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Abstract

Species distribution patterns are essential for the conservation of biodiversity. The aim of this study was to evaluate the influence
of multiple ecological hypotheses on the spatial patterns of rodent species richness in China. First, we divided the geographic
region of China into 80 × 80 km2 grid cells and mapped the distribution ranges of the 237 rodent species. Rodent taxa were
separated into three response variables based on their distribution: (a) all species, (b) non-endemic species, and (c) endemic
species. The predictors were divided into four factor sets: (a) energy-water, (b) climatic seasonality, (c) habitat heterogeneity,
and (d) human factors, which were used to represent four different ecological hypotheses. We then performed multiple regression
analysis (OLS), spatial autoregressive models (SAR), and variation partitioning analyses to determine the effects of predictors
on the spatial patterns of rodent species. The Hengduan Mountains and surrounding mountains in southwest China showed
the highest species richness and endemism. Habitat heterogeneity is the most important factor explaining the species richness
distribution patterns across all species and non-endemic species. Endemic species richness patterns are most susceptible to
seasonal changes in climate and least affected by human factors. The effects of energy and water on the three response variables
showed consistent levels of importance.
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Abstract

Species distribution patterns are essential for the conservation of biodiversity. The aim of this study was
to evaluate the influence of multiple ecological hypotheses on the spatial patterns of rodent species richness
in China. First, we divided the geographic region of China into 80 × 80 km2 grid cells and mapped the
distribution ranges of the 237 rodent species. Rodent taxa were separated into three response variables
based on their distribution: (a) all species, (b) non-endemic species, and (c) endemic species. The predictors
were divided into four factor sets: (a) energy-water, (b) climatic seasonality, (c) habitat heterogeneity, and
(d) human factors, which were used to represent four different ecological hypotheses. We then performed
multiple regression analysis (OLS), spatial autoregressive models (SAR), and variation partitioning analyses
to determine the effects of predictors on the spatial patterns of rodent species. The Hengduan Mountains
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and surrounding mountains in southwest China showed the highest species richness and endemism. Habitat
heterogeneity is the most important factor explaining the species richness distribution patterns across all
species and non-endemic species. Endemic species richness patterns are most susceptible to seasonal changes
in climate and least affected by human factors. The effects of energy and water on the three response variables
showed consistent levels of importance.

Keywords

rodents, environmental gradients, endemic species, richness patterns, spatial autoregressive model

1 Introduction

Large-scale spatial distribution patterns of species richness and their formation mechanisms are central
to ecology and biogeography. It is also the basic scale for measuring regional diversity and the basis for
constructing evolutionary and ecological models and conservation strategies (Gotelli & Colwell, 2001; Jenkins,
Pimm & Joppa, 2013; D’Antraccoli et al., 2019). The prediction of species ranges can usually be achieved in
three ways: collection or surveyed species distribution record points, expert mapping of species distributions,
and the ranges inferred from species distribution models (Guisan & Thuiller, 2005). At present, species
distribution models (SDM) are frequently used in studies on species distribution prediction because of their
relative flexibility and better discriminatory and predictive power. SDM can use the relationship between
species distribution points and local environmental variables to predict the potential distribution areas of
species (Zhang et al., 2019; Abdulwahab, Hammill & Hawkins, 2022; Sanczuk et al., 2022). China is a vast
territory, and covering all biological surveys is challenging. Therefore, SDM can guide future field surveys to
a certain extent, provide references for further exploration and discovery of species distribution, and provide
a scientific basis for the formulation of species protection measures (Nguyen & Leung, 2022). Among the
simulation methods of various distribution models, the maximum entropy model uses environmental variables
and species distribution sites to calculate constraints in the case of a small sample size. It explores the possible
distribution of maximum entropy under this constraint to predict the habitat suitability of species in the
study area, resulting in better simulation results than other models (Wang et al., 2021).

How the interactions of the modern environment, evolutionary history, and ecological processes shape the
patterns of species richness remains an interesting but controversial issue in biogeography. Ecologists have
been trying to determine the effects of various environmental variables on the distribution and diversity of
organisms in different ecological regions. The factors determining richness patterns are critical for under-
standing the structure and dynamics of organisms in an area (Holt et al., 2018). Species are not randomly
distributed over the land surface; rather, their distribution patterns are based on climate, topography, and
anthropogenic influences in recent decades (Li et al., 2015; Xu et al., 2019). Consequently, various theories
and hypotheses have been developed to explain how geographical patterns of species richness are formed.

