

acceptable range less than<-5; QPPMDCK with the normal range nm per sec. greater than 500; 226 

QPlogPC16 which used for projected the hexadecane/gas partition coefficient recommended 227 

range 4.0-18.0; octanol/water partition coefficient (QPlogPo/w) acceptable range is 3.069- 228 

3.905, QPlogPoct acceptable range is 8.0-35.0 (octanol/gas); QPlogKp with the normal range 229 

from -8 to -10; QPlogPw (water/gas) with favourable range 4.0-45.0; QPlogBB and QPPCaCo 230 

with normal range -3−1.2 and (>500)  (Egan and Lauri, 2002; Ntie-Kang, 2013; Shahbazi et 231 

al., 2016).  232 

2.6 Molecular Dynamic Simulation: 233 

Molecular dynamics are now routinely applied to investigating dynamic properties and 234 

processes in several areas of structural biochemistry, pharmaceutical chemistry, Molecular 235 

biology, enzymology, biophysics, and biotechnology. It is an invaluable tool extensively used 236 

to study the protein's biomolecule structure-function correlation (Rana et al., 2021). It allows a 237 

comprehensive of several dynamic biomolecular structures' characteristics, recognition, and 238 

function. (Karplus and McCammon, 2002; Adcock and McCammon, 2006; Alonso et al., 239 

2006). The molecular dynamics trajectory represents the computer simulation method for 240 

molecular systems, which provides the atomic coordinates at a specific period, single-point 241 

energies, and velocities (Adcock and McCammon, 2006). Several algorithms exist for running 242 

MD simulations under different criteria (Alonso et al., 2006; Sahu et al., 2020). MD simulation 243 

was performed using the Desmond v3.6 package from Schrodinger. Figure 3 and Figure 4 244 

illustrate the high density at the centre of an orthorhombic box with the periodic frontier 245 



condition. This module helps determine the RMSD value, Protein-Ligand torsion, protein-246 

ligand interaction, validation, and optimisation. Simulation time was set up to 100 ns with a 247 

trajectories recording at each 100 ps interval and an orthorhombic box with TIP3P. The water 248 

molecule was set up to specify the shape. The system was further neutralised by adding the 249 

system charge Na+ ion. Temperature and pressure on the Kalvin scale were constant at 300 K 250 

in the equilibration period and 1.01325 bar, respectively (Alonso et al., 2006). Obtained 251 

trajectories were then analysed using Simulation Interaction Diagram.  252 

2.7 Biological evaluation (In-vitro studies): 253 

Based on the in-silico studies, we found the commercially available lead compound 254 

ziprasidone. This compound was selected for our in-vitro experimental studies. 255 

2.7.1 Cell culture and drug treatment:  256 

Human breast (MCF-7, MDA-MB-231 and T47D) cancer cells were procured from 257 

National Centre for Cell Sciences (NCCS), Pune, India. The cells were maintained in 258 

Dulbecco's Modified Eagle's medium (HiMedia, Mumbai) with 10% FBS (HiMedia, Mumbai), 259 

100 U/mL penicillin, 100 mg/mL streptomycin and 250 ng/mL amphotericin B at 37oC in a 260 

humidified chamber consisting 5% CO2 and 95% air. Cells were then incubated with standard 261 

trypsinisation (Trypsin: 0.25%) at 85% confluency and subcultured in a ¼ ratio for routine 262 

maintenance and experimentation. Compound ziprasidone was prepared in DMSO and 263 

exposed to the cells for 24h and 48h at a final volume of 0.1% DMSO. 264 

 265 

2.7.2 Cell proliferation assay: 266 

The inhibitory effect of selected drugs was measured by MTT assay. Different breast cancer 267 

cell lines such as MCF-7, MDA-MB-231 and T47D were grown overnight in 96 healthy ELISA 268 

plates at a density of 8 x 10 3 cells/well and treated with a drug from 0.62 mM to 2 mM for 269 

24h and 48h. MTT (5mg/ml) was added at the end of incubation for 3-4h. Afterwards, the 270 



medium was removed, dimethyl sulfoxide (100 µL/well) was added, and incubated for 5min at 271 

