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Abstract

Geometrically, a complex dynamical network (CDN) can be regarded as the interconnected system composed of the node

subsystem (NS) and the link subsystem (LS) coupled with each other. Guided by this idea, in order to achieve the goal of each

node following asymptotically its own reference target in a CDN, this paper investigates the model following adaptive control

(MFAC) problem of NS via the dynamics of links, which implies that the LS plays the important dynamic auxiliary role in

the MFAC realization of nodes. Meanwhile, we focus on the condition that the links state information is unavailable, due to

sensor practical application and measurement cost constraints. To obviate this restriction, we construct the asymptotical state

observer for the LS. Next, to achieve the control goal of this paper, an appropriate Lyapunov candidate function is selected, by

which the MFAC scheme for NS is synthesized based on the state observer of LS. Finally, the simulation example is performed

to demonstrate the theoretical results in this paper.
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Summary

Geometrically, a complex dynamical network (CDN) can be regarded as the inter-
connected system composed of the node subsystem (NS) and the link subsystem (LS)
coupled with each other. Guided by this idea, in order to achieve the goal of each
node following asymptotically its own reference target in a CDN, this paper investi-
gates the model following adaptive control (MFAC) problem of NS via the dynamics
of links, which implies that the LS plays the important dynamic auxiliary role in the
MFAC realization of nodes. Meanwhile, we focus on the condition that the links state
information is unavailable, due to sensor practical application and measurement cost
constraints. To obviate this restriction, we construct the asymptotical state observer
for the LS. Next, to achieve the control goal of this paper, an appropriate Lyapunov
candidate function is selected, by which the MFAC scheme for NS is synthesized
based on the state observer of LS. Finally, the simulation example is performed to
demonstrate the theoretical results in this paper.

KEYWORDS:
Complex dynamical network (CDN), model following adaptive control (MFAC), the state observer of
links.

1 INTRODUCTION

A complex dynamical network (CDN) can be viewed geometrically as a graph-theoretic model consisting of dynamically inter-
acting nodes and links between nodes, which can be used to describe many practical scenes in the real-world, for example, social
networks1, biological neural networks2, transportation networks3, cellular and metabolic networks4, etc. Therefore, in order to
better understand the structure and function of real networks, considerable attention has been devoted to the study of CDN from
various science and engineering fields including physics, mathematics, bioinformatics, management science, and so on5,6.
From the perspective of large-scale systems, and exploit the relevant knowledge of graph theory, a CDN can be seen as an

interconnected system consisting of node subsystem (NS) and link subsystem (LS) coupled with each other. Since NS and LS
assist and influence each other, the complete dynamic characteristics (DCs) of the CDN should be reflected in two aspects, one
is the NS, and the other is the LS. Most of the current studies on the DCs of the CND were mainly on the DCs of nodes, for
instance, consensus7, synchronization8, tracking9, etc. In fact, all the links are regarded wholly as the dynamic system (LS),
and thus it also has some DCs, and some theoretical results have emerged to explain this in recent years, such as, structural
balance10,11, and so on.

0Abbreviations: ANA, anti-nuclear antibodies; APC, antigen-presenting cells; IRF, interferon regulatory factor



2 Li ET AL

According to the above view for the existing literature, the synchronization and tracking control of CDN can be regarded as
the collective dynamic behavior of nodes with the assistance of links. The synchronization of CDN means that all nodes tend
to be in the same state, while tracking usually means that all nodes tracking the given single time signal, and many mature
theoretical research results have been achieved in this field12,13. However, it is worth noting that under the background of some
practical engineering applications, each node requires its own following target with the dynamic assistance of links, and the
following target has its own internal dynamics. It can be seen that the synchronization and tracking control do not meet this
requirement. For instance, the formation control of multiple non-holonomic wheeled mobile robots14,15,16, in which each robot
is considered as a controlled node, the reference model is the path it follows, and the information exchange between robots is
considered as the links. The grid-connected generator17, in the power grid, after the grid-connected generator sets, according
to the requirements (reference target), each generator set (controlled node) needs to adjust and optimize its output speed and
voltage in real time. The generator sets are connected by high-voltage transmission lines (links). Multiple robots present a certain
physical dynamic posture according to their respective reference robots (reference target), and there exist the communication
protocol (links) between robots18, etc. From the viewpoint of control theory on the CDN, the above problems can be regarded
as the model following adaptive control (MFAC) problem of nodes assisted by the links dynamics.
MFAC as one type important method in control theory, which can adaptively adjust the controller gain to ensure the stability

