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Abstract

Quantifying genetic structure and levels of genetic variation are fundamentally important to predicting the ability of populations

to persist in human-altered landscapes and adapt to future environmental changes. Genetic structure reflects the dispersal of

individuals over generations, which can be mediated by species-level traits or environmental factors. Dispersal distances are

commonly positively associated with body size and negatively associated with the amount of degraded habitat between sites,

motivating investigation of these potential drivers of dispersal concomitantly. We quantified genetic structure and genetic

variability within populations of ten bee species in the tribe Euglossini across fragmented landscapes. We genotyped bees at

thousands of SNP loci and tested the following predictions: (1) larger species disperse farther; (2) species with greater resource

specialization disperse farther; (3) deforested areas restrict dispersal; and (4) sites surrounded by more intact habitat have

higher genetic diversity. Body size was a strong predictor of genetic structure, but, surprisingly, larger species showed higher

genetic structure than smaller species. The way that deforestation affected dispersal varied with body size, such that larger

species dispersed less far in areas with more forest. There was no effect of geographic distance on dispersal, and sites with more

intact habitat had higher genetic diversity. These results challenge the dominant paradigm that individuals of larger species

disperse farther, motivating further work into ecological drivers of dispersal for bees.
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Abstract: 6 

 Quantifying genetic structure and levels of genetic variation are fundamentally important to 7 

predicting the ability of populations to persist in human-altered landscapes and adapt to future 8 

environmental changes. Genetic structure reflects the dispersal of individuals over generations, which 9 

can be mediated by species-level traits or environmental factors. Dispersal distances are commonly 10 

positively associated with body size and negatively associated with the amount of degraded habitat 11 

between sites, motivating investigation of these potential drivers of dispersal concomitantly. We 12 

quantified genetic structure and genetic variability within populations of ten bee species in the tribe 13 

Euglossini across fragmented landscapes. We genotyped bees at thousands of SNP loci and tested the 14 

following predictions: (1) larger species disperse farther; (2) species with greater resource specialization 15 

disperse farther; (3) deforested areas restrict dispersal; and (4) sites surrounded by more intact habitat 16 

have higher genetic diversity. Body size was a strong predictor of genetic structure, but, surprisingly, 17 

larger species showed higher genetic structure than smaller species. The way that deforestation affected 18 

dispersal varied with body size, such that larger species dispersed less far in areas with more forest. 19 

There was no effect of geographic distance on dispersal, and sites with more intact habitat had higher 20 

genetic diversity. These results challenge the dominant paradigm that individuals of larger species 21 

disperse farther, motivating further work into ecological drivers of dispersal for bees. 22 
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Introduction 24 

 As much as 75% of the global land surface has been modified by humans (Luyssaert et al., 2014). 25 

One of the most concerning forms of land modification is deforestation, which typically leads to 26 

fragmented landscapes that are characterized by small, isolated patches of forest surrounded by 27 

agriculture or human infrastructure.  Deforestation is a leading cause of biodiversity loss worldwide, due 28 

to negative effects on abundance, species diversity, and genetic diversity (Schlaepfer et al., 2018).  29 

 Theory suggests that populations persisting in fragmented areas may experience genetic erosion 30 

before changes in abundance can be detected (Pflüger, Signer, & Balkenhol, 2019). Therefore, 31 

quantifying the genetic variability and genetic structure of populations living in fragmented areas is 32 

fundamental to understanding their ability to persist in human-altered landscapes and adapt to future 33 

environmental changes. Genetic structure reflects a non-random spatial distribution of genotypes, 34 

which occurs when gene flow is limited across space (Wright, 1943). Gene flow occurs via dispersal and 35 

maintains genetic diversity within populations (Franklin, Ian Robert, 1980). Spatially limited gene flow 36 

often results in a pattern whereby populations become more genetically distinct as the distance 37 

between them increases, a pattern termed "isolation by distance" (Wright, 1943). Landscape features 38 

such as water bodies or mountains can also impede gene flow, a pattern called "isolation by resistance" 39 

(McRae, 2006). Populations that are isolated and for which dispersal is limited may be at higher risk of 40 

extinction due to loss of alleles via genetic drift, which lowers evolutionary potential (Frankel, Otto 41 

Herzberg & Soulé, Michael E., 1981).  42 

 Dispersal distances may be mediated both by individual characteristics and environmental 43 

effects (Baguette et al., 2012). Dispersal scales linearly with body size across many clades, including birds 44 

and mammals (Dawideit, Phillimore, Laube, Leisler, & Böhning-Gaese, 2009; Ottaviani, Cairns, Oliverio, 45 

& Boitani, 2006), moths (Beck & Kitching, 2007), plants (Thomson et al., 2010), butterflies (Stevens et al., 46 