The energy-water hypothesis is the most common and discussed hypothesis for explaining species richness
patterns (Hawkins et al., 2003; Pandey et al., 2020). This hypothesis states that the availability of energy and
water determines the total plant resources that control biological activity and that total plant resources, in
turn, determine changes in biodiversity (Jimenez-Alfaro et al., 2016). Second, habitat heterogeneity, another
form of environmental variation that affects the production and maintenance of diversity, is considered
one of the most important factors controlling species richness gradients. Increased space and shelter and
opportunities for isolation and adaptation enhance species coexistence, persistence, and diversification (Stein,
Gerstner & Kreft, 2014; Stein et al., 2015). Third, seasonal changes in climate and unsystematic changes in
daily maximum and minimum temperatures increase organisms’ tolerance levels by altering their thermal
environments, enabling them to become geographically widespread (Mi et al., 2022). Finally, human-induced
environmental changes, such as habitat fragmentation, land-use changes, and disturbances, can lead to
habitat loss for species (Li et al., 2015; Xu et al., 2019). These hypotheses explore the main factors influencing
species richness formation based on different influencing factors.

Some studies have tested a single hypothesis (Sun et al., 2020), whereas others have tested multiple hypotheses
(Gebauer et al., 2018; Ding et al., 2019; Pandey et al., 2020). A single variable or hypothesis is limited in
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its interpretation of species richness distribution patterns because it is a multiple-complex phenomenon that
determines species richness distribution patterns. Thus, multiple modeling approaches are best suited for
quantifying the contribution of various hypotheses to spatial richness distribution patterns. In the context
of global biodiversity loss and concomitant climate change, attempts have been made to determine the
relationships between species populations and their determinants (Xu et al., 2019; Pandey et al., 2020; Sun
et al., 2020). Some studies have explained the distribution patterns of the regional richness of rodents in China
(Zhou, Ma & Ye, 2002; Xing, Zhou & Ma, 2008) but have not considered the mechanisms that determine
richness patterns. Chi et al. (2020, 2021) studied the distribution pattern of terrestrial mammal abundance
in China and its relationship with environmental factors. Such studies include rodents in mammals, which
inevitably do not fully consider their distribution pattern, resulting in studies that do not fully reflect the
distribution pattern of rodents. Moreover, few studies have been on the richness distribution patterns of
endemic and non-endemic rodent groups in China. Endemic species are those found only in specific locations
or regions, not anywhere else in the world. They are usually restricted to a limited geographic range, with
small ranges and population sizes, and sometimes with low genetic diversity and specific habitat requirements
(Myers et al., 2000; Isik, 2011). Multiscale drivers and geographic distribution patterns of endemic species
are also important topics in conservation biogeography because these species are particularly vulnerable
to climate change and habitat degradation (Wu et al., 2016). It has been shown that there is a lack of
consistency between all species richness or non-endemic species richness and endemic species richness (Orme
et al., 2005; Lamoreux et al., 2006). Areas with high species richness may have many endemic species but
not necessarily coherent patterns (Vetaas & Grytnes, 2002).

Therefore, we attempted to explore the geographic distribution pattern of rodents (Rodentia and Lagomor-
pha) in China. We divided rodent species into endemic and non-endemic species and assumed that the factors
affecting endemic and non-endemic species distribution are different. We investigated the relative import-
ance of energy-water, climatic seasonality, habitat heterogeneity, and human factors that may contribute to
the distribution patterns of rodents in China. The main objectives of this research were to (1) explore the
distribution pattern of rodents and their endemic and non-endemic species and (2) assess the explanatory
power of energy-water, habitat heterogeneity, climate seasonality, and human factors for rodent distribution
patterns in China.

2 Materials and methods

2.1 Study area

The study encompassed all of China’s land mass, including Taiwan and Hainan Island, but excluded the
surrounding oceans and islets. Chinese mammalian fauna belongs to the Palearctic and Oriental realms,
which can be further subdivided into seven biogeographic subregions (i.e., northeast China, north China,
Inner Mongolia-Xinjiang region, Qinghai-Tibet region, southwest China, central China, and south China).
These ecogeographic zones have high species diversity and many endemic animal species, including rodents.
The present study divided the Chinese territory into a grid system of 80 × 80 km2 to eliminate the influence
of spatial scale or area on species distribution patterns. Grids with less than 75% of the complete grid
included in the study area were removed to prevent the incomplete grids in the coastline and boundary areas
from affecting the subsequent statistical analysis. A total of 1672 grids were obtained.