of the system, and has the advantages of flexibility, adaptability and robustness. Therefore, it has attracted extensive attention
on many scholars and has been applied in numerous fields19,20,21,22,23. Such as, Landau et al. [19] applied MFAC to optimal
control theory to solve the difficulty of constructing system performance indicators. Zhang et al. [21] applied MFAC to the
robot mechanism and designed a suitable control scheme, so that the robot mechanism could achieve the expected movement.
Shyu et al. [22] for the single-phase shunt active power filter, propose the MFAC scheme to improve line power factor and to
reduce line current harmonics. However, it is worth noting that the above-mentioned studies on MFAC are conducted on the
single system and are limited by the model matching conditions. On the other hand, although literature [17] studied the MFAC
problem of NS in CDN, it did not consider the important dynamic auxiliary role played by links, which should not be ignored.
Because the dynamic change of links can promote the controlled nodes to emerge some DCs, for example, the synchronization
and tracking24,25. Accordingly, inspired by the above discussions, this paper proposes the MFAC problem of NS in CDN via the
links dynamics, which can be used to fill the insufficiencies above mentioned.
In addition, the issues should be considered that the state information of links in CDN is usually unavailable, due to the

sensor limitations of technology and measurement cost in engineering applications. For example, the synapse strength between
neurons in biological neural network26,27; the competition intensity changes between species in biological communities28,29;
the information exchange between swarming or flocking robots30,31 etc. As far as we know, in order to solve the problem that
the state information of the links is unavailable in the CDN, two processing methods have emerged in the existing literature.
The first method is to construct the dynamic auxiliary tracking targets of links firstly, then use the state information of auxiliary
targets for links to design an appropriate control scheme for NS, then promote the nodes to emerge the required DCs through
mutual coupling25,32. Another method is to design an asymptotical state observer for links33, and use the state information of
observer to achieve required control target. Guided by the above involved methods, when studying the MFAC of NS in CDN via
the links dynamics, this paper adopts the second method to solve the problem that the state information of links is unavailable.
That is, an asymptotical state observer of links is firstly designed, then use the state information of observer to assist nodes to
achieve the MFAC goal.
Sum up the above discussions, this paper investigates the MFAC problem of NS in CDN based on the state observer of links.

In this paper, the CDN is considered to be an interconnected system composed of NS and LS coupled with each other, where
exploit the vector differential equation and Riccati matrix differential equation to establish the dynamics model of the NS and
the LS, respectively. Based on the constructed mathematical model, in the case that the nodes state information is available but
the links state information is unavailable, an asymptotical state observer of links is constructed firstly, then according to the
Lyapunov stability theory, give some mathematical assumptions, and use the state information of observer to synthesize the
MFAC scheme for NS, so as to accomplish the asymptotically following between the NS and its reference target. Compared with
the most existing works on study for CDN, this paper has the following contributions. (1). This paper mainly studies the MFAC
problem of nodes in CDN, and discusses the auxiliary role of links dynamics in the realization of this goal. (2). Compared with
the existing literature on synchronization and tracking control for CDN, the main distinctive point of MFAC in this paper is that
each node in CDN has its own reference following target with the assistance of links dynamics, and the reference target also
has its own internal dynamics. (3). In this paper, an asymptotical state observer for links is designed to overcome the technical
difficulty that its state information is usually unmeasurable precisely. (4). Compared with MFAC on single system, this paper
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does not require strict model matching conditions (e. g. Erzeberger conditions19), only simple mathematical assumptions need
to be satisfied, due to the useful coupling information between NS and LS.
The structure of the rest of this paper is as follows. In Section 2, we propose the mathematical model for CDN, which is con-

sidered to be formed by the mutual coupling of the NS and the LS, and give relevant mathematical assumptions. In Section 3,
construct the asymptotical state observer of LS. In Section 4, design the MFAC scheme for NS in CDN with the state informa-
tion of links observer to achieve its MFAC target. The illustrate example is given in Section 5 to validate the correctness and
effectiveness of the proposed control scheme in this paper. Give the conclusion in Section 6.

