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Abstract

In this work, we obtain new sufficient conditions for the non-oscillatory solutions of forced nabla fractional difference equations

with positive and negative terms. The results are developed in sense of Caputo nabla fractional difference operator and by the

help of Young’s inequality as well as an equivalent representation in form of a Volterra-type summation equation. The results

improve some existing results in the literature. Further, two examples are presented to support and illustrate the applicability

of the deduced results.
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Summary

In this work, we obtain new sufficient conditions for the non-oscillatory solutions of
forced nabla fractional difference equations with positive and negative terms. The
results are developed in sense of Caputo nabla fractional difference operator and
by the help of Young’s inequality as well as an equivalent representation in form
of a Volterra-type summation equation. The results improve some existing results
in the literature. Further, two examples are presented to support and illustrate the
applicability of the deduced results.
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1 INTRODUCTION

Nowadays discrete fractional calculus has gained much attention amongst researchers in the last two decades. Consequently,
there has been a burgeoning interest in the theory and applications of fractional difference equations9. The fractional difference
and summation feature has significantly proved its efficiency and validity due to its nonlocal character and the interpretation
of memory. As a result, many papers have appeared that study the qualitative properties of solutions of fractional differ-
ence equations. While researchers focused on the oscillation of solutions, the non-oscillation behavior for nonlinear fractional
difference equations still needs improvement1,2,4,3,5.

The study of the oscillation of solutions to nabla fractional difference equations was started by Alzabut et al.3. For the following
nonlinear nabla fractional difference equations involving the Riemann–Liouville and the Caputo operators of arbitrary order,
the authors in3 defined a number of oscillation criteria.

{

∇𝜇
𝑐+𝑚−2𝑦(𝜚) + 𝑔1(𝜚, 𝑦(𝜚)) = 𝑓 (𝜚) + 𝑔2(𝜚, 𝑦(𝜚)), 𝜚 ∈ ℕ𝑐+𝑚−1,

∇−(1−𝜇)
𝑐+𝑚−2𝑦(𝜚)

|

|

|𝜚=𝑐+𝑚−1
= 𝑎, 𝑎 ∈ ℝ,

(1.1)
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and
{

∇𝜇
𝑐+𝑚−1∗𝑦(𝜚) + 𝑔1(𝜚, 𝑦(𝜚)) = 𝑓 (𝜚) + 𝑔2(𝜚, 𝑦(𝜚)), 𝜚 ∈ ℕ𝑐+𝑚−1,

∇𝑛𝑦(𝑐 + 𝑚 − 1) = 𝑎𝑛, 𝑎𝑛 ∈ ℝ, 𝑛 = 0, 1, 2,⋯ , 𝑚 − 1.
(1.2)

Here 𝜇 > 0 and 𝑚 ∈ ℕ1 such that 𝑚 − 1 < 𝜇 < 𝑚; ∇𝜇
𝑐+𝑚−2𝑦, ∇𝜇

𝑐+𝑚−1∗𝑦 denote the 𝜇th Riemann–Liouville and Caputo nabla
fractional differences of 𝑦, respectively; 𝑔1, 𝑔2 ∶ ℕ𝑐+𝑚−1 ×ℝ → ℝ; 𝑓 ∶ ℕ𝑐+𝑚−1 → ℝ; 𝛽, 𝛾 are positive real numbers.

Using the fractional Volterra sum equations and Young’s inequalities, Abdalla et al.1 developed new oscillation criteria for
(1.1) and (1.2), building on the work in3. The authors of3 noted that the scenarios 𝛽 > 𝛾 > 1 and 𝛾 > 𝛽 > 1 were not taken into
account for (1.1). The goal of the study1 was to fill in this gap and develop additional oscillation criteria that enhance the findings
of3. Abdalla et al.2 studied the oscillation of solutions for nabla fractional difference equations with mixed nonlinearities of the
following forms:

{

∇𝜇
𝑐+𝑚−2𝑦(𝜚) − 𝑏(𝜚)𝑦(𝜚) +

∑𝑘
𝑗=1 𝑏𝑗(𝜚) |𝑦(𝜚)|

𝛼𝑗−1 = 𝑓 (𝜚), 𝜚 ∈ ℕ𝑐+𝑚,
∇−(𝑚−𝜇)

𝑐+𝑚−2 𝑦(𝜚)
|

|

|𝜚=𝑐+𝑚−1
= 𝑎, 𝑎 ∈ ℝ,

(1.3)

and
{

∇𝜇
𝑐+𝑚−1∗𝑦(𝜚) − 𝑏(𝜚)𝑦(𝜚) +

∑𝑘
𝑗=1 𝑏𝑗(𝜚) |𝑦(𝜚)|

𝛼𝑗−1 = 𝑓 (𝜚), 𝜚 ∈ ℕ𝑐+𝑚−1,
∇𝑛𝑦(𝑐 + 𝑚 − 1) = 𝑎𝑛, 𝑎𝑛 ∈ ℝ, 𝑛 = 0, 1, 2,⋯ , 𝑚 − 1.

(1.4)

Here 𝜇 > 0 and 𝑚 ∈ ℕ1 such that 𝑚 − 1 < 𝜇 < 𝑚; ∇𝜇
𝑐+𝑚−2𝑦, ∇𝜇

𝑐+𝑚−1∗𝑦 denote the 𝜇th Riemann–Liouville and Caputo nabla
fractional differences of 𝑦, respectively; 𝑏, 𝑏𝑗 , 𝑓 ∶ ℕ𝑐+𝑚−1 → ℝ, 𝑗 = 1, 2,⋯ 𝑘; 𝛼𝑗 (1 ≤ 𝑗 ≤ 𝑘) are the ratios of odd positive
integers with 𝛼1 > ⋯ > 𝛼𝑖 > 1 > 𝛼𝑖+1 > ⋯ > 𝛼𝑘.