2.2 Distribution pattern calculation

We compiled a database of rodent species distribution in China. Species distribution data were obtained
mainly from the following sources: 1) the research results of Zhou et al. (2002) and Xing et al. (2008); 2)
National Zoological Museum of China, NZMC; 3) Global Biodiversity Information Facility (GBIF); and 4)
distribution and collection records available in books or literature (Jiang et al., 2015; Ge et al., 2018; Liu et
al., 2019; Li et al., 2019; Cheng et al., 2021; Jackson et al., 2022). After removing null values, offset values,
and redundant data from the distribution records, 237 species of rodents in two orders were included in the
analysis of this study. There were 67 endemic and 170 non-endemic species (Jiang et al., 2015; Wei et al.,
2021) (Table S1).
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. MaxEnt (v3.4.1) was used for ecological niche modeling (ENM) of potential rodent habitat areas in Chi-
na. Considering that the MaxEnt model requires at least five different coordinate values for each species
to produce more accurate results, six points were used as the minimum criteria for calculating species dis-
tribution in this study. The potential habitats of 210 rodent species with six or more distribution points
were simulated using ENM to determine the potential species richness of rodents in China. Based on the
characteristics of distribution data and rodent habits, 26 environmental variables were selected. The five
categories of predictors were climate, topography, vegetation, soil, and human activity intensity (Table S2).
Chinese administrative vector boundaries were obtained from the Data Center for Resources and Environ-
mental Sciences at the Chinese Academy of Sciences (RESDC) (http://www.resdc.cn) and converted to 1
km2resolution.

The correlation of environmental variables was detected using the ENMTools (Warren et al., 2021) package in
R 4.0.5 (http://www.r-project.org). The variables that were not highly correlated (r < 0.7) were used in the
model prediction to reduce the complexity of the model (Table S2). The percentage of random test data was
set to 25%, 10 sub-models were generated using the bootstrap function of the MaxEnt model, and the average
of the output of the 10 sub-models on each image element was calculated as the final prediction result of
the species. Because each species has a different degree of tolerance to the environment, the suitable habitat
threshold for each species was divided based on the critical value of the available distribution records. The
growth suitability at each sampling point was extracted from the plot of the calculated growth suitability.
The standard deviation σ and mean value μ were calculated according to the theory of normal distribution,
μ-σ was selected as the threshold value, transforming the species distribution probability maps into 0/1
binary distribution maps. The model accuracy was evaluated using receiver operating characteristic (ROC)
curves. The area enclosed by the ROC curve and horizontal axis is the AUC value (Hanley & McNeil, 1982),
which can be used to measure the strengths and weaknesses of the model. For species with predicted AUC
values less than 0.8, the MaxEnt model was optimized using the ENMeveal package in R (Muscarella et al.,
2014), and the model was run again.

The distribution ranges for the 27 species with less than six recorded distribution points defaults to the grids
where the distribution points were located. The distribution range layer was converted into a 0/1 binary
distribution map. Finally, the binary distribution map of 237 species was superimposed on the grid map,
and the number of species appearing in a single grid was counted to obtain the species richness distribution
map.

2.3 Analysis of influencing factors of the species richness pattern

2.3.1 Environment variables

Based on previous studies and the four hypotheses, we selected 12 environmental predictors in four categories
to evaluate the hypotheses explaining the distribution pattern of rodent species richness in China. The
hypotheses and their associated variables are

1. Energy-water: the availability of energy and water can be measured using many indicators, such
as temperature, precipitation, and solar radiation (Pandey et al., 2020). We selected annual mean
temperature (MAT), annual precipitation (DVL), potential evapotranspiration (PET), and actual
evapotranspiration (AET) as substitute variables. We extracted MAT and DVL from the World-
Clim (https://worldclim.org/) database as measures of temperature and water effectiveness vari-
ables, PET and AET were obtained from the Global Land Evaporation Amsterdam Model (GLEAM)
(https://www.gleam.eu/).

2. Habitat heterogeneity: the mean elevation (MELV), elevation range (ELR), and the number of vege-
tation types (VEG) within a single grid, the most commonly used predictors to represent information
on habitat heterogeneity, were selected as habitat heterogeneity factors. These values were obtained
from the RESDC.

3. Climate seasonality: temperature seasonality (TES), annual temperature range (ART), and precip-
itation seasonality (PRS) were used as proxies for short-term climate seasonality. All factors were
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. obtained from the WorldClim database download.
4. Human factors: we used the human impact index (HII) and human footprint index (HFI) as proxy

variables representing human-induced effects. The HII and HFI data were downloaded from the archives
of the Wildlife Conservation Society (http://sedac.ciesin.colum bia.edu/data/).