37oC under shaking conditions. Absorbance values at 570 nm were recorded using an ELISA 272 

plate reader, and the IC50 value was calculated from the dose-response curve. 273 

2.7.3 Cell cycle analysis: 274 

Cell cycle progression was evaluated using a Flowcytometry. MCF-7, MBA MD 231, and 275 

T47D human breast cancer cells were incubated for 48 h with the compound ziprasidone at 276 

IC50 value obtained by MTT assay. After 48 h of treatment, cells were harvested, washed twice 277 

with PBS, and fixed in ice-cold 70% ethanol overnight at 4℃. Next day, all samples were 278 

centrifuged at 3000 rpm for 4 min. The cells were counterstained with propidium iodide 279 

(5mg/ml) followed by addition of RNase and acquired on a spectrum flow cytometer (Cytek 280 

Aurora, Cytek Biosciences, Fremont, CA, USA) and DNA content was measured under blue 281 

laser (488nm) and a complete spectrum was captured in all 14 channels (B1-B14). The maxima 282 

was attained at 615/20 nm filter (B6). Data analysis was done by FlowJo software Version 283 

10.8.1 (BD Biosciences, Ashland, OR, USA).  284 

2.7.4 Annexin V/PI staining assay for Apoptosis: 285 

Human breast cancer cell lines (MCF-7, MDA MB 231, and T47D) cells were seeded in 6-286 

well plates at 10 x10 and 4 cells per well and grown overnight. Then cells were treated for 48 287 

h with compound at IC50 value obtained by cell viability assay. After 48 h, cells were 288 

trypsinised, washed with Phosphate-buffered saline (PBS), and stained with annexin V-289 

fluorescein isothiocyanate (FITC) and propidium iodide (PI) from Alexa Fluor 488 annexin V 290 

apoptosis detection kit (Beckman Coulter) using manufacturer protocol, followed by 291 

acquisition on a spectrum flow cytometer (Cytek Aurora, Cytek Biosciences, Fremont, CA, 292 

USA). Data analysis was done by FlowJo software Version 10.8.1 (BD Biosciences, Ashland, 293 

OR, USA). 294 

3. Results and discussion: 295 



3.1 In-silico studies: 296 

3.1.1 3D-structure modelling and validation: 297 

Ramachandran plot for the selected structures was downloaded for this structure, assessing 298 

the stereochemical quality of the protein structure. By using the PROCHECK server, as shown 299 

in Figure 1(B). Residues in the beta-conformation are negative, followed by 0 to -60 psi angles 300 

(ψ) and 0 to -90 in the phi angles (ϕ) are positive, showing dense conformation of residues in 301 

the targeted aromatase protein. Based on the results, 94.33% residues were found in the most 302 

favoured region, 4.67% amino acid residues were likely found in the additional allowed region, 303 

1% in the generously disallowed area and none of the residue (white region) in the disallowed 304 

region.   305 

 306 

 307 

 308 

 309 

 310 

 311 

 312 

 313 

 314 

Figure 1: A) 3D Crystal structure of aromatase (PDB ID:3EQM), and B) 315 

Ramachandran plot of prepared structure  316 

 317 

3.1.2 Binding affinity calculation: 318 

The bound structure of receptors with ligands is considered a therapeutic target for breast 319 

cancer treatment and screened out with the ChEMBL database by a molecular docking study. 320 

The docking calculation details the binding energies between the selected drugs and the carrier 321 

systems. The GlidScore was analysed, and the top-ranked compound was found through 322 



docking results. The attractive force and binding affinity of interacting protein-ligand docked 323 

structure determine the binding affinity. The binding affinity values for the docked structure of 324 

aromatase protein are displayed in Table 1. The lowest Glide Score characterises the more 325 

agreeable binding. In the binding site, the binding conformation of the aromatase receptor is 326 

supposed to a purpose for their remarkable inhibitory effect against aromatase activity shown 327 

in Figure 2. Further, the MM\GBSA calculated for binding free energy score with OPLS-2005 328 

gives a much more accurate scoring of the ligand pose than the XP score. The scoring was 329 

observed to be more effective in the ranking ligand; compound CHEMBL598797 shows good 330 

aromatase inhibiting tendency with ΔGMM-GBSA values of -88.31 kcal/mol, respectively.  331 