2 MODEL DESCRIPTION OF CDN AND GIVE THE RELEVANT MATHEMATICAL
ASSUMPTIONS

Consider the time-varying controlled CDN withN nodes, and the dynamics of each controlled isolated node is depicted by

żi = Azi + fi(zi, t) + ui (1)

where zi = [zi1, zi2,… , zin]T ∈ Rn is the state variable of the ith node, fi(zi, t) = [fi1(zi, t), fi2(zi, t),… , fin(zi, t)]T ∈ Rn is the
continuous vector function,A ∈ Rn×n is the constant matrix, and the control input of the ith node ui = [ui1, ui2,… , uin]T ∈ Rn,
i = 1, 2,… , N .
In consideration of the mutual coupling among nodes, the model of the ith controlled nodes can be depicted by

żi = Azi + fi(zi, t) + �
N
∑

j=1
lji(t)Hj(zj , t) + ui (2)

where lji(t) denotes the time-varying link weight from the jth node pointing to the ith node, and the self-connection l
ii
(t) is

allowed in this paper. � ∈ R represents the common coupling strength, the continuous inner coupling vector functionHj(zj , t) =
[ℎj1(zj , t), ℎj2(zj , t),… , ℎjn(zj , t)]T ∈ Rn, i, j = 1, 2,… , N .
Assumption 1. Consider Equation (2), Hj(zj , t) is known and bounded, the constant matrix A is unknown. The continuous

vector function fi(zi, t) is unknown but bounded, that is to say, there exist N known nonnegative continuous functions �i(zi, t)
such that ‖

‖

fi(zi, t)‖‖ ≤ �i(zi, t), where ‖∙‖ represents the Euclidean norm of vector or matrix ’∙’, i, j = 1, 2,… , N .
In order to make the mathematical derivation concise, introduce the following vector and matrices symbols, z =

[z1T , z2T ,… , zNT ]T ∈ RnN , Z = [z1, z2,… , zN ] ∈ Rn×N , F = F (z, t) = [f1(z1, t), f2(z2, t),… , fN (zN , t)] ∈ Rn×N ,
H = H(z, t) = [H1(z1, t),H2(z2, t),… ,HN (zN , t)] ∈ Rn×N , L = L(t) = [lji(t)]N×N ∈ RN×N , U = [u1, u2,… , uN ] ∈ Rn×N .
Therefore, according to the abovementioned symbols, Equation (2) can be rewritten as follows.

Ż = AZ + F (z, t) + �HL + U (3)

Remark 1. (a). Different from the processing method of NS in the Refs. [24,25,32], this paper introduces the matrix form
Z in Equation (3) to describe the state of NS for MFAC research. This helps simplify mathematical analysis and synthesizing
controller. (b). The constant matrixA in this research is unknown, which is different from the researches on synchronization and
tracking control of CDN in the Refs. [34,35,25]. (c). If Assumption 1 holds, then the following inequality is true.

‖F (z, t)‖ =

√

√

√

√

N
∑

i=1

‖

‖

fi(zi, t)‖‖
2 ≤ �(z, t) (4)

where �(z, t) =

√

N
∑

i=1
�i(zi, t)

2.

The following vector differential equation is given as the model following target for the ith node (2).

żri = Arzri + Bruri (5)

where zri = [zri1, zri2,… , zrin]T ∈ Rn is the reference state of the ith node, the reference input of the ith node uri =
[uri1, uri2,… , urim]T ∈ Rm, Ar ∈ Rn×n and Br ∈ Rn×m are the known constant matrices.
Likewise, for the convenience of mathematical derivation, we rewrite Equation (5) as the following matrix differential

equation.
Żr = ArZr + BrUr (6)
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where Zr = [zr1, zr2,… , zrN ] ∈ Rn×N , Ur = [ur1, ur2,… , urN ] ∈ Rm×N .
Assumption 2. Consider Equation (5), the known constant matrix Aris the Hurwitz matrix.
Remark 2. (a). It is usually assumed that the system matrix of the reference model is the Hurwitz matrix, which is a basic

assumption19,22,23, when studying the MFAC of the controlled plant. Therefore, Assumption 2 in this paper is reasonable. (b).
It is easy to see that if Assumption 2 holds, then we can get the following Lyapunov equation.

Ar
TT + TAr = −S (7)

where S ∈ Rn×n is a given symmetric positive definite matrix, and T ∈ Rn×n is the corresponding symmetric positive definite
matrix solution to the above equation.
In this paper, we regard all links as a dynamic subsystem, which called LS. Therefore, we propose the following Riccati matrix

differential equation to describe the dynamics of the LS.
{

L̇ = PL + Φ(z)
Y = ΥL

(8)

whereP ∈ RN×N is a constant matrix, Y ∈ Rm×N is the output statematrix of LS,Υ ∈ Rm×N is the output matrix,Φ(z) ∈ RN×N
denotes the coupling term with states of the nodes.
Assumption 3. Consider the LS (8), the matrix pair (P ,Υ) is completely observable.
Remark 3. (a). If Assumption 3 holds, then there exists a matrix K ∈ RN×m such that matrix P + KΥ is a Hurwitz matrix.