2.3.2 Data analysis

Species richness was defined as the number of species in each cell grid. Species richness data usually show
non-normal distribution. The species richness data were square root transformed before regression analysis
to avoid the impact of skewed data distribution on statistical analysis. We used a simple regression analysis
of all species richness, non-endemic species richness, and endemic species richness for each environmental
variable to explore the potential mechanisms of individual factors in explaining the distribution patterns of
species richness.

To evaluate the relative importance of the predictive variables, we separated the environmental factors into
four distinct predictor sets based on our main research objectives: (a) energy-water (EW), (b) climatic
seasonality (CS), (c) habitat heterogeneity (HH), and (d) human factors (HE). Because all predictors were
highly correlated, we eliminated collinearity by performing a principal component analysis (PCA) in each
prediction set. The squared term of the predictor variable was included in the principal component analysis,
considering the nonlinear relationship between the response variable and environmental factors. We extracted
the first two principal components of each prediction set, which accounted for 94% of energy-water, 87% of
habitat heterogeneity, 99% of climatic seasonality, and 99% of human factors (Table S3).

To make the model coefficients comparable, the principal components extracted from all factor sets were
standardized (standard deviation = 1 and mean = 0). Multiple linear regression used ordinary least squares
(OLS) to determine the most appropriate predictors that explain the richness of the three response variables.
We followed the variable backward selection method to identify the optimal model. The optimal linear
regression model was determined using the stepAIC function in R in combination with the Akaike Information
Criterion (AIC). Variance inflation factors (VIF) were used to test for multicollinearity between predictor
variables, and we selected predictors with VIF < 5 (Dormann et al., 2013) (Table S4). Because spatial
autocorrelation affects the explanatory power of regression models, the spatial autocorrelation of the residuals
of multiple regression models was assessed using Moran’s I method. Because the residuals of the multiple
regression models all had significant spatial autocorrelation (p< 0.001), the spatial linear simultaneous
autoregressive error model (SAR) was further developed using the predictor variables from the optimal
model. The explanatory power of the predictor variables for species richness was measured using Pseudo-
R2(the square of the correlation coefficient between the predicted and actual values of the model for the
non-spatial component) (Kissling & Carl, 2007). The relative importance between the predictor variables
was also compared using standard regression coefficients.

Finally, we performed variance partitioning to assess the pure effects of the predictor variables and their
joint contributions to better explain the distribution patterns of species richness. Wayne diagrams were used
to show various factor sets’ pure and shared effects.

Statistical analysis for this study was performed in R 4.0.5 (http://www. r-project.org). The ”psych” package
was used for principal component analysis, the ”MASS” package for optimal model selection, the ”vegan”
package for variance partitioning, and the ”spedep” package for spatial autoregressive model building.

3 Results

3.1 Species richness patterns of all species of rodents

Rodents are widely distributed in China and are recorded in almost every grid; however, their spatial
distribution is uneven. All species (n = 237) of rodents occurred in 1665 grids, and the species richness
in each grid was between 0 and 84 (mean: 31.39 ± 16.51 SD) species (Figure 1a; Table S5). The highest
abundance of rodent species in China was found in the subtropical and tropical regions of the oriental
realm, with the Hengduan Mountains being the most abundant region, followed by the Qilian Mountains
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. and Tianshan Mountains regions. In addition, Taiwan and Hainan Island also have high species richness.
The species richness was the lowest in the Qinghai-Tibet Plateau and Tarim Basin regions, with only a few
species in most grids.

The simple regression results showed that, when considering the effect of individual factors, all species
richness was highly significantly correlated with each environmental factor (p < 0.001). The two most relevant
variables were VEG and AET (Figure 2a, b; Table S6).