 332 

 333 

 334 

 335 

 336 

 337 

 338 

 339 

 340 

 341 

Figure 2. Showing the ligand interaction diagram of the 3EQM and Ziprasidone 342 

where VAL369 and VAL368 interact with the O atom and the same VAL370 343 

interacts with the OH atom whereas the PRO429 interacts with the NH atom of 344 

the ligand 345 

Table 1. Showing the docking score and other energy scores generated during the 346 

interaction calculations. (Docking and MM\GBSA are in Kcal/mol) 347 

 348 

PDB 

Docking 

Score 

MM\ 

GBSA  

Prime 

Hbond 

Prime 

vdW 

mol 

MW 

Ligand 

efficiency sa 

Ligand 

efficiency In 

3EQM -10.019 -69.03 -263.79 -2269.48 434.494 -3.236 -15.458 



3.1.3 Molecular and Principle Descriptors of the Ligand: 349 

Several potential therapeutic agents fail during clinical trials due to their unfavourable 350 

ADMET properties. ADME calculation is performed to serve the predicted drug-likeness. The 351 

calculated ADMET endpoints are summarised in Table 2. The oral availabilities of the 352 

compound give the idea of molecular descriptors or properties implicit to drug likeness that 353 

work with five descriptors, including molecular weight (MW) ≤ 500 Da, QPlogPo/w value≤ 5, 354 

Hydrogen acceptor ≤ 10, Hydrogen donor ≤ 5, Topological Polar Surface Area (TPSA)<5 these 355 

criteria follow the Lipinski's rule of five (Lipinski, 2000, 2016). Twenty-two parameters 356 

evaluated the pharmacokinetic profile, and most of the values lie within the allowable range. 357 

These values are suitable for the selected active ligand. However, the number of likely 358 

metabolic reactions also falls within the permissible range. A detailed analysis of molecular 359 

dynamics simulation of aromatase protein and the docked structures has been carried out for 360 

various parameters. The compound CHEMBL598797 following the binding affinity and 361 

Lipinski's rule of five is shown in Table 2.  362 

The logP distribution describes the lipophilicity of a compound that denotes the 363 

partition coefficient. The range of hydrogen bond acceptor (HBA) and hydrogen bond donor 364 

(HBD) of the compound CHEMBL598797 were 1 and 3.5, respectively, which indicates that 365 

the compound denotes a drug-like favourable range. The physiochemical descriptors like 366 

SASA, FOSA, FISA, PISA (π component of SASA), QPlogPC16, QPlogPoct, and QPlogPw 367 

were also selected for this study, and all parameters were observed within the normal range.  368 

The permeability of the gut-blood barrier predicts by the Caco-2 parameter. It is broadly 369 

non-active transport used in blood absorption assay in nm/s (Shin et al., 2016). This parameter 370 

helps to identify and evaluate the approximate passage of substances values through the gut 371 

wall. The favourable range for the compound CHEMBL598797 was 137.54nm/s, respectively. 372 

The QPlogBB partition coefficient is used to predict the compound's brain/blood partition of 373 



bioactive for CNS (Cheng et al., 2013). The scoring range was found to be -0.146 and -2.294. 374 

These results show that the top compound was active with the acceptable range in CNS activity. 375 

The QPPMDCK is used to predict BBB penetration. The ranges lie between 382.649 and 376 