That is to say, for any given symmetric positive definite matrixQ ∈ RN×N , the following Lyapunov equation have corresponding
symmetric positive definite matrix solutionW ∈ RN×N .

(P +KΥ)TW +W (P +KΥ) = −Q (9)

(b). The matricesK andW in the above Lyapunov Equation (9) can be obtained by solving the following linear matrix inequality
P TW + WP + R1 + R1T < 0, in which KΥ = W −1R1. The specific method of solving the above matrices can refer to
the following steps given by the toolbox Matlab: Define the variables W and R1 = W (KΥ) ∈ RN×N ; Then describe the
linear matrix inequality P TW +WP + R1 + R1T < 0, in which W > 0; End the description of the linear matrix inequality
with the command getlmis and name it lmis; Call the solver feasp in the linear matrix inequality; converting the values of the
determination variables into the form of matrix to obtain matricesW and R1; then according to R1 = W (KΥ) withW is the
invertible matrix, we can obtain that KΥ = W −1R1 25,36,37.

3 DESIGN THE ASYMPTOTICAL STATE OBSERVER OF THE LS

In most practical engineering applications, due to the measurement cost and sensor technical limitations, the weight values of
the links are usually can’t be directly and accurately measured by suitable sensors, that is, the state information of the LS is
unavailable. This increases the difficulty of the related control scheme design. To this end, it is necessary to design an asymp-
totical state observer for LS to make estimate values of its state information is available. We give the definition of asymptotical
state observer as follows.
Definition 133. Consider LS (8) and a given dynamic system ̇̂L = G(L̂, Y , Z), in which if state L̂ can be measured and

L − L̂
t→+∞
←←←←←←←←←←←←←←←←←←←←←←←→ ON×N , where ON×N denotes the N × N dimension zero matrix, then the given dynamic system is called an

asymptotical state observer for LS (8).
Assumption 4. The coupling term Φ(z) in LS (8) satisfies Φ(z) = W −1ΥTΓ(z), in which, Γ(z) ∈ Rm×N and ‖Γ(z)‖ ≤ �(z),

�(z) is the known function.
Remark 4. (a). Assumption 4 is the matching condition required to design an asymptotical state observer for LS (8), which

corresponds to thematching conditions requiredwhen design the asymptotical state observer for nonlinear system in the literature
[33,38,39]. (b). By Assumption 4, it can be clearly seen that the coupling termΦ(z) in LS (8) is related to the symmetric positive
definite matrixW , the output matrix Υ and the state of nodes. In which, the matrixW is determined by the Lyapunov equation
(9), the matrix Υ can be selected in the engineering application, and the state information of nodes is available. Hence, the form
of the coupling term given in Assumption 4 is reasonable.
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According to Definition 1 and combined with Assumption 4, propose the following asymptotical state observer for LS (8).
{

̇̂L = P L̂ + Ψ(Ŷ , Y , z) −K(Y − Ŷ )
Ŷ = ΥL̂

(10)

where L̂ represents the estimated value of the state L in LS (8), the robust term Ψ(Ŷ , Y , z) =
{

�(z)W −1ΥTΩ, Ŷ ≠ Y
0, Ŷ = Y

, and

Ω = Y−Ŷ
‖
Y−Ŷ

‖

.
The observer estimation error of the LS is defined as EL = L − L̂. According to Equations (8) and (10), we can obtain the

following formula.

ĖL =L̇ −
̇̂L

=PL + Φ(z) − P L̂ − Ψ(Ŷ , Y , z) +K(Y − Ŷ )
=PL + Φ(z) − P L̂ − Ψ(Ŷ , Y , z) +KΥL −KΥL̂
=(P +KΥ)(L − L̂) + Φ(z) − Ψ(Ŷ , Y , z)
=(P +KΥ)EL + Φ(z) − Ψ(Ŷ , Y , z) (11)

Lemma 1. If Assumptions 3 and 4 hold, then the dynamic system (10) is the asymptotical state observer of LS (8).
Proof. Refer to the results in Ref. [24], the tr{ELTWEL} is a positive definite function about the element EL with the matrix

W is the positive definite symmetric matrix. Choose the positive definite function V1 = tr{ELTWEL}. It is well known that
tr{CD} = tr{DC}, tr{C +D} = tr{C} + tr{D}, a = tr{a}, tr{CT } = tr{C}, tr{CD} ≤ ‖C‖ ⋅ ‖D‖ hold for any matrices C
and D with compatible dimensions, and a is any real number. Then its trajectory derivative with time along the error dynamic
Equation (11) can be obtained as follows.