Following the above trend, in4, Alzabut et al. considered the following forced and damped nabla fractional difference equation:
{

(1 − 𝑝(𝜚))∇∇𝜇
0𝑦(𝜚) + 𝑝(𝜚)∇𝜇

0𝑦(𝜚) + 𝑝2(𝜚)𝑔(𝑦(𝜚)) = 𝑝1(𝜚), 𝜚 ∈ ℕ1,
∇−(1−𝜇)

0 𝑦(𝜚)||
|𝜚=1

= 𝑎, 𝑎 ∈ ℝ,
(1.5)

and established sufficient conditions for the oscillation of the solutions of (1.5). Here 0 < 𝜇 < 1; ∇𝑦 denotes the first nabla
difference of 𝑦; ∇𝜇

0𝑦 denotes the 𝜇th Riemann–Liouville nabla fractional difference of 𝑦; 𝑔 ∶ ℝ → ℝ; 𝑝, 𝑝1 ∶ ℕ1 → ℝ;
𝑝2 ∶ ℕ1 → ℝ+.

Motivated by the above studies, in this work, we consider the forced nabla fractional difference equation with positive and
negative terms of the form

∇𝑥
𝑐∗𝑧(𝜄) + 𝜙(𝜄, 𝑦(𝜄)) = 𝜂(𝜄) + 𝜁 (𝜄)𝑦𝛽(𝜄) + Φ(𝜄, 𝑦(𝜄)), 𝜄 ∈ ℕ𝑐+1, (1.6)

where
𝑧(𝜄) = ∇𝑛−1 [𝑑(𝜄) (∇𝑦(𝜄))𝛽

]

, 𝜄 ∈ ℕ𝑐 , 𝑛 ∈ ℕ1, (1.7)
0 < 𝑥 < 1, 𝛽 is the ratio of two odd positive integers, 𝑐 ∈ ℕ1, and ∇𝑥

𝑐∗𝑧 denotes 𝑥th Caputo nabla fractional difference of 𝑧.
Throughout this work, we nned the following conditions for our work in the sequel.

(i) 𝜁 , 𝑑 ∶ ℕ𝑐 → (0,∞), 𝜂 ∶ ℕ𝑐 → ℝ and Φ, 𝜙 ∶ ℕ𝑐 ×ℝ → ℝ are continuous functions;

(ii) there exist continuous functions Θ1, Θ2 ∶ ℕ𝑐 → (0,∞) and positive real numbers 𝜆 and 𝛾 where 𝜆 > 𝛾 such that

𝑦𝜙(𝜄, 𝑦) ≥ Θ1(𝜄) |𝑦|
𝜆+1 , 0 ≤ 𝑦Φ(𝜄, 𝑦) ≤ Θ2(𝜄) |𝑦|

𝛾+1

for 𝑦 ≠ 0 and 𝜄 ∈ ℕ𝑐

A solution of (1.6) that is continuable and nontrivial in any neighborhood of ∞ is considered. Such a solution is said to be
oscillatory if there exists a sequence {𝜄𝑚} ⊆ ℕ𝑐−𝑛 with 𝜄𝑚 → ∞ as 𝑚 → ∞ such that 𝑦(𝜄𝑚) = 0, and it is non-oscillatory
otherwise.

In this paper, we investigate the asymptotic behavior of the non-oscillatory solutions of equation (1.6). Our approach is
primarily based on the properties of discrete fractional calculus and some mathematical inequalities. To help in proving the
main results, an equivalent representation for equation (1.6) in form of a Volterra-type summation equation is constructed. We
will provide numerical examples that will support the validity of theoretical results.

In the sequel, we make use of the following notations, definitions, and known results of nabla fractional calculus9. Denote by
ℕ𝑎 = {𝑎, 𝑎 + 1, 𝑎 + 2,…} for any 𝑎 ∈ ℝ.
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Definition 1 (See9). For 𝜄 ∈ ℝ ⧵ {… ,−2,−1, 0} and 𝑟 ∈ ℝ such that (𝜄 + 𝑟) ∈ ℝ ⧵ {… ,−2,−1, 0}, the generalized rising
function is defined by

𝜄𝑟 =
Γ(𝜄 + 𝑟)
Γ(𝜄)

.

Further, if 𝜄 ∈ {… ,−2,−1, 0} and 𝑟 ∈ ℝ such that (𝜄 + 𝑟) ∈ ℝ ⧵ {… ,−2,−1, 0}, then we use the convention that 𝜄𝑟 = 0.

Definition 2 (See9). Let 𝜅 ∶ ℕ𝑎 → ℝ. The first backward (nabla) difference of 𝜅 is defined by

∇𝜅(𝜄) = 𝜅(𝜄) − 𝜅(𝜄 − 1), 𝜄 ∈ ℕ𝑎+1.

Definition 3 (See9). Let 𝜅 ∶ ℕ𝑎+1 → ℝ and 𝑥 > 0. The 𝑥th nabla fractional sum of 𝜅 based at 𝑎 is given by

∇−𝑥
𝑎 𝜅(𝜄) = 1

Γ(𝑥)

𝜄
∑

𝜄1=𝑎+1
(𝜄 − 𝜄1 + 1)𝑥−1𝜅(𝜄1), 𝜄 ∈ ℕ𝑎,

where by convention ∇−𝑥
𝑎 𝜅(𝑎) = 0.

Definition 4 (See6). Let 0 < 𝑥 < 1 and 𝜅 ∶ ℕ𝑎 → ℝ. The 𝑥th Caputo nabla fractional difference of 𝜅 based at 𝑎 is given by

∇𝑥
𝑎∗𝜅(𝜄) = ∇−(1−𝑥)

𝑎 ∇𝜅(𝜄), 𝜄 ∈ ℕ𝑎+1.

2 PRELIMINARIES

Theorem 2.1 (See9). The unique solution to the nabla fractional initial value problem
{

∇𝑥
𝑎∗𝜅(𝜄) = 𝜔(𝜄), 𝜄 ∈ ℕ𝑎+1,

𝜅(𝑎) = 𝜅0,
(2.1)

is given by

𝜅(𝜄) = 𝜅0 +
1

Γ(𝑥)

𝜄
∑

𝜄1=𝑎+1
(𝜄 − 𝜄1 + 1)𝑥−1𝜔(𝜄1), 𝜄 ∈ ℕ𝑎 (2.2)

where 0 < 𝑥 < 1 and 𝜔 ∶ ℕ𝑎+1 → ℝ.

Lemma 1. Consider the following generalized rising functions are well defined.