112.052 nm/sec of the selected drugs. QplogKp calculates the permeability of penetrating the 377 

drugs/compounds through the skin. The equation projected the maximum trans-dermal 378 

transport rates that symbolise the Jm: 379 

Jm = Kp × MW × S 380 

Jm is the trans-dermal transport rate expressed in the unit of μg cm, Kp symbolises the skin 381 

permeability and molecular weight (MW), and S denotes aqueous solubility. The -5.043 (mol 382 

dm–3) range was observed in compound CHEMBL598797. 383 

QPlogKhsa has been estimated to predict the plasma-protein binding of the selected 384 

compound, which binds to human serum albumin, glycoprotein, globulins, and lipoprotein and 385 

has a converse relation to the target obtainability. Drug efficacy is unswervingly influenced by 386 

binding ability with the distribution of drugs through the bloodstream and the accessibility of 387 

drugs to their target. Consequently, a lower degree of protein bound to plasma is required for 388 

designing the drugs. Compound CHEMBL598797 has the following within the suitable range 389 

of -0.12 nm/s. QPlogHERG is an essential parameter for predicting blockage of human ether-390 

a-go-go-related gene (hERG) potassium channel for the cardiac and nervous system to predict 391 

the cardiac toxicity of druggable molecules (Shahbazi et al., 2016; Thakkar et al., 2017). HERG 392 

K+ channels are QPlogKhsa>-5. The channel also has a modulating function in the nervous 393 

system. This ADME investigation of CHEMBL598797 displayed that all parameters except 394 

CIQPlogS (score 6.6) and QPlogHERG (score 5.9) were favourable values of drug-likeness, 395 

metabolism, and pharmacokinetics, criteria. 396 

 397 

 398 

 399 

 400 



Table 2. Showing the QikProp or ADMET result of Ziprasidone 401 

(CHEMBL598797) against the standard values 402 

 403 

Property or 

Descriptor 

Ziprasidone  QikProp 

Standard 

values  

Property or Descriptor QikProp 

Standard 

values  

Ziprasidone  

#stars 0 0 – 5 QPlogS −6.5 – 

0.5 

-4.457 

#amine 0 0 – 1 CIQPlogS −6.5 – 

0.5 

-4.96 

#amidine 0 0 QPlogHERG concern 

below −5 

-5.395 

#acid 0 0 – 1 QPPCaco <25 poor, 

>500 

great 

83.169 

#amide 1 0 – 1 QPlogBB −3.0 – 

1.2 

-2.412 

#rotor 13 0 – 15 QPPMDCK <25 poor, 

>500 

great 

64.628 

#rtvFG 1 0 – 2 QPlogKp −8.0 −1.0 -2.765 

CNS -2 −2 (inactive), 

+2 (active) 

IP(eV) 7.9 – 10.5 0 

mol MW 434.494 130.0 – 725.0 EA(eV) −0.9 – 

1.7 

0 

dipole 0 1.0 – 12.5 #metab 1 – 8 5 

SASA 804.15 300.0 – 

1000.0 

QPlogKhsa −1.5 – 

1.5 

-0.123 

FOSA 320.205 0.0 – 750.0 HumanOralAbsorption N/A 2 

FISA 191.257 7.0 – 330.0 PercentHumanOralAbsorption >80% is 

high, 

<25% is 

poor 

77.748 

PISA 292.688 0.0 – 450.0 SAfluorine 0.0 –

100.0 

0 

WPSA 0 0.0 – 175.0 SAamideO 0.0 – 35.0 32.947 

volume 1427.933 500.0 – 

2000.0 

PSA 7.0 – 

200.0 

117.912 

donorHB 3.5 0.0 – 6.0 #NandO 2 – 15 8 

accptHB 8.2 2.0 – 20.0 RuleOfFive maximum 

is 4 

0 

dip^2/V 0 0.0 – 0.13 RuleOfThree maximum 

is 3 

0 

ACxDN^.5/SA 0.019077 0.0 – 0.05 #ringatoms N/A 16 

glob 0.7626058 0.75 – 0.95 #in34 N/A 0 

QPpolrz 45.44 13.0 – 70.0 #in56 N/A 16 

QPlogPC16 15.932 4.0 – 18.0 #noncon N/A 0 

QPlogPoct 24.48 8.0 – 35.0 #nonHatm N/A 32 

QPlogPw 17.72 4.0 – 45.0 Jm N/A 0.026 

QPlogPo/w 2.808 −2.0 – 6.5       



3.1.4 MD Simulation of Protein-Ligand Complex: 404 

The simulation of the docked structure was performed after the equilibration phase for 100 ns 405 

and plotted several metrics to prove the stability of the structure. Figure 4 illustrates the atomic 406 

contacts between the functional group in the compound CHEMBL598797 and the targeted 407 

protein changed during the simulation process. The time course of protein-ligand contacts with 408 

intra-atomic distances was not higher than 3.0Å. The targeted peaks were observed, and they 409 

can be seen in the saturation binding curve. The region of ligand's RMSD between 23-44ns, 410 