Regarding the relationship between the predictor set and all species richness, the best model was explained by
a set of five variables (EW1+CS1+HH1+HE1+HE2). The multiple regression model (OLS) explained 71%
of the total variation in rodent species richness. Due to the removal of the effect of spatial autocorrelation
by the spatial autoregressive model (SAR), the degree of explanation was reduced to 64% (Table 1). As
shown in Table 1, the importance of each variable in explaining the species richness pattern varied slightly
across the regression models, but the difference was not significant. Both the regression models showed
that HH1 and HE1 were the most important predictors. The variance partitioning results showed that the
four predictor sets explained 71.7% of the variance in the total species richness. The habitat heterogeneity
predictor set explained 48.94% of the variation in all species richness patterns, followed by human factors
(42.30%), energy-water (28.79%), and climatic seasonality (18.30%) (Figure 3a, b; Table S7)

3.2 Patterns of non-endemic species richness

Non-endemic species (n = 170) accounted for 71.7% of all species and were found in 1,659 grids. Their
distribution in each grid ranges from 0–58 (mean: 25.65 ± 12.06 SD) species (Figure 1b; Table S5). The
species richness distribution pattern of non-endemic species was similar to that of all rodent species. The
Southern Hengduan Mountains, Qilian Mountains, Tianshan Mountains, and Altai Mountains had high non-
endemic species richness. Similar to all species, species richness was low in the Tibetan Plateau and Tarim
Basin regions.

The analysis of non-endemic species richness and individual environmental factors showed that VEG and
AET had the greatest impact on the non-endemic species richness pattern. This result was the same for all
the species (Figure 2c, d; Table S6).

The best model for predicting non-endemic species richness comprised three predictor sets of five variables
(EW1+ HH1+ HH2+ HE1+ HE2). OLS and SAR explained 70% and 61% of the non-endemic species
richness (Table 1), respectively. As with the results for all species, both regression models showed that HH1
and HE1 were the most important predictors. However, OLS showed that, in addition to the two factors
mentioned above, EW1 is equally important. In variance partitioning, all four predictor sets explained 70.10%
of the variance in defining the richness patterns of non-endemic species. Non-endemic species richness was
significantly correlated with the habitat heterogeneity predictor set, explaining 51.21% of the variation. This
was followed by human factors (50.42%), the energy-water predictor set (27.67%), and the climate seasonality
predictor set (13.14%) (Figure 3a, c; Table S7).

3.3 Patterns of endemic species richness

Endemic (n = 67) species were found in 1430 grids, approximately 28.27% of all species. Endemic species
richness in each grid ranged from 0–33 (mean: 5.75 ± 6.54 SD) species (Figure 1c; Table S5). The distri-
bution of endemic species is mainly concentrated in the Hengduan Mountains and the surrounding areas.
However, their distribution in the north is rare, and only a few endemic species have adapted to high-latitude
environments.

Unlike all species and non-endemic species, when a single factor acted, TES and ART had the highest effect
on endemic species richness (Figure 2e, f; Table S6).

Finally, regarding the relationship between the distribution pattern of endemic species richness and predictor
sets, the best prediction model contained seven variables (EW1+EW2+CS1+CS2+HH1+HE1+HE2). OLS
and SAR explained 65% and 53% of the total variation. The importance of the variables in explaining the
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. endemic species richness pattern differed significantly between the two regression models (Table 1). In OLS,
CS1 dominates overwhelmingly and is positively correlated with CS2. However, HH1 and CS1 were equally
important and negatively correlated with CS2 in SAR. In variance partitioning, 65.58% of the variance was
explained by the four predictor sets. The largest variation in endemic species richness was the total effect
of the climatic seasonal predictor set, explaining 45.89% of the variation. The habitat heterogeneity set and
energy-water predictor sets explained 32.44% and 15.14% of the variation in the endemic species richness
pattern, respectively. The human factor predictor set explained the lowest variance (6.03%) (Figure 3a, d;
Table S7).

4 Discussion

Species richness, including that of rodents, is characterized by spatial heterogeneity (Gaston, 2000). The
results of this study indicate that there is a wide variety of rodents, including endemic species, in the
Hengduan Mountains and surrounding areas of Southwest China. The Hengduan Mountain area is considered
an ecological corridor between the Palaearctic and Oriental realms, connecting the northern and southern
fauna. It is an important center for the origin of species (Wu et al., 2016). This may explain why southwest
China has the highest level of endemism. Southwest China is rich in plant resources and has a complex
topography and a high degree of habitat heterogeneity. The area’s climate ranges from tropical to temperate
and is dominated by high temperatures and abundant precipitation (Liu et al., 2015; Shrestha et al., 2017).
These findings may contribute to the diversity of rodents in China. In comparison, the extreme climatic
conditions of the Qinghai-Tibet Plateau, Tarim Basin, and northern China may limit the distribution of
species intolerant to climatic factors (Hu et al., 2017; Ding et al., 2019). The results show that the border
areas of China’s Yunnan, Sichuan, and Tibet autonomous regions, especially the Qionglai, Yunling, Minshan,
and Gaoligong mountain systems in the Hengduan Mountains, have the highest richness values of all studied
areas due to their diverse topography, hydrothermal conditions, and habitats. The distribution pattern of
rodent species richness may be explained by a combination of habitat heterogeneity, climate seasonality,
energy-water, and human factors (Figure 3).