V̇1 =tr{ĖT
LWEL + ELTW ĖL}

=tr{[(P +KΥ)EL + Φ(z) − Ψ(Ŷ , Y , z)]TWEL} + tr{ELTW [(P +KΥ)EL + Φ(z) − Ψ(Ŷ , Y , z)]}
=tr{ELT [(P +KΥ)TW +W (P +KΥ)]EL} + 2tr{ELTWΦ(z)} + 2tr{−ELTW Ψ(Ŷ , Y , z)}

=tr{−ELTQEL} + 2tr{ELTWW −1ΥTΓ(z)} + 2tr{−ELTW �(z)W −1ΥT Y − Ŷ
‖

‖

‖

Y − Ŷ ‖‖
‖

}

≤ − tr{ELTQEL} + 2 ‖‖ΥEL‖‖ ⋅ ‖Γ(z)‖ − 2�(z) ⋅ ‖‖ΥEL‖‖
= − tr{ELTQEL} + 2 ‖‖ΥEL‖‖ ⋅ [‖Γ(z)‖ − �(z)]
≤ − tr{ELTQEL}
≤0 (12)

Further, according to the inequality (12), which show that V̇1 is the negative definite function about EL, therefore, the error
dynamic system (11) is asymptotically stable in the Lyapunov sense, that is to say, lim

t→+∞
EL → ON×N . This completes the proof

of Lemma 1.

4 DESIGN THE MFAC SCHEME FOR NS BASED ON THE STATE OBSERVER OF LINKS

The model following adaptive error of NS is defined as ei = zi − zri and in matrix form as E = Z − Zr, where E =
[e1, e2,… , eN ] ∈ Rn×N , i = 1, 2,… , N . By using these definitions, the error dynamic equation of NS can be obtained as follows.

Ė =Ż − Żr

=AZ + F (z, t) + �HL + U − ArZr − BrUr
=ArE + �HEL + (A − Ar)Z + F (z, t) + �HL̂ + U − BrUr (13)

The control objective. Consider the controlled CDN with (2) and (8), the following model of the ith node is proposed as (5).
Suppose that the state zi of NS is available and the state L of LS is unavailable. By employing the asymptotical state observer
(10) of LS (8), design the adaptive model following controller for the NS (2) such that the NS can achieve MFAC target, that is
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lim
t→+∞

ei = OnN×1, which is equivalent to lim
t→+∞

E = On×N . Furthermore, the other involved variables are ensured to be bounded.
OnN×1 and On×N denote nN × 1 dimension zero vector and n ×N dimension zero matrix, respectively.

Proposing the following matrix signal function sign(TE) =

{ TE
‖
ET T

‖

, E ≠ On×N
On×N , E = On×N

, where the positive definite matrix T is

determined by Equation (7). It is easily known that tr{ETT sign(TE)} = ‖

‖

ETT ‖
‖

.
By Assumption 1, the matrix A in the controlled NS is unknown, therefore, we denote Gp∗ = A−Ar, the control gain matrix

Gp represents an estimate of Gp∗, the controller gain estimation error matrix Ĝp = Gp −Gp∗. Then in order to achieve the above
proposed control objective, we synthesize the following MFAC scheme for NS.

U = −GpZ + BrUr − �HL̂ − �(z, t)sign(TE) (14)

with the following adaptive law.
Ġp = ΔpTEZT (15)

where Δp ∈ Rn×n is the adjustable positive definite symmetric matrix.
Substituting the MFAC scheme (14) into the error dynamic equation (13) of NS, we can obtain the following equation.

Ė =ArE + �HEL + (Gp∗ − Gp)Z + F (z, t) − �(z, t)sign(TE)
=ArE + �HEL − ĜpZ + F (z, t) − �(z, t)sign(TE) (16)

Remark 5. Equation (14) gives the clearly structure of the MFAC scheme for NS and is divided into four parts. The first part
−GpZ is the state feedback of the nodes, in which Gp is the estimated value matrix of the matrix A − Ar, and can be adjusted
adaptively through the adaptive law (15). The second part −�HL̂ is the state feedback based on the asymptotical state observer
for LS, and L̂ is determined by Equation (10). The third part BrUr is related to the reference model of NS and all information is
known. The fourth part −�(z, t)sign(TE) is the robust term, which is used to overcome the nonlinear bounded uncertainty term
in the dynamics of NS.
Theorem 1. Consider the controlled CDN with Equation (2) and (8), the reference model of the ith node is given by Equation