56-66ns and 89-96ns illustrates the periodic higher fluctuations than the other residues because 411 

of the conformational switching owing to the hydroxamate and can rotate easily around the 412 

atom bonds and interact with water. Finally, it reached the stable RMSD at 2.7 Å. Residues 413 

Val369, Val370, Gly439, and Ala438 are significant contributors to the interaction between 414 

CHEMBL598797 and aromatase. This result implies stability between the interaction 415 

CHEMBL598797 and the targeted protein. 416 

3.1.5 Key interaction of ligand and protein: 417 

The best ligand and targeted protein aromatase are essential in strengthening the receptor-418 

ligand interactions, such as hydrogen bonding, hydrophobic interactions, pi cation, and salt 419 

bridge, which were visualised. The acceptor hydrogen bond (red) and donor hydrogen bonding 420 

(yellow) profiles of co-crystal ligand were close to compound CHEMBL598797. The counts 421 

of acceptor and donor remarkably emphasised the significant interaction of hydrogen bonds.  422 



 423 

 424 

Figure 3: Showing the MD Simulation results in A) Root Mean Square Deviation 425 

(RMSD) and B) Histogram representation of Protein-ligand contact number 426 

concerning its type in CHEMBL598797 (Ziprasidone) 427 

 428 

Figure 4 describes the different intermolecular interactions such as hydrogen bonds, 429 

hydrophobic interaction, and water bridge assembled by each pocket residue with ligand 430 

binding site. The 2D interaction maps of ChEMBL based docked complex portraying the 431 

preservation of contacts through the simulation trajectory are shown in the interaction diagram 432 

in Figure 3&4.  433 

Compound ChEMBL598797 depicted the hydrogen bond interaction with the backbone 434 

amino acid residues Val369, Val370, Pro429, Ile133, Gln363, Gln367 and Val370 and the side 435 



chain amino acid residues Arg115, Thr310, and Ser 314. Cation π interaction was observed in 436 

the residue Arg115, stabilising the electrostatic interaction of a cation of an aromatic ring and 437 

four π-π stacking interactions enriched in pi orbital containing between amino acid residues 438 

Phe134, Try224, Phe148, and Phe430 and aromatic ring of ziprasidone. These interactions 439 

show the involvement of energetic aromatic amino acid residues in packing the adenine ring 440 

in the targeted protein.  Ionic interaction (side chain metal mediate) was also observed in the 441 

amino acid residues Arg115 and Arg145. Water bridge (donor) Arg115, Ser314, His402, 442 

Arg375, Gly439, Try141.  Water bridge (accepter) Ile132, Ile133, Ile305, Ala306, Thr310, 443 

Ser363, Met364, Gln367, Val370, Pro429, Gly436.  444 

Compound ChEMBL598797 was efficiently docked and validated for the better quality 445 

of the docking results. Some residues displayed a similar hydrogen bonding and hydrophobic 446 

interaction with the amino acid residues. The better results prove the ability of the compound 447 

to inhibit aromatase target receptors. Figure 4 provides exhaustive binding interactions of the 448 

target with selected ligand ChEMBL598797 (Ziprasidone). 449 

 450 

Figure 4: Showing 2D protein simulation integration diagram of 451 

CHEMBL598797 (Ziprasidone) 452 



 453 

  454 

3.2 In-vitro study: 455 

3.2.1 Antiproliferative activity in cancer cells: 456 

The anticancer effect of ziprasidone on the growth of MCF-7, MDA-MB-231 and T47D 457 

was detected by MTT as described earlier (Tolosa et al., 2015). In the present experiment, cells 458 

were treated with parent compound and these compounds at 2, 1, 0.25, 0.125, and 0.0625 mM 459 

for 24 and 48 h. The dose-response curve was used to calculate the IC50 value, the drug 460 

concentration required to reduce cell proliferation by 50% against an untreated control. The 461 