The close relationship between species richness and habitat heterogeneity and the variance partitioning
results showed that habitat heterogeneity is the most influential predictor variable for describing the species
richness of all and non-endemic rodent species in China. It is also an important factor in the richness
distribution pattern of endemic species. Habitat heterogeneity is considered the most critical factor in shaping
biological distribution patterns. Habitat variation creates a microhabitat for species reproduction by creating
dramatic changes in climate and habitat differentiation on a small scale, enabling species to coexist locally
(Carmignotto et al., 2022). Southwest China has a variety of hydrothermal conditions and habitats that
result from a combination of topographic changes caused by elevation differentiation (Huang et al., 2011;
Liu et al., 2015). As a result, the site had the highest richness values for rodent species. In this study, we
used the elevation range as one of the main predictors of habitat heterogeneity, arguably the best indicator
of topographic variation. Meanwhile, southwest China is also the richest region in terms of plant species
(Shrestha et al., 2017; Dakhil et al., 2019; Sun et al., 2020; Pandey et al., 2020). Abundant plant resources
provide a large amount of food for rodents and a suitable shelter for unfavorable climatic conditions (Barreto,
et al., 2019). In addition, the Qinghai-Tibet Plateau’s uplift has profoundly changed the geomorphology of
mainland China, mountains, ravines, and canyons, resulting in huge mountain height differences. Quaternary
ice sheet intrusion drives rodent migration from higher to lower elevations, and the cyclical effects of warming
cause rodents to return to higher elevations (Barreto et al., 2019). Faunas that cannot migrate can only adapt
to the differentiation of low- and medium-altitude environments, thus causing high endemic species richness
in rodents. In addition, highly heterogeneous tropical and subtropical mountain ranges may be cradles of
biodiversity and thus dominate in terms of species richness and concentrations of endemic species with narrow
distributions.

The results showed that climatic seasonality is the dominant factor in the distribution patterns of endemic
species of rodents in China. Conversely, it explained the least of all the species and non-endemic species rich-
ness patterns. This suggested that seasonal temperature changes have a profound effect on endemic species
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. richness (Penjor et al., 2022). Previous research has also identified a significant role of climate seasonality in
maintaining patterns of species richness in endemic species of small mammals (Amori et al., 2011; Wu et al.,
2013; Hu et al., 2017). The temperature in China fluctuates widely, with more extreme temperatures in the
north than in the south. This might be an important factor in northern China’s restricted distribution of
endemic species. Our findings support the theory of tropical niche conservation and the inability of endemic
rodent species to adapt to northern environments. Their ability to migrate from south to north is consistent
with our findings (Romdal et al., 2013). This seasonality in southwest China creates stable climatic condi-
tions for endemic species to survive under harsh conditions. Araújo et al. (2008) and Dakhil et al. (2019)
reported the significant role of climate stability during the warmest season of the Quaternary glaciation.
Climatic stability is an ecological indicator of the range stability of subtropical fauna in the high-altitude
regions of southwest China, including the eastern Tibetan Plateau (Thuiller, 2004; Huang et al., 2011). Due
to climate variability and the unsystematic variation in daily maximum and minimum temperatures, mo-
difying the thermal environment experienced by rodents to increase the body’s tolerance level enables them
to be widely distributed geographically.

Our results also revealed the importance of anthropogenic variables in the distribution patterns of total
and non-endemic species. However, its effect on endemic species richness was minimal. Thus, it can be
expected that anthropogenic activities will significantly impact the distribution of rodents. Anthropogenic
activities can drive the contraction and expansion of species. Many species have lost significant areas of
distribution owing to increased land use and other human activities (Ceballos & Ehrlich, 2002; Di Marco
& Santini, 2015). Human activities have also contributed to the range expansion of many other species,
and many regional native species have experienced increased range through human-mediated dispersal and
the ability to thrive in anthropogenic landscapes (Li et al., 2015). However, endemic species have more
specialized habitat requirements, are concentrated in specific geographic areas, and may deviate ecologically
from a wide range of species (Tomašových & Jablonski, 2016). Therefore, the anthropogenic impact on
rodent endemics is limited. However, endemic species are confined to limited areas, and their habitats are
often fragile and highly susceptible to reduction or even disappearance by external factors. Therefore, we
cannot ignore human-interference scenarios. In southwest China, anthropogenic disturbances, such as natural
resource exploitation, tourism, and land use change, are gradually increasing, accelerating the impact of
human activities on wildlife. Therefore, protecting this center of species richness and endemism is a big
challenge.