1. If 𝑟3 < 𝜄 ≤ 𝜄1, then 𝜄−𝑟31 ≤ 𝜄−𝑟3 ;

2. 𝜄𝑟1(𝜄 + 𝑟1)𝑟2 = 𝜄𝑟1+𝑟2 ;

3. If 0 < 𝑟3 < 1 and 𝜗 > 1, then
[

𝜄−𝑟3
]𝜗

≤
Γ(1 + 𝑟3𝜗)
[

Γ(1 + 𝑟3)
]𝜗 𝜄

−𝑟3𝜗, 𝜄 > 𝑟3𝜗.

Lemma 2. Under assumption 𝑏, 𝑥 and 𝑝 are positive constants with 𝑏 > 1 and 𝑝(𝑥 − 1) + 1 > 0 we obtain
𝜄

∑

𝜄1=1
(𝜄 − 𝜄1 + 1)𝑝(𝑥−1)𝑏𝑝𝜄1 ≤ 𝑄𝑏𝑝𝑡, 𝜄 ∈ ℕ1,

where
𝑄 =

( 𝑏𝑝

𝑏𝑝 − 1

)𝑝(𝑥−1)+1
Γ(𝑝(𝑥 − 1) + 1).

Lemma 3. (Young’s Inequality) [See11] If 𝑃 and 𝑄 are nonnegative, 1
𝛿
+ 1

𝜂
= 1, and 𝛿 > 1 then

𝑃𝑄 ≤ 1
𝛿
𝑃 𝛿 + 1

𝜂
𝑄𝜂 , (2.3)

where equality holds if and only if 𝑄 = 𝑃 𝛿−1.
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We denote

𝑚(𝜄) =

[

Θ𝜆
2(𝜄)

Θ𝛾
1(𝜄)

]

(

1
𝜆−𝛾

)

, (2.4)

and

𝐴(𝜄, 𝑐) =
𝜄

∑

𝜄1=𝑐+1
𝑑− 1

𝛽 (𝜄1). (2.5)

3 MAIN RESULTS

In this section, we provide sufficient conditions for which any non-oscillatory solution of (1.6) satisfies

|𝑦(𝜄)| = 𝑂
(

[

𝜄𝑛−1
]

1
𝛽 𝑏

𝜄
𝛽 𝐴(𝜄, 𝑐)

)

as 𝜄 → ∞.

Theorem 3.1. Under assumptions (𝑖) − (𝑖𝑖), 0 < 𝑥 < 1, 𝑝(𝑥 − 1) + 1 > 0 for 𝑝 > 1 and
∞
∑

𝜄1=𝑐+1
𝜁 𝑞(𝜄1)

[

𝜄𝑛−11

]𝑞
𝐴𝛽𝑞(𝜄1, 𝑐) < ∞, 𝑞 =

𝑝
𝑝 − 1

, (3.1)

lim
𝜄→∞

[

1
Γ(𝑥)

𝜄
∑

𝜄1=𝑐+1
(𝜄 − 𝜄1 + 1)𝑥−1 |

|

𝜂(𝜄1)||

]

< ∞, (3.2)

lim
𝜄→∞

[

1
Γ(𝑥)

𝜄
∑

𝜄1=𝑐+1
(𝜄 − 𝜄1 + 1)𝑥−1𝑚(𝜄1)

]

< ∞, (3.3)

every non-oscillatory solution of (1.6) satisfies

lim sup
𝜄→∞

|𝑦(𝜄)|
[

𝜄𝑛−1
]

1
𝛽 𝑏

𝜄
𝛽 𝐴(𝜄, 𝑐)

< ∞. (3.4)

Proof. Let 𝑦 be a non-oscillatory solution of (1.6), say 𝑦(𝜄) > 0 for 𝜄 ∈ ℕ𝜄1 for some 𝜄1 ∈ ℕ𝑐+1. Take 𝑧(𝑐) = 𝑐0. Letting
𝐹 (𝜄) = Φ(𝜄, 𝑦(𝜄)) − 𝜙(𝜄, 𝑦(𝜄)), it follows from (1.6) and (𝑖) − (𝑖𝑖), for 𝜄 ∈ ℕ𝑐 ,

∇𝑛−1 [𝑑(𝜄) (∇𝑦(𝜄))𝛽
]

= 𝑐0 +
1

Γ(𝑥)

𝜄
∑

𝜄1=𝑐+1
(𝜄 − 𝜄1 + 1)𝑥−1

[

𝜂(𝜄1) + 𝜁 (𝜄1)𝑦𝛽(𝜄1) + 𝐹 (𝜄1)
]

≤ |

|

𝑐0|| +
1

Γ(𝑥)

𝜄1
∑

𝜄1=𝑐+1
(𝜄 − 𝜄1 + 1)𝑥−1 |

|

𝐹 (𝜄1)|| +
1

Γ(𝑥)

𝜄
∑

𝜄1=𝑐+1
(𝜄 − 𝜄1 + 1)𝑥−1 |

|

𝜂(𝜄1)||

+ 1
Γ(𝑥)

𝜄
∑

𝜄1=𝜄1+1
(𝜄 − 𝜄1 + 1)𝑥−1

[

Θ2(𝜄1)𝑦𝛾 (𝜄1) − Θ1(𝜄1)𝑦𝜆(𝜄1)
]

+ 1
Γ(𝑥)

𝜄1
∑

𝜄1=𝑐+1
(𝜄 − 𝜄1 + 1)𝑥−1𝜁 (𝜄1)

|

|

|

𝑦𝛽(𝜄1)
|

|

|

+ 1
Γ(𝑥)

𝜄
∑

𝜄1=𝜄1+1
(𝜄 − 𝜄1 + 1)𝑥−1𝜁 (𝜄1)𝑦𝛽(𝜄1). (3.5)

Applying Lemma 3 to
[

Θ2(𝜄)𝑦𝛾 (𝜄) − Θ1(𝜄)𝑦𝜆(𝜄)
]

with

𝛿 = 𝜆
𝛾
> 1, 𝑋 = 𝑦𝛾 (𝜄), 𝑌 =

𝛾
𝜆
Θ2(𝜄)
Θ1(𝜄)