(5). If Assumptions 1-4 and the inequality ‖H‖ < min
{

"�min(S)
�‖T ‖

, �min(Q)
�"‖T ‖

}

are satisfied, in which " > 0 is an adjustable parameter,
�min(S) and �min(Q) represent the minimum eigenvalues of matrices S and Q, respectively. Propose the asymptotical state
observer (10) for LS (8), then by employing the designed MFAC scheme (14) and (15), the NS in CDN can achieve the MFAC
target.
Proof. Consider the positive definite function V = V (t) = tr{ETTE}+ tr{ĜT

p Δp
−1Ĝp}+V1, where T ∈ Rn×n is determined

by Equation (7). If Assumptions 1-4 hold, by employing the asymptotical state observer (10) of LS (8), and the MFAC scheme
(14) and (15) for NS. Then the orbit derivative of V = V (t) along the error dynamic systems (11) and (16) can be obtained by
the following equation.

V̇ =tr{ĖTTE} + tr{ETT Ė} + tr{ ̇̂Gp
T
Δp−1Ĝp} + tr{ĜT

p Δp
−1 ̇̂Gp} + V̇1

=tr{[ArE + �HEL − ĜpZ + F (z, t) − �(z, t)sign(TE)]TTE}
+ tr{ETT [ArE + �HEL − ĜpZ + F (z, t) − �(z, t)sign(TE)]}

+ tr{ ̇̂Gp
T
Δp−1Ĝp} + tr{ĜT

p Δp
−1 ̇̂Gp} + V̇1

=tr{ET (ArTT + TAr)E} + tr{�ELTHTTE + �ETTHEL} + tr{−ZT ĜT
p TE − E

TT ĜpZ}

+ 2tr{ETT [F (z, t) − �(z, t)sign(TE)]} + 2tr{ ̇̂Gp
T
Δp−1Ĝp} + V̇1

= − tr{ETSE} − tr{ELTQEL} + 2tr{�ETTHEL}

+ 2tr{−ZETT Ĝp} + 2tr{
̇̂Gp
T
Δp−1Ĝp} + 2tr{ETT [F (z, t) − �(z, t)sign(TE)]}

≤ − tr{ETSE} − tr{ELTQEL} + 2tr{�ETTHEL}

+ 2tr{( ̇̂Gp
T
Δp−1 −ZETT )Ĝp} + 2

‖

‖

‖

ETT ‖‖
‖

⋅ [‖F (z, t)‖ − �(z, t)]

≤ − tr{ETSE} − tr{ELTQEL} + 2tr{�ETTHEL}

≤ − �min(S)‖E‖
2 − �min(Q)‖‖EL‖‖

2 + 2� ‖T ‖ ⋅ ‖H‖ ⋅ ‖E‖ ⋅ ‖
‖

EL‖‖
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≤ − �min(S)‖E‖
2 − �min(Q)‖‖EL‖‖

2 + 2� ‖T ‖ ⋅ ‖H‖ ⋅ [ 1
2"

‖E‖2 + "
2
‖

‖

EL‖‖
2]

= − ‖E‖2[�min(S) −
�
"
‖T ‖ ⋅ ‖H‖] − ‖

‖

EL‖‖
2[�min(Q) − �" ‖T ‖ ⋅ ‖H‖] (17)

Denote �1 = �min(S) −
�
"
‖T ‖ ⋅ ‖H‖, �2 = �min(Q) − �" ‖T ‖ ⋅ ‖H‖, then we can obtain that the following formula.

V̇ = −�1‖E‖
2 − �2‖‖EL‖‖

2 (18)

If inequality ‖H‖ < min
{

"�min(S)
�‖T ‖

, �min(Q)
�"‖T ‖

}

is satisfied, then �1 > 0 and �2 > 0. Therefore, we can obtain that V̇ ≤ 0
through Equation (18), which means that V̇ is the semi-negative definite function about elementsE,EL, Ĝp. Thus, we can know
that the model following adaptive error E of the NS , the state observer estimation error EL of the LS and the controller gain
estimation error matrix Ĝp are bounded. Furthermore, according to the above obtained results with Equations (11) and (16), it
can be clearly seen that ĖL and Ė are also bounded. Therefore, by the Barbalat Lemma40, we can obtain that lim

t→+∞
EL = ON×N

and lim
t→+∞

E = On×N , where the latter is equivalent to lim
t→+∞

ei = OnN×1. Therefore, the NS in CDN can achieve the MFAC target
which is shown in Theorem 1.
Remark 6. In order to apply Theorem 1 to achieve the MFAC of NS in CDN, we give the following steps.
Step (i). Give the controlled CDN composed with (2) and (8), the reference model of the ith node is given by Equation (5).