On a large scale, energy-water did not have a significant direct relationship with the distribution pattern
of rodent species richness in China. This finding differs slightly from Hu et al. (2017) and Wu et al. (2013)
at the local scale. The spatial pattern of species richness and the importance of biotic and abiotic predictor
variables in influencing species richness may depend to a large extent on the spatial scale of the sampling unit
(Qian & Kissling, 2010). In some cases, species richness patterns and potential drivers can be reasonably
explained by ecological requirements and the evolutionary history of species grouping (Wu et al., 2013).
Rodents are phytophagous or omnivorous; therefore, the pattern of species richness may be more closely
related to plant species richness (Hawkins & Pausas, 2004). At a large spatial scale, the direct impact of
energy-water on plants is often more significant (Zhang et al., 2015). Although the effect of energy-water on
the distribution pattern of rodent species richness is not very significant at large scales, on a smaller scale,
rodent dispersal behavior is temperature oriented, and species may spread more rapidly when temperature
changes (Wu et al., 2013). Therefore, temperature and precipitation may strongly influence rodent species
richness at a regional scale.

In summary, we against using all species or non-endemic species richness as proxies for endemic species
richness. This is consistent with the results of previous studies (Orme et al., 2005; Isik, 2011). The reasons
for the formation of endemic and widespread species differ. Endemic species formation is often closely related
to environmental and anthropogenic changes. Some endemic species may have been widely distributed;
however, due to climate change during the geological and historical period, their habitats have shrunk or
even disappeared, forcing them to confine their distribution to a narrow range; or newly evolved species
have not yet spread to a larger geographic area; or destruction of the environment limits their ranges. In
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. addition, we found that the reasons for determining the distribution of non-endemic and endemic species
richness differed.

Although this study contributes to a more nuanced understanding of rodent species richness patterns and
their drivers in China, it has several limitations. For example, there are 271 species of rodents in China (Wei
et al., 2021), however, only the 237 species with relatively complete data were analyzed in this study, which
does not provide a complete picture of the distribution pattern of rodents in China. The variables used in
MaxEnt partially overlap with the factors involved in the regression model, which will inevitably affect the
regression results. In addition, the species distribution model assumes that species distribution is influenced
only by environmental variables, without interactions between organisms and biological dispersal constraints.
In practice, species distribution is also influenced by biological factors such as competition, predation, and
disease. A more sophisticated and integrated SDM for species range prediction is required to consider these
factors, which is an important direction for future model development (Kearney & Porter, 2009).

5 Conclusion

This study investigated the spatial patterns of rodent species richness in China and possible interpretations
of the results based on multiple environmental and human factors. This study found that the highest species
richness values of non-endemic and endemic species of rodents in China were in and around the Hengduan
Mountains in southwest China. The lowest number of rodent-endemic species was in the Qinghai-Tibet
Plateau and northern China. Habitat heterogeneity was the most effective variable to reflect changes in the
potential distribution of all rodents and non-endemic species, as well as species richness in China. Endemic
species richness patterns are most vulnerable to seasonal changes in climate, they are least influenced by
human factors, and the effect of energy-water on the three response variables showed a consistent level of
importance.
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Cheng, J., Xia, L., Feijó, A., Shenbrot, G. I., Wen, Z., Ge, D., Lu, L. & Yang, Q. (2021). Phylo-
geny, taxonomic reassessment and ’ecomorph’ relationship of the Orientallactaga sibirica complex (Ro-
dentia: Dipodidae: Allactaginae), Zoological Journal of the Linnean Society , 192 (1), 185-205. htt-
ps://doi.org/10.1093/zoolinnean/zlaa102

Chi, Y., Qian, T., Sheng, C., Xi, C. & Wang, J. (2021). Analysis of differences in the spatial distribution

9



P
os

te
d

on
A

u
th

or
ea

21
S
ep

20
22

—
T

h
e

co
p
y
ri

gh
t

h
ol

d
er

is
th

e
au

th
or

/f
u
n
d
er

.
A

ll
ri

gh
ts

re
se

rv
ed

.
N

o
re

u
se

w
it

h
ou

t
p

er
m

is
si

on
.