IC50 value for Ziprasidone in MCF-7 cells was found to be 0.260 mM and 0.158 mM at 24 and 462 

48 h. For MDA-MB-231 cell lines, the IC50 value was 0.532 and 0.27 at 24h and 48 h, 463 

respectively (Figure 5). Next, the IC50 values in the case of the T47D cell line were 0.608 at 464 

24 h and 0.336 and 48h. These results showed diminished antiproliferative activity under a 465 

similar condition, as seen in Figure 5. 466 

 467 

 468 

 469 

 470 

 471 

 472 

 473 

 474 

 475 

Figure 5: Effects of Ziprasidone under antiproliferation activity in MCF-7, MDA 476 

MB 231 and T47D cells at 24 and 48h post-treatment 477 

 478 

3.2.2 Effects of Ziprasidone on cell Morphology: 479 

Morphological changes were recorded using a microscope in MCF-7, MDA-MB-231 and 480 

T47D cells. For all treated cells, the images were observed at 24 h, and the images were 481 

captured using a phase-contrast light microscope. Cell in the control group cell shape was not 482 



changed, as in the case of treated groups, there was a substantial change in cell morphology, 483 

and cell debris of dead cells was also seen. The treatment with Ziprasidone to MCF 7, MDA 484 

MB and T47D cells at different concentrations at 24 h resulted in round shape and size 485 

reduction (Figure 6).  486 

 487 

 488 

 489 

 490 

 491 

 492 

 493 

 494 

 495 

 496 

 497 

 498 

Figure 6. Effects of Ziprasidone under study on MCF-7, MDA MB 231 and 499 

T47D cells morphology at 24 h post-treatment 500 

3.2.3 Cell cycle analysis: 501 

Selected compounds exert growth-inhibitory effects on different cell lines by arresting the cell 502 

cycle at a specific phase. The in-vitro screening results in Figure 7 display that ziprasidone 503 

significantly increased in the S phase from 8.06% to 12.2% in MCF-7. MDA-MB-231 504 

increased from 9.51% to 12.9% population; furthermore, in case of T47D, it increased from 505 

9.45 % to 13.5 % concerning control.  506 

 507 

 508 

 509 



 510 

Figure 7: Cell cycle analysis in control and treated with drugs with different cell 511 

lines (MCF-7, MDAMB 231 and T47D) 512 

 513 

3.2.4 Annexin V binding assay: 514 

Ziprasidone was further investigated to evaluate their Apoptosis. It is a pathway leading to cell 515 

death. To analyse the effect of ziprasidone on the Apoptosis of different cells, we applied FITC-516 

Annexin V and PI double staining for a flow cytometry assay. MCF-7 cells were treated for 24 517 

h with MCF-7, MDA MB 231 and T47D cells and analysed by flow cytometry (Rieger et al., 518 

2011). Figure 8 show an increased cell death ratio between early and late Apoptosis with 519 



increasing concentration of the compound. Remarkably, 2.77% of the cell population 520 

underwent the necrotic phase (Q1 quadrant; Figure 8) in all concentrations of ziprasidone 521 

treatment. When comparing the early and late apoptosis as well as necrosis phase, the 522 

increasing number of cells in the necrotic phase is more pronounced than in the early phase. 523 

 524 
 525 

Figure 8: The proapoptotic effect of ziprasidone on MCF-7, MDA-MB 231 qnd 526 

T47D cell lines after 48h against control and treated cells.  527 



 528 

4. Discussion:  529 

This study used in-silico and in-vitro approaches to investigate the particular compound with 530 

anticancer effects. Molecular docking approach is considered an emerging field for the rational 531 

drug design and development and, therefore, is gaining significance in biomedical science 532 