, 𝜂 = 𝜆
𝜆 − 𝛾

,
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we obtain

Θ2(𝜄)𝑦𝛾 (𝜄) − Θ1(𝜄)𝑦𝜆(𝜄) =
𝜆
𝛾
Θ1(𝜄)

[

𝑦𝛾 (𝜄)
𝛾
𝜆
Θ2(𝜄)
Θ1(𝜄)

−
𝛾
𝜆
(𝑦𝛾 (𝜄))

𝜆
𝛾

]

= 𝜆
𝛾
Θ1(𝜄)

[

𝑋𝑌 − 1
𝛿
𝑋𝛿

]

≤ 𝜆
𝛾
Θ1(𝜄)

[

1
𝜂
𝑌 𝜂

]

=
(

𝜆 − 𝛾
𝛾

)

Θ1(𝜄)
[

𝛾
𝜆
Θ2(𝜄)
Θ1(𝜄)

]
𝜆

𝜆−𝛾

= (𝜆 − 𝛾)
[

𝛾𝛾

𝜆𝜆

]

(

1
𝜆−𝛾

)

𝑚(𝜄). (3.6)

Substituting (3.6) into (3.5) and applying Lemma 1 (1), for 𝜄 ∈ ℕ𝑐 , we obtain

∇𝑛−1 [𝑑(𝜄) (∇𝑦(𝜄))𝛽
]

≤ |

|

𝑐0|| +
1

Γ(𝑥)

𝜄1
∑

𝜄1=𝑐+1
(𝜄1 − 𝜄1 + 1)𝑥−1 |

|

𝐹 (𝜄1)|| +
1

Γ(𝑥)

𝜄
∑

𝜄1=𝑐+1
(𝜄 − 𝜄1 + 1)𝑥−1 |

|

𝜂(𝜄1)||

+ 1
Γ(𝑥)

(𝜆 − 𝛾)
[

𝛾𝛾

𝜆𝜆

]

(

1
𝜆−𝛾

)

𝜄
∑

𝜄1=𝜄1+1
(𝜄 − 𝜄1 + 1)𝑥−1𝑚(𝜄1)

+ 1
Γ(𝑥)

𝜄1
∑

𝜄1=𝑐+1
(𝜄1 − 𝜄1 + 1)𝑥−1𝜁 (𝜄1)

|

|

|

𝑦𝛽(𝜄1)
|

|

|

+ 1
Γ(𝑥)

𝜄
∑

𝜄1=𝑐+1
(𝜄 − 𝜄1 + 1)𝑥−1𝜁 (𝜄1)𝑦𝛽(𝜄1). (3.7)

In view of (3.2) and (3.3), we see from (3.7) that, for 𝜄 ∈ ℕ𝑐 ,

∇𝑛−1 [𝑑(𝜄) (∇𝑦(𝜄))𝛽
]

≤ 𝐶𝑛−1 +
1

Γ(𝑥)

𝜄
∑

𝜄1=𝜄1+1
(𝜄 − 𝜄1 + 1)𝑥−1𝜁 (𝜄1)𝑦𝛽(𝜄1), (3.8)

where 𝐶𝑛−1 > 0 is defined by

𝐶𝑛−1 = |

|

𝑐0|| +
1

Γ(𝑥)

𝜄1
∑

𝜄1=𝑐+1
(𝜄1 − 𝜄1 + 1)𝑥−1 |

|

𝐹 (𝜄1)|| +
1

Γ(𝑥)

𝜄
∑

𝜄1=𝑐+1
(𝜄 − 𝜄1 + 1)𝑥−1 |

|

𝜂(𝜄1)||

+ 1
Γ(𝑥)

(𝜆 − 𝛾)
[

𝛾𝛾

𝜆𝜆

]

(

1
𝜆−𝛾

)

𝜄
∑

𝜄1=𝜄1+1
(𝜄 − 𝜄1 + 1)𝑥−1𝑚(𝜄1)

+ 1
Γ(𝑥)

𝜄1
∑

𝜄1=𝑐+1
(𝜄 − 𝜄1 + 1)𝑥−1𝜁 (𝜄1)

|

|

|

𝑦𝛽(𝜄1)
|

|

|

.
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By the integer order variation of constants formula, it follows from (3.8) that

𝑑(𝜄) (∇𝑦(𝜄))𝛽

≤
𝑛−2
∑

𝑘=0

(

∇𝑘 [𝑑(𝜄) (∇𝑦(𝜄))𝛽
])

𝜄=𝜄1−1
(𝜄 − 𝜄1 + 1)𝑘

Γ(𝑘 + 1)

+
𝜄

∑

𝑟=𝜄1

(𝜄 − 𝑟 + 1)𝑛−2

Γ(𝑛 − 1)

[

𝐶𝑛−1 +
1

Γ(𝑥)

𝑟
∑

𝜄1=𝜄1+1
(𝑟 − 𝜄1 + 1)𝑥−1𝜁 (𝜄1)𝑦𝛽(𝜄1)

]

≤
𝑛−2
∑

𝑘=0

|

|

|

(

∇𝑘 [𝑑(𝜄) (∇𝑦(𝜄))𝛽
])

𝜄=𝜄1−1
|

|

|

(𝜄 − 𝜄1 + 1)𝑘

Γ(𝑘 + 1)

+ 𝐶𝑛−1

𝜄
∑

𝑟=𝜄1

(𝜄 − 𝑟 + 1)𝑛−2

Γ(𝑛 − 1)

+
𝜄

∑

𝑟=𝜄1+1

(𝜄 − 𝑟 + 1)𝑛−2

Γ(𝑛 − 1)

[

1
Γ(𝑥)

𝑟
∑

𝜄1=𝜄1+1
(𝑟 − 𝜄1 + 1)𝑥−1𝜁 (𝜄1)𝑦𝛽(𝜄1)

]

=
𝑛−2
∑

𝑘=0

|

|

|

(

∇𝑘 [𝑑(𝜄) (∇𝑦(𝜄))𝛽
])

𝜄=𝜄1−1
|

|

|

(𝜄 − 𝜄1 + 1)𝑘

Γ(𝑘 + 1)

+ 𝐶𝑛−1
(𝜄 − 𝜄1 + 1)𝑛−1

Γ(𝑛)