2013), and bees (López-Uribe, Jha, & Soro, 2019). However, dispersal-body size associations often show 47 



high variability within the groups assessed, and other species-level characteristics may also be important 48 

such as life history traits (McCoy, Richmond, Mushinsky, Britt, & Godley, 2010; Stevens et al., 2013), 49 

dispersal capacity (Hillman, Drewes, Hedrick, & Hancock, 2014), diet breadth (Stevens et al., 2014), and 50 

other resource requirements (Bowler & Benton, 2005). 51 

 Environmental drivers of dispersal include resource availability (Baguette, Michael et al., 2012) 52 

and the extent of landscape connectivity among sites (Baguette et al., 2013). Larger organisms tend to 53 

have higher resource requirements than smaller organisms, so resource availability may more strongly 54 

influence dispersal propensity of larger organisms than smaller ones (Byers, 2000). In terms of landscape 55 

connectivity, physical barriers to movement and poor matrix quality can both restrict dispersal (Manel & 56 

Holderegger, 2013). There has therefore been much interest into the extent to which anthropogenically-57 

altered landscapes constrain dispersal. Restricted dispersal across anthropogenic habitat has been found 58 

for a range of species including small mammals (Ribeiro et al., 2021), birds (Björklund et al., 2010), bees 59 

(Jha & Kremen, 2013) and butterflies (Crawford, Desjardins, & Keyghobadi, 2011; Takami et al., 2004). 60 

This may be due to higher mortality for animals that travel farther in between habitat fragments (Bonelli 61 

et al., 2013; Lucas et al., 1994; Mennechez et al., 2003). Other studies reveal little evidence of restricted 62 

dispersal across anthropogenically-altered areas for organisms including bats (Richardson et al., 2021), 63 

plants (Culley, Sbita, & Wick, 2007), and other bee species (Suni, 2017). Urban areas may even act as a 64 

conduit for movement in some species (Ballare & Jha, 2021; Miles et al., 2019). Therefore, 65 

understanding how trait-mediated dispersal distances intersect with landscape effects on dispersal is 66 

critical given ongoing and projected anthropogenic landscape changes. 67 

 Bee pollinators may be particularly vulnerable to negative effects of habitat fragmentation due 68 

to their haplodiploid genetic systems, which render their effective population sizes no more than 75% 69 

that of equally-sized diploid populations (Whiting & Whiting, 1925). Widespread population declines 70 

due to habitat loss have been reported for many bee species (LeBuhn & Vargas Luna, 2021; Potts et al., 71 



2010), and these may occur via the loss of floral resources or nesting areas (Carvell et al., 2006; Cohen et 72 

al., 2020), greater energetic costs associated with travel (Andrieu, Dornier, Rouifed, Schatz, & Cheptou, 73 

2009), or heat stress (Aguirre-Gutiérrez et al., 2017; Suni & Dela Cruz, 2021). Body size has been 74 

proposed as an important potential driver of responses of bees to habitat loss, with larger bees 75 

potentially being able to cross larger degraded areas but also requiring larger areas of forage to persist 76 

(Harrison & Winfree, 2015). Meta analyses based on mark-recapture and genetic data suggest larger 77 

bees travel farther (Greenleaf, Williams, Winfree, & Kremen, 2007; López-Uribe et al., 2019), but explicit 78 

tests of how body size and landscape may jointly influence dispersal in bees are lacking.  79 

 Here, we examined drivers of genetic structure and genetic diversity for ten species of bees in 80 

the tribe Euglossini that vary widely in body size. Euglossine bees (also called Orchid Bees) are important 81 

pollinators of over 700 species of orchids and other tropical plants (Roubik & Hanson, 2004). Male 82 

Euglossine bees exhibit a unique behavior whereby they visit orchids and other plants to collect volatile 83 

compounds that are used in sexual chemical signaling when emitted during courtship behavior (Thomas 84 

Eltz, Sager, & Lunau, 2005). To understand if species-level traits and landscape characteristics are 85 

associated with dispersal genetic diversity, we developed thousands of SNP loci for each species. We 86 

then tested the following predictions: (1) larger species disperse farther; (2) species with greater 87 

resource specialization disperse farther; (3) deforested areas restrict dispersal; and (4) sites surrounded 88 

by more intact habitat have higher genetic diversity. Our joint analysis of individual traits with landscape 89 

effects on dispersal reveals patterns that contradict the dominant paradigm found for bees, and 90 

suggests future areas of inquiry regarding drivers of dispersal in fragmented landscapes. 91 

Materials and Methods 92 

Field sampling 93 

 We sampled bees of ten species that range in body length from 9 mm to 28 mm (Figure 1) at six 94 

sites throughout southern Costa Rica in May and June of 2019 (Figure 2, Table S1). Sites included the Las 95 