Then rewrite Equations (2) and (5) as Equations (3) and (6), respectively.
Step (ii). Determine the Hurwitz constant matrix Ar, constant matrix Br, the reference input matrix Ur, the inner coupling

matrix functionH(z, t), the common coupling strength �, the known nonnegative continuous function �(z, t)which satisfied the
inequality (4), the output matrix Υ, and the adjustable positive definite symmetric matrix Δp.
Step (iii). Obtain the matrices T , K , andW from Lyapunov Equations (7) and (9), respectively. Then substituting the above

parameters into the proposed asymptotical state observer (10) for LS (8), and construct the model following adaptive controller
of NS shown as Equations (14) and (15).
Step (iv). By adjusting the parameter ", make the inequality ‖H‖ < min

{

"�min(S)
�‖T ‖

, �min(Q)
�"‖T ‖

}

is satisfied. Then the MFAC of
NS can be implemented, that is to say, the state zi of NS can asymptotically following the state zri of the reference model. At
the same time, the other involved parameters can also be guaranteed to be bounded.

5 THE NUMERICAL SIMULATION

A simulation example with practical engineering application background is given to verify the theoretical results. Consider the
CDN with N (N = 20) nodes, in which, the dynamics of each isolated node is depicted by the 2-DOF (Degree of Freedom)
(n = 2) helicopter41, and the communication between helicopters is seen as links. Consequently, propose the following equation
as the dynamic model of the 2-DOF helicopter is shown below, i = 1, 2,… , N .

Jp�̈i +Dp�̇i +Kspi�i = KppiVpi +KpyiVyi (19)

Ju ̈i +Dy ̇i = KypiVpi +KyyiVyi (20)
where �i and i denote the pitch angle and yaw angle of the ith 2-DOF helicopter, respectively. Vpi andVyi denote the control input
voltages to the DC-motors that control the pitch and yaw propellers of the ith 2-DOF helicopter, respectively. The definitions of
the remaining parameters are given in Table 1.
In this simulation, we mainly discuss the speed following of pitch and yaw for the N 2-DOF helicopters. Therefore, let us

consider the speed state vector zi = [�̇i,  ̇i]T and the control input vi = [Vpi, Vyi]T , then Equations (19) and (20) can be combined
and expressed as follows.

żi = G−1Dzi + G−1gi(zi, t) + G−1Kivi (21)

where gi(zi, t) = [−Kspi�i, 0]T , the 2-order matrices G =
[

Jp 0
0 Ju

]

, D =
[

−Dp 0
0 −Dy

]

and Ki =
[

Kppi Kpyi
Kypi Kyyi

]

.

In this paper, we consider the given communication protocol �
N
∑

j=1
lji(t)Hj(zj , t), where lji(t) denote the communication

strength from the jth 2-DOF helicopter to the ith 2-DOF helicopter, and the dynamics of which is given by Equation (8).
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Therefore, Equation (21) can be rewritten as.

żi = G−1Dzi + G−1gi(zi, t) + �
N
∑

j=1
lji(t)Hj(zj , t) + G−1Kivi (22)

By using these transformations A = G−1D, fi(zi, t) = G−1gi(zi, t) and ui = G−1Kivi, Equation (22) can be expressed in
the form of Equation (2). In this simulation, according to the literature [41], the definition and selection of the above involved
parameters shown in Table 1.

Symbol Parameter Value Unit
Jp Moment of Inertia about the pitch axis 0.0215 kg.m2

Ju Moment of Inertia about the yaw axis 0.0215 kg.m2

Kspi Stiffness about the pitch axis 0.0374 + 0.0001sin(it) N.m∕rad
Dp Pitch viscous friction constant 0.0071 N.m.s∕rad
Dy Yaw viscous friction constant 0.0220 N.m.s∕rad
Kppi Thrust-torque gain acting on pitch axis from pitch propeller 0.0011 + 0.0001sin(it) N.m∕V
Kyyi Thrust-torque gain acting on yaw axis from yaw propeller 0.0022 + 0.0001sin(it) N.m∕V
Kpyi Thrust-torque gain acting on pitch axis from yaw propeller 0.0021 + 0.0001sin(it) N.m∕V
Kypi Thrust-torque gain acting on yaw axis from pitch propeller −0.0027 + 0.0001sin(it) N.m∕V

TABLE 1 The definition and selection of the ith 2-DOF helicopter parameters.