+
𝜄

∑

𝜄1=𝜄1+1

[ 𝜄
∑

𝑟=𝜄1

(𝜄 − 𝑟 + 1)𝑛−2

Γ(𝑛 − 1)
(𝑟 − 𝜄1 + 1)𝑥−1

Γ(𝑥)

]

𝜁 (𝜄1)𝑦𝛽(𝜄1)

=
𝑛−1
∑

𝑘=0
𝐶𝑘

(𝜄 − 𝜄1 + 1)𝑘

Γ(𝑘 + 1)
+

𝜄
∑

𝜄1=𝜄1+1

(𝜄 − 𝜄1 + 1)𝑥+𝑛−2

Γ(𝑥 + 𝑛 − 1)
𝜁 (𝜄1)𝑦𝛽(𝜄1). (3.9)

Here
𝐶𝑘 =

|

|

|

(

∇𝑘 [𝑑(𝜄) (∇𝑦(𝜄))𝛽
])

𝜄=𝜄1−1
|

|

|

> 0, 𝑘 = 0, 1, 2,⋯ , 𝑛 − 2.
Note that (3.9) holds for 𝑛 = 1. Hence, (3.9) holds for all 𝑛 ∈ ℕ1 and for all 𝜄 ∈ ℕ𝜄1 . Next, we proceed to estimate (3.9) as

𝑑(𝜄) (∇𝑦(𝜄))𝛽 ≤
𝑛−1
∑

𝑘=0
𝐶𝑘

𝜄𝑘

Γ(𝑘 + 1)
+

𝜄
∑

𝜄1=𝜄1+1

(𝜄 − 𝜄1)𝑛−1(𝜄 − 𝜄1 + 𝑛)𝑥−1

Γ(𝑥 + 𝑛 − 1)
𝜁 (𝜄1)𝑦𝛽(𝜄1)

≤ 𝜄𝑛−1
[𝑛−1
∑

𝑘=0

𝐶𝑘

𝑘!
+ 1

Γ(𝑥 + 𝑛 − 1)

𝜄
∑

𝜄1=𝜄1+1
(𝜄 − 𝜄1 + 1)𝑥−1𝜁 (𝜄1)𝑦𝛽(𝜄1)

]

,

implying that

𝑑(𝜄) (∇𝑦(𝜄))𝛽 ≤ 𝜄𝑛−1
[

Θ1 + Θ2

𝜄
∑

𝜄1=𝜄1+1
(𝜄 − 𝜄1 + 1)𝑥−1𝜁 (𝜄1)𝑦𝛽(𝜄1)

]

, (3.10)

where

Θ1 =
𝑛−1
∑

𝑘=0

𝐶𝑘

𝑘!
> 0, Θ2 =

1
Γ(𝑥 + 𝑛 − 1)

> 0.
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Applying Lemmas 1-2 and Holder’s inequality to the sum on the far right in (3.10), we get
𝜄

∑

𝜄1=𝜄1+1
(𝜄 − 𝜄1 + 1)𝑥−1𝜁 (𝜄1)𝑦𝛽(𝜄1)

=
𝜄

∑

𝜄1=𝜄1+1

[

(𝜄 − 𝜄1 + 1)𝑥−1𝑏𝜄1
]

[

𝑏−𝜄1𝜁 (𝜄1)𝑦𝛽(𝜄1)
]

≤

( 𝜄
∑

𝜄1=𝜄1+1

[

(𝜄 − 𝜄1 + 1)𝑥−1
]𝑝

𝑏𝑝𝜄1
)1∕𝑝 ( 𝜄

∑

𝜄1=𝜄1+1
𝑏−𝑞𝜄1𝜁 𝑞(𝜄1)𝑦𝛽𝑞(𝜄1)

)1∕𝑞

≤

(

𝐴
𝜄

∑

𝜄1=𝜄1+1
(𝜄 − 𝜄1 + 1)𝑝(𝑥−1)𝑏𝑝𝜄1

)1∕𝑝 ( 𝜄
∑

𝜄1=𝜄1+1
𝑏−𝑞𝜄1𝜁 𝑞(𝜄1)𝑦𝛽𝑞(𝜄1)

)1∕𝑞

≤ (𝐴𝑄𝑏𝑝𝜄)1∕𝑝
( 𝜄

∑

𝜄1=𝜄1+1
𝑏−𝑞𝜄1𝜁 𝑞(𝜄1)𝑦𝛽𝑞(𝜄1)

)1∕𝑞

= (𝐴𝑄)1∕𝑝𝑏𝜄
( 𝜄

∑

𝜄1=𝜄1+1
𝑏−𝑞𝜄1𝜁 𝑞(𝜄1)𝑦𝛽𝑞(𝜄1)

)1∕𝑞

, (3.11)

where
𝐴 =

Γ(1 + (1 − 𝑥)𝑝)
[Γ(2 − 𝑥)]𝑝

.

Using (3.11) in (3.10), we obtain from (3.10) that

𝑑(𝜄) (∇𝑦(𝜄))𝛽 ≤ 𝜄𝑛−1𝑏𝜄𝜔(𝜄), (3.12)

where

𝜔(𝜄) = Θ1 +𝑀3

( 𝜄
∑

𝜄1=𝜄1+1
𝑏−𝑞𝜄1𝜁 𝑞(𝜄1)𝑦𝛽𝑞(𝜄1)

)1∕𝑞

,

with
𝑀3 = Θ2(𝐴𝑄)1∕𝑝 > 0.