(Shahbazi et al., 2016). Here, computer-aided approaches were adopted to predict whether the 533 

selected compound has anticancer potential or not. Aromatase-targeted protein was selected 534 

(PDB ID: 3EQM) based on their affiliation with breast cancer. In this study, computer-aided 535 

drug design molecular docking indicated that the selected compound (Ziprasidone) interacts 536 

with good binding affinities and best binding free energies with aromatase targeted protein at 537 

their well-known active sites. Higher positive energies indicate stronger binding, and negative 538 

energies indicate the favourable interaction is negative means no binding (Halgren, 2009; 539 

Zhang et al., 2017). Therefore, with the help of advanced in-silico tools, it was predicted that 540 

ziprasidone could work as an anticancer drug agent.  541 

 Prediction of anticancer drug potential of ziprasidone through in-silico approaches was 542 

further validated using in-vitro studies. For the in-vitro study, MCF-7, MDA MB 231 cells 543 

were selected because of their similarities with breast cancer of human origin (Razak et al., 544 

2019). To check the cytotoxic effect of ziprasidone on these cells, the tetrazolium-based MTT 545 

assay was performed (Tolosa et al., 2015). MTT is a reliable and sensitive colourimetric 546 

technique, which is generally used for measuring in vitro cytotoxic effects of drugs on cancer 547 

cell lines and assessing the viability and proliferation of cancer cells (Tolosa et al., 2015). 548 

Different doses of ziprasidone were selected to determine the most effective dose (ED) or 549 

effective concentration (EC) at a minimum concentration. Hence, we started with concentration 550 

ranging from 2, 1, 0.25, 0.125, and 0.0625 mM for 24 in-vitro studies. Cytotoxic effects of the 551 

compound ziprasidone observed using MTT assay on MCF-7, MDA MB 231, and T47D cells 552 

indicate dose and time-dependent activities. Our outcomes based on in-vitro studies indicate 553 



that treatment with ziprasidone causes the death of cancerous in these cells and could act as a 554 

cytotoxic agent in concentration and time dependent manner with an IC50 value.  555 

 The ability of a drug to interact with DNA is a significant feature in discovering new 556 

anticancer agents. This agent targets the DNA molecule and interfere with the cell cycle leading 557 

to cell death. Indeed, DNA interaction alters the cells fate by replication inhibition and/or 558 

transcription alteration. Since our finding confirmed the arrest of the cell cycle, ultimately 559 

resulting in intrinsic and less likely extrinsic Apoptosis. Since our results confirmed the arrest 560 

of cell cycle, ultimately result in the intrinsic and less likely extrinsic apoptosis. To study the 561 

inhibitory mode induced by ziprasidone in the MCF-7, MDA-MB-231 and T47D cells cultured, 562 

investigated through incubation of cells with AnnexinV-(FITC) and proprium iodide (PI) 563 

which confirmed apoptosis in treated cells and it was compatible with the morphological 564 

changes of the treated cells under the microscope. On the whole, our findings of this study 565 

suggest that compound ziprasidone has been recognized as potential anticancer agent. 566 

5. Conclusion: 567 

The noteworthy conclusion is to find the remarkable agents for the aromatase target. The top 568 

compound CHEMBL598797 had better binding affinities based on the docking score. Toxicity 569 

and ADMET properties were predicted using computational calculations. The finding of this 570 

study suggests that this compound could be a potent inhibitor for the aromatase target. The 571 

efficiency of the selected compound will further be confirmed based on wet-lab experiments. 572 

The computational pipelines mentioned in this study would be beneficial in predicting possible 573 

potent inhibitors for the aromatase enzyme for breast cancer treatment. The cytotoxic results 574 

of this ziprasidone compound confirm it as a chemotherapeutic agent. This compound was 575 

tested for its capability to induce cell cycle arrest and apoptosis in MCF-7, MDA MB 231 and 576 

T47D breast cancer cells. In conclusion, ziprasidone, from screening in-silico molecular 577 



docking tools and in-vitro anticancer evaluation studies, emerged as a potential lead anticancer 578 

candidate for breast cancer. 579 
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