The speed reference model of pitch and yaw for the ith 2-DOF helicopter is given by Equation (6). Based on the above
description, in this paper, the simulation is completed with Matlab Toolbox. The reference input uri, the matrices Br, Ar in
Equation (6), the matrices P , Υ in Equation (8), and the common coupling strength �, the continuous inner coupling vector
functionHj(zj , t) in Equation (2) are given by the following rules, respectively.
(i). Let uri = rand(1)

[

sin(uri1�t), sin(uri2�t), sin(uri3�t)
]T , in which uri1, uri2 and uri3 are randomly generated in the interval

[0, 3], and Br = lrand(n, m) (m = 3), where l is an adjustable parameter.
(ii). Give a diagonal matrix Ξ = diag(�1, �2,… , �n), where �1, �2,… , �n are negative real numbers randomly selected in the

range [−3,−1]. Then, randomly generate an n-order invertible matrix by using the command M = &randn(n, n) with & is an
adjustable parameter. Therefore, the Hurwitz matrix Ar = M−1ΞM.
(iii). Use the command ‘randn’ to generate matrices P and Υ randomly, and each element in which is required to be any real

number in the range [−1, 2].
(iv). � is randomly selected within [0, 1], andHj(zj , t) = [5 cos(zj1zj2), 5 cos(zj1zj2)]T , j = 1, 2,… , N .

FIGURE 1 The speed following target curves zri of 2-DOF helicopters.

Apart from this, the matrices T andW are obtained by solving the Lyapunov Equations (7) and (9), respectively, in which,
the matrix S = 100 ∗ eye(n, n). The initial states of the nodes and the links are chosen as zi(0) = randn(n, 1), the state matrices
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FIGURE2 (a). The communication strength curvesL between 2-DOF helicopters. (b). The observer curves L̂ of communication
strength between 2-DOF helicopters. (c). The communication strength observer error curves L− L̂ between 2-DOF helicopters.

FIGURE 3 (a). The speed curves zi of 2-DOF helicopters without controller. (b). The speed following error curves zi − zri of
2-DOF helicopters without controller.

Z(0) = [z1(0), z2(0),… , zN (0)] ∈ Rn×N , and L(0) = randn(N,N), i = 1, 2,… , N . According to the above parameters
selection, using the asymptotical state observer (10) for LS (8) designed in this paper and the control scheme (14) and (15) for
NS (3), we can obtain the following simulation results shown in Figs.1-5.
By analyzing the simulation results in Figs 1-5, we can make the following observations.
(i). In Fig.2, it can be seen that the state error between the communication strength (8) between 2-DOF helicopters and the

observer (10) designed for it can quickly approach 0 with time. This fully demonstrates the effectiveness of the designed observer
in this paper.
(ii). Fig.3 shows that the speeds of 2-DOF helicopters cannot asymptotically follow the given speed following targets without

controller. Conversely, Fig.4 shows that the speed following errors of 2-DOF helicopters can gradually converge to 0 with
controller. Therefore, the effectiveness of the controller designed in this paper is illustrated in conjunction with Figs. 3 and 4.
(iii). From Fig. 2 (a) and Fig. 4, it is observed that when the speeds of 2-DOF helicopters achieve the MFAC target, that

is, when the speeds of 2-DOF helicopters asymptotically following the given reference speeds, there also exists information
exchange between the 2-DOF helicopters, and its communication strength change curves are reflected by (a) in Fig. 2.
(iv). From Fig. 5, we can obtain that the gain estimation matrix in controller is bounded, which is required in the control goal

of this paper.
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FIGURE 4 (a). The speed curves zi of 2-DOF helicopters with controller. (b). The speed following error curves zi − zri of
2-DOF helicopters with controller.

FIGURE 5 The norm curve of controller gain estimation matrix Gp.

6 CONCLUSION

This paper mainly focuses on the design of the state observer for LS and the synthesis of the controller for NS based on the links
state estimation value to realize the MFAC of NS in CDN. Firstly, the dynamics models of NS and LS are established, which
are described by the vector differential equation and the Riccati matrix differential equation, respectively. Then, under some
mathematical assumptions, the asymptotical state observer of LS is designed so that its state estimation information is available.
Furthermore, based on the state estimation information of LS, combined with the Lyapunov stability theory to synthesize the
adaptive controller of NS, so that the NS can asymptotically follow the given reference target, that is, the NS realizes MFAC.
Finally, according to the obtained simulation results, the effectiveness of the state observer for LS and the controller for NS
designed in this paper is illustrated. By using the observer state information of the LS, the LS can be directly controlled, therefore,
a related problem is how to design the control scheme for LS to realize the MFAC of LS, which needs to be further discussed
in the future work.
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