We rewrite (3.12) as

∇𝑦(𝜄) ≤

(

𝜄𝑛−1𝑏𝜄𝜔(𝜄)
𝑑(𝜄)

)
1
𝛽

, 𝜄 ∈ ℕ𝜄1 . (3.13)

Noting that 𝜄𝑛−1, 𝑏𝜄, and 𝜔(𝜄) are all increasing, summing (3.13) from 𝜄1 + 1 to 𝜄 yields that

𝑦(𝜄) ≤ 𝑦(𝜄1) +
𝜄

∑

𝜄1=𝜄1+1

[

𝜄𝑛−11

]
1
𝛽 𝑏

𝜄1
𝛽 𝜔

1
𝛽 (𝜄1)𝑑

− 1
𝛽 (𝜄1)

≤ 𝑦(𝜄1) +
[

𝜄𝑛−1
]

1
𝛽 𝑏

𝜄
𝛽 𝜔

1
𝛽 (𝜄)

𝜄
∑

𝜄1=𝜄1+1
𝑑− 1

𝛽 (𝜄1)

= 𝑦(𝜄1) +
[

𝜄𝑛−1
]

1
𝛽 𝑏

𝜄
𝛽 𝜔

1
𝛽 (𝜄)𝐴(𝜄, 𝜄1)

=

⎛

⎜

⎜

⎜

⎝

𝑦(𝜄1)
[

𝜄𝑛−1
]

1
𝛽 𝑏

𝜄
𝛽 𝐴(𝜄, 𝜄1)

+ 𝜔
1
𝛽 (𝜄)

⎞

⎟

⎟

⎟

⎠

[

𝜄𝑛−1
]

1
𝛽 𝑏

𝜄
𝛽 𝐴(𝜄, 𝜄1)

≤
⎛

⎜

⎜

⎜

⎝

𝑦(𝜄1)
[

𝜄𝑛−12

]
1
𝛽 𝑏

𝜄2
𝛽 𝐴(𝜄2, 𝜄1)

+ 𝜔
1
𝛽 (𝜄)

⎞

⎟

⎟

⎟

⎠

[

𝜄𝑛−1
]

1
𝛽 𝑏

𝜄
𝛽 𝐴(𝜄, 𝜄1),
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holds for 𝜄 ∈ ℕ𝜄2 with 𝜄2 > 𝜄1. Thus,
𝑦(𝜄)

[

𝜄𝑛−1
]

1
𝛽 𝑏

𝜄
𝛽 𝐴(𝜄, 𝜄1)

≤ 𝑀4 + 𝜔
1
𝛽 (𝜄), 𝜄 ∈ ℕ𝜄2 , (3.14)

where
𝑀4 =

𝑦(𝜄1)
[

𝜄𝑛−12

]
1
𝛽 𝑏

𝜄2
𝛽 𝐴(𝜄2, 𝜄1)

.

Applying one of the elementary inequalities

(𝑦 + 𝑧)𝑞 ≤

{

2𝑞−1(𝑦𝑞 + 𝑧𝑞), 𝑞 ≥ 1,
𝑦𝑞 + 𝑧𝑞 , 0 < 𝑞 < 1,

(3.15)

with 𝑦, 𝑧 ≥ 0, to (3.14) gives
⎛

⎜

⎜

⎜

⎝

𝑦(𝜄)
[

𝜄𝑛−1
]

1
𝛽 𝑏

𝜄
𝛽 𝐴(𝜄, 𝜄1)

⎞

⎟

⎟

⎟

⎠

𝛽

≤ 𝑀5 +𝑀6𝜔(𝜄), 𝜄 ∈ ℕ𝜄2 , (3.16)

where 𝑀5 and 𝑀6 > 0 are defined by

𝑀5 =

{

2𝛽−1𝑀𝛽
4 , 𝑞 ≥ 1,

𝑀𝛽
4 , 0 < 𝑞 < 1,

(3.17)

and

𝑀6 =

{

2𝛽−1, 𝑞 ≥ 1,
1, 0 < 𝑞 < 1.

(3.18)

Recalling the definition of 𝜔(𝜄), from (3.16), we have that

⎛

⎜

⎜

⎜

⎝

𝑦(𝜄)
[

𝜄𝑛−1
]

1
𝛽 𝑏

𝜄
𝛽 𝐴(𝜄, 𝜄1)

⎞

⎟

⎟

⎟

⎠

𝛽

≤ 𝑀7 +𝑀8

( 𝜄
∑

𝜄1=𝜄1+1
𝑏−𝑞𝜄1𝜁 𝑞(𝜄1)𝑦𝛽𝑞(𝜄1)

)1∕𝑞

, (3.19)

holds for 𝜄 ∈ ℕ𝜄2 , where
𝑀7 = 𝑀5 + Θ1𝑀6 > 0, 𝑀8 = 𝑀3𝑀6 > 0.

Applying the inequality (3.15) to (3.19) gives

⎛

⎜

⎜

⎜

⎝

𝑦(𝜄)
[

𝜄𝑛−1
]

1
𝛽 𝑏

𝜄
𝛽 𝐴(𝜄, 𝜄1)

⎞

⎟

⎟

⎟

⎠

𝛽𝑞

≤ 𝑀9 +𝑀10

𝜄
∑

𝑟=𝜄1+1
𝑏−𝑞𝑟𝜁 𝑞(𝑟)𝑦𝛽𝑞(𝑟), (3.20)

holds for 𝜄 ∈ ℕ𝜄2 , where
𝑀9 = 2𝛽−1𝑀𝑞

7 > 0, 𝑀10 = 2𝛽−1𝑀𝑞
8 > 0.

Denoting the left-hand side of (3.20) by 𝑤(𝜄), (3.20) yields

𝑤(𝜄) ≤ 𝑀9 +𝑀10

𝜄
∑

𝜄1=𝜄1+1

[

𝜄𝑛−11

]𝑞
𝐴𝛽𝑞(𝜄1, 𝜄1)𝜁 𝑞(𝜄1)𝑤(𝜄1), (3.21)

holds for 𝜄 ∈ ℕ𝜄2 , and this can be rewritten as

𝑤(𝜄) ≤ 𝑀11 +𝑀10

𝜄
∑

𝜄1=𝜄2+1

[

𝜄𝑛−11

]𝑞
𝐴𝛽𝑞(𝜄1, 𝜄1)𝜁 𝑞(𝜄1)𝑤(𝜄1), (3.22)

holds for 𝜄 ∈ ℕ𝜄2 , where

𝑀11 = 𝑀9 +𝑀10

𝜄2
∑

𝜄1=𝜄1+1

[

𝜄𝑛−11

]𝑞
𝐴𝛽𝑞(𝜄1, 𝜄1)𝜁 𝑞(𝜄1)𝑤(𝜄1) > 0.