—
h
tt

p
s:

//
d
oi

.o
rg

/1
0.

22
54

1/
au

.1
66

37
45

24
.4

89
25

41
9/

v
1

—
T

h
is

a
p
re

p
ri

n
t

an
d

h
a
s

n
o
t

b
ee

n
p

ee
r

re
v
ie

w
ed

.
D

a
ta

m
ay

b
e

p
re

li
m

in
a
ry

. among terrestrial mammals using Geodetector—A case study of China, ISPRS International Journal of
Geo-Information , 10 (1), 21. https://doi.org/10.3390/ijgi10010021

Chi, Y., Wang, J., Xi, C., Qian, T. & Sheng, C. (2020). Spatial pattern of species richness among terrestrial
mammals in China,Diversity-Basel , 12 (3), 96. https://doi.org/10.3390/d12030096

Dakhil, M. A., Xiong, Q., Farahat, E. A., Zhang, L., Pan, K., Pandey, B., Olatunji, O. A., Tariq, A., Wu,
X., Zhang, A., Tan, X. & Huang, D. (2019). Past and future climatic indicators for distribution patterns and
conservation planning of temperate coniferous forests in southwestern China, Ecological Indicators , 107 ,
105559. https://doi.org/10.1016/j.ecolind.2019.105559

D’Antraccoli, M., Roma-Marzio, F., Carta, A., Landi, S., Bedini, G., Chiarucci, A. & Peruzzi, L. (2019).
Drivers of floristic richness in the Mediterranean: a case study from Tuscany, Biodiversity and Conservation
,28 (6), 1411-1429. https://doi.org/10.1007/s10531-019-01730-x

Di Marco, M. & Santini, L. (2015). Human pressures predict species’ geographic range size better than
biological traits, Global Change Biology , 21 (6), 2169-2178. https://doi.org/10.1111/gcb.12834

Ding, Z., Liang, J., Hu, Y., Zhou, Z., Sun, H., Liu, L., Liu, H., Hu, H. & Si, X. (2019). Different responses of
avian feeding guilds to spatial and environmental factors across an elevation gradient in the central Himalaya,
Ecology and Evolution , 9 (7), 4116-4128. https://doi.org/10.1002/ece3.5040

Dormann, C. F., Elith, J., Bacher, S., Buchmann, C., Carl, G., Carré, G., Marquéz, J. R. G., Gruber, B.,
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Table

Table 1 Results of multiple linear regression (OLS) and spatial autoregressive model (SAR) analysis of rodent
species richness

Variable All species All species Non-endemic Non-endemic Endemic Endemic
OLS SAR OLS SAR OLS SAR

EW1 0.15*** 0.011 0.23*** 0.017* -0.16*** -0.025**
EW2 – – – – -0.13*** -0.018*
CS1 -0.18*** -0.032*** – – -0.73*** -0.080***
CS2 – – – – -0.08*** 0.0062
HH1 0.55*** 0.19*** 0.43*** 0.18*** 0.36*** 0.11***
HH2 – – -0.12*** -0.0038 – –
HE1 0.40*** 0.070*** 0.38*** 0.084*** 0.14*** 0.017*
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. HE2 -0.12*** -0.018** -0.11*** -0.0067 -0.10*** -0.026***
AIC 2687.71 411.79 2745.89 695.88 2997.49 392.16
R2 0.71 0.64 0.70 0.61 0.65 0.53
Moran’s I 0.69*** 0.068*** 0.67*** 0.07*** 0.75*** 0.02

EW, CS, HH, and HE refer to variables based on the first two axes of the PCA using the energy-water,
climatic seasonality, habitat heterogeneity, and human factors variables, respectively. Moran’s I is the
Moran’s index of the regression model residuals. *p < 0.05; **p < 0.01; ***p < 0.001.

Figure legends

Figure 1 Spatial distribution of rodent species in China across all (a), non-endemic (b), and endemic (c)
species.

Figure 2 Relationship between all, non-endemic, and endemic species richness and the most relevant envi-
ronmental variables. VEG = Vegetation Types, AET = Actual Evapotranspiration, TES = Temperature
Seasonality, ART = Temperature Annual Range. Shaded area shows 95% confidence interval.

Figure 3 Results of variance partitioning explained by environmental variables. (a) Schematic diagram of
variance partitioning, each letter in the figure represents a part of the variance partitioning analysis. Results
of variance partitioning for (b) all species, (c) non-endemic species and (d) endemic species.
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