Using (3.1) and Gronwall’s inequality we have the conclusion of the theorem. The proof for eventually negative solution is
similar. So, we omit it here. Thus, the theorem is proved.
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Next, we consider 𝛽 = 1 and we provide sufficient conditions for which any non-oscillatory solution of (1.6) is bounded.

Theorem 3.2. Assume that (𝑖) − (𝑖𝑖), 0 < 𝑥 < 1, 𝑝(𝑥 − 1) + 1 > 0 for 𝑝 > 1 and (3.2) - (3.3) hold. Furthermore, assume that
there exist real numbers 𝑆 > 0 and 𝜏 > 1 such that

(

𝜄𝑛−1

𝑑(𝜄)

)

≤ 𝜄1𝑏
−𝜏𝜄 (3.23)

and ∞
∑

𝜄1=𝑐+1
𝑏−𝑞𝜄1𝜁 𝑞(𝜄1) < ∞, 𝑞 =

𝑝
𝑝 − 1

, (3.24)

hold, then all non-oscillatory solution of (1.6) is bounded.

Proof. Let 𝑦 be a non-oscillatory solution of (1.6), say 𝑦(𝜄) > 0 for 𝜄 ∈ ℕ𝜄1 for some 𝜄1 ∈ ℕ𝑐+1. Proceeding as in the proof of
Theorem 3.1, we get (3.13) when 𝛽 = 1. Since 𝜔 is increasing, summing (3.13) from 𝜄1 + 1 to 𝜄 yields

𝑦(𝜄) ≤ 𝑦(𝜄1) +
𝜄

∑

𝜄1=𝜄1+1

𝜄𝑛−11 𝑏𝜄1𝜔(𝜄1)
𝑑(𝜄1)

≤ 𝑦(𝜄1) +
𝜄

∑

𝜄1=𝜄1+1
𝑆𝑏(1−𝜏)𝜄1𝜔(𝜄1)

≤ 𝑦(𝜄1) + 𝑆𝜔(𝑡)
𝜄

∑

𝜄1=𝜄1+1
𝑏(1−𝜏)𝜄1

≤ 𝑦(𝜄1) + 𝑆𝜔(𝑡)
𝜄

∑

𝜄1=𝜄1+1

( 1
𝑏(𝜏−1)

)𝑠

= 𝑦(𝜄1) + 𝑆𝜔(𝑡)
(

𝑏(𝜏−1)

𝑏(𝜏−1) − 1

)[

( 1
𝑏(𝜏−1)

)𝜄1+1
−
( 1
𝑏(𝜏−1)

)𝜄+1]

= 𝑦(𝜄1) + 𝑆𝜔(𝑡)
( 1
𝑏(𝜏−1) − 1

)

[

( 1
𝑏(𝜏−1)

)𝜄1
−
( 1
𝑏(𝜏−1)

)𝜄]

≤ 𝑦(𝜄1) + 𝑆𝜔(𝑡)
( 1
𝑏(𝜏−1) − 1

)( 1
𝑏(𝜏−1)

)𝜄1
.

Using the definition of 𝜔, we obtain

𝑦(𝜄) ≤ 𝑀12 +𝑀13

( 𝜄
∑

𝜄1=𝜄1+1
𝑏−𝑞𝜄1𝜁 𝑞(𝜄1)𝑦𝑞(𝜄1)

)1∕𝑞

, (3.25)

for 𝜄 ∈ ℕ𝜄2 , where

𝑀12 = 𝑦(𝜄1) + Θ1𝑆
( 1
𝑏(𝜏−1) − 1

)( 1
𝑏(𝜏−1)

)𝜄1
> 0,

and
𝑀13 = 𝑀3𝑆

( 1
𝑏(𝜏−1) − 1

)( 1
𝑏(𝜏−1)

)𝜄1
> 0.

Using the inequality (3.15) to (3.25), we have

𝑦𝑞(𝜄) ≤ 𝑀14 +𝑀15

𝜄
∑

𝜄1=𝜄1+1
𝑏−𝑞𝜄1𝜁 𝑞(𝜄1)𝑦𝑞(𝜄1), (3.26)

for 𝜄 ∈ ℕ𝜄1 , where
𝑀14 = 2𝑞−1𝑀𝑞

12 > 0, 𝑀15 = 2𝑞−1𝑀𝑞
13 > 0.

Now, using (3.24) and Gronwall’s inequality we have the conclusion of the theorem. The proof for eventually negative solution
is similar. So, we omit it here. Thus, the theorem is proved.
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4 EXAMPLES

We conclude this paper with the following examples to illustrate our main results.

Example 1. Consider the equation

∇0.75
1∗

(

∇3(𝑒3𝜄 (∇𝑦(𝜄))3
))

+ 𝜙(𝜄, 𝑦(𝜄))

= (𝜄 − 1)−0.9 +
𝑦(𝜄)

𝜄(𝜄 + 1)(𝜄 + 2)𝑒𝜄∕2
+ Φ(𝜄, 𝑦(𝜄)), 𝜄 ∈ ℕ2. (4.1)

Here we have 𝑧(𝜄) = ∇3(𝑒3𝜄 (∇𝑦(𝜄))3
)

, 𝑛 = 4, 𝑥 = 0.75, 𝑐 = 1, 𝛽 = 3, 𝑑(𝜄) = 𝑒3𝜄, 𝜂(𝜄) = (𝜄 − 1)−0.9, 𝜁 (𝜄) = 1
𝜄(𝜄+1)(𝜄+2)𝑒𝜄∕2

, and

𝐴(𝜄, 𝑐) = 𝐴(𝜄, 1) =
𝜄

∑

𝜄1=2
𝑑− 1

3 (𝜄1) =
𝜄

∑

𝜄1=2
𝑒−𝜄1 = 1

𝑒(𝑒 − 1)

[

1 −
(1
𝑒

)𝜄−1]

≤ 1
𝑒(𝑒 − 1)

.

Clearly, condition (𝑖) holds. Let 𝑏 = 𝑒 and 𝑝 = 2. Clearly, 𝑝(𝑥 − 1) + 1 > 0. Also, we have 𝑞 = 2, and
∞
∑

𝜄1=𝑐+1
𝜁 𝑞(𝜄1)

[

𝜄𝑛−11

]𝑞
𝐴𝛽𝑞(𝜄1, 𝑐) ≤

1
𝑒2(𝑒 − 1)2

∞
∑

𝜄1=2
𝑒−𝜄1 < ∞,

implying that (3.1) holds.Considering 𝜙(𝜄, 𝑦(𝜄)) = Θ1(𝜄) |𝑦(𝜄)|
𝜆−1 𝑦(𝜄) and Φ(𝜄, 𝑦(𝜄)) = Θ2(𝜄) |𝑦(𝜄)|

𝛾−1 𝑦(𝜄) with 𝜆 > 𝛾 , Θ1(𝜄) =
Θ2(𝜄) = (𝜄 − 1)−0.9, we see (𝑖𝑖) holds. To Check (3.2), we assume

1
Γ(0.75)

𝜄
∑

𝜄1=1+1
(𝜄 − 𝜄1 + 1)0.75−1 |

|

𝜂(𝜄1)|| =
1

Γ(0.75)

𝜄
∑

𝜄1=2
(𝜄 − 𝜄1 + 1)0.75−1 ||

|

(𝜄1 − 1)−0.9||
|

= 1
Γ(0.75)

𝜄
∑

𝜄1=2
(𝜄 − 𝜄1 + 1)0.75−1(𝜄1 − 1)−0.9

= ∇−0.75
1 (𝜄 − 1)−0.9

=
Γ(1 − 0.9)

Γ(1 − 0.9 + 0.75)
(𝜄 − 1)−0.9+0.75

=
Γ(0.1)
Γ(0.85)

(𝜄 − 1)−0.15

≤ Γ(0.1)
Γ(0.85)

1−0.15

= Γ(0.1),

that is,

lim
𝜄→∞

[

1
Γ(0.75)

𝜄
∑

𝜄1=1+1
(𝜄 − 𝜄1 + 1)0.75−1 |

|

𝑒(𝜄1)||

]

< ∞.

Similarly, it is easy to verify that (3.3) holds. Therefore, all conditions of Theorem 3.1 are satisfied. Thus, every non-oscillatory
solution of (1.6) satisfies

lim sup
𝜄→∞

|𝑦(𝜄)|
[

𝜄3
]

1
2 𝑒

𝜄
2𝐴(𝜄, 1)

< ∞. (4.2)

Example 2. Consider the equation

∇0.5
1∗

(

∇2 (𝜄(𝜄 + 1)𝑒5𝜄
(

∇𝑣(𝜄)
)))

+ 𝜙(𝜄, 𝑦(𝜄))

= (𝜄 − 1)−0.75 + 𝑒2𝜄∕3𝑦(𝜄) + Φ(𝜄, 𝑦(𝜄)), 𝜄 ∈ ℕ2. (4.3)

Here we have 𝑧(𝜄) = ∇2 (𝜄(𝜄 + 1)𝑒5𝜄
(

∇𝑣(𝜄)
))

, 𝑐 = 1, 𝑥 = 0.5, 𝑛 = 3, 𝑑(𝜄) = 𝜄(𝜄 + 1)𝑒5𝜄, 𝑒(𝜄) = (𝜄 − 1)−0.75, and 𝜁 (𝜄) = 𝑒2𝜄∕3.
Hence, condition (𝑖) holds. Assuming 𝑏 = 𝑒, 𝜄1 = 1, and 𝜏 = 5, we find

(

𝜄2

𝑑(𝜄)

)

= 𝑒−5𝜄.



S. R. Grace ET AL 11

Therefore, (3.23) holds. Now, if we take 𝑝 = 3∕2 then we have 𝑞 = 3, and
∞
∑

𝜄1=𝑐+1
𝑏−𝑞𝜄1𝜁 𝑞(𝜄1) =

∞
∑

𝜄1=2
𝑒−3𝜄1𝑒2𝜄1 =

∞
∑

𝜄1=2
𝑒−𝜄1 = 1

𝑒(𝑒 − 1)
< ∞,

that is, (3.24) holds. Again if 𝜙(𝜄, 𝑦(𝜄)) = Θ1(𝜄) |𝑦(𝜄)|
𝜆−1 𝑦(𝜄) and Φ(𝜄, 𝑦(𝜄)) = Θ2(𝜄) |𝑦(𝜄)|

𝛾−1 𝑦(𝜄) with 𝜆 > 𝛾 , Θ1(𝜄) = Θ2(𝜄) =
(𝜄 − 1)−0.75 then it is easy to verify that condition (𝑖𝑖) holds. To check (3.2) holds, we assume

1
Γ(0.5)

𝜄
∑

𝜄1=1+1
(𝜄 − 𝜄1 + 1)0.5−1 |

|

𝜂(𝜄1)|| =
1

Γ(0.5)

𝜄
∑

𝜄1=2
(𝜄 − 𝜄1 + 1)0.5−1 ||

|

(𝜄1 − 1)−0.75||
|

= 1
Γ(0.5)

𝜄
∑

𝜄1=2
(𝜄 − 𝜄1 + 1)0.5−1(𝜄1 − 1)−0.75

= ∇−0.5
1 (𝜄 − 1)−0.75

=
Γ(1 − 0.75)

Γ(1 − 0.75 + 0.5)
(𝜄 − 1)−0.75+0.5

=
Γ(0.25)
Γ(0.75)

(𝜄 − 1)−0.25

≤ Γ(0.25)
Γ(0.75)

1−0.25

= Γ(0.25),

that is,

lim
𝜄→∞

[

1
Γ(0.5)

𝜄
∑

𝜄1=1+1
(𝜄 − 𝜄1 + 1)0.5−1 |

|

𝑒(𝜄1)||

]

< ∞.

Similarly, it is easy to verify that (3.3) holds. Therefore, all conditions of Theorem 3.2 are satisfied. Thus, every non-oscillatory
solution of (4.3) is bounded.

5 CONCLUSION

In this work, we established some new sufficient conditions for the non-oscillatory solutions of forced nabla fractional difference
equations with positive and negative terms. The results are developed in sense of Caputo nabla fractional difference operator
and by the help of Young’s inequality as well as an equivalent representation in form of a Volterra-type summation equation.
The results improved some existing results in the literature. Furthermore, examples are provided to support and illustrate the
applicability of the obtained results.
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