Alturas Biological Research Station, the Las Cruces Biological Research Station, the La Gamba Biological 96 

Research Station, the Saladero Ecolodge, and the Bromelias Ecolodge, and a site at the northern part of 97 

the Osa Peninsula at which local landowners provided permission to sample (Agua Buena, see Figure 2). 98 

These species sampled vary in their resource specialization, with the number of orchid morphospecies 99 

visited ranging from 6 to 44 (Roubik & Hanson, 2004; Table S2). The landscape in this area is comprised 100 

of forest fragments, pastureland, palm oil plantations, and small towns. Extensive deforestation 101 

occurred in the 1950s following European settlement and reduced forest cover to 25% by the 1990s, but 102 

pollen and charcoal analyses from lake-sediment cores suggest continuous occupation and some forest 103 

clearing by indigenous people over a 3,000-year period (Clement & Horn, 2001).  104 

 To attract bees we used the chemical baits 1,8-cineole and methyl salicylate. These chemical 105 

baits mimic the natural fragrances emitted by orchids (Janzen, 1981). Baits were placed approximately 106 

1.5 m off the ground on tree trunks between the hours of 9 am and 12 pm on sunny days, and in forest 107 

fragments between zero and 93 m from forest edges. We netted bees as they arrived at baits, and we 108 

stopped sampling when no more bees arrived after 15 minutes. Bees were killed using ethyl acetate, 109 

and samples were then transported back to the University of San Francisco for curation and DNA 110 

extraction. Bees were pinned and then identified by examining the velvet area, a patch of dense hair on 111 

the tibial tuft, as well as other species-specific characteristics (Roubik & Hanson, 2004). After genotyping 112 

and quality control (see below), our final sample included 539 bees, with an average of 89.8 bees per 113 

site (range 26 - 140) that represented 12.8 bees per species per site (range 2 - 53). 114 

DNA sequencing and SNP calling 115 

 Genomic DNA was extracted from one or two middle legs of each specimen (two legs for the 116 

smallest species) using DNeasy Blood and Tissue Extraction Kits (Qiagen). DNA concentration was 117 

quantified using a Qbit 2.0 fluorometer (Thermo-Fisher) and then 100 ng of DNA per individual was used 118 

to prepare ddRADseq libraries using a protocol modified from Poland et al. (2012), as follows. DNA was 119 



digested with the enzymes PstI and MspI (New England Biolabs), and then unbarcoded adaptors that 120 

were synthesized by IDT (Integrated DNA Technologies) were ligated onto the sticky ends. Ligation 121 

products were then cleaned with Agencourt Ampure XP beads (Beckman Coulter), and were then used 122 

as templates for PCR. PCR was performed in 96 well plates with each well containing one sample and 123 

one of 285 uniquely barcoded TrueSeq primer pairs that had been synthesized by the University of 124 

California San Francisco Center for Advanced Technology (UCSF CAT). An AccuBlue DNA Concentration 125 

Kit (Biotium) was used to quantify DNA, and then 40 ng of each sample was pooled. Pooled DNA was 126 

cleaned using Agencourt Ampure XP beads, and it was then size-selected (300-500 bp) using a Blue 127 

Pippin Prep (Sage Science). Success in obtaining accurate target fragment size distributions was 128 

confirmed using a Tapestation 4200 (Agilent). The pooled, size-selected DNA was then cleaned using a 129 

Monarch PCR & DNA cleanup kit (NEB) before 150-bp paired-end sequencing was performed on a 130 

NovaSeq 6000 (Illumina) at the UCSF CAT. 131 

 Samples were demultiplexed at the UCSF CAT and quality control of the sequencing run was 132 

assessed using the software FastQC v.0.11.8 (Andrews, 2010). Raw Illumina reads were cleaned using 133 

the process_radtags program in STACKS v. 1.57 (Catchen et al. 2011, 2013). Reads with quality scores 134 

(Phred33) below 10 within a sliding window of 15% of the read length, those with Illumina TruSeq 135 

adapter contamination, or those for which the restriction enzyme cut-site for MspI or PstI was not intact 136 

were discarded. An average of 2,057,810 raw reads was recovered across samples and after quality 137 

control filtering an average of 1,286,243 were retained. This resulted in 13,412 - 153,924 SNPs per 138 

species. The denovo_map.pl pipeline was used to identify orthologous loci across individuals for each 139 

species separately. We performed STACKS parameter optimization following (Paris et al. 2017), and 140 

chose the following parameter combination: m = 3, M = 2, n = 3 for each species. The maximum 141 

observed heterozygosity required to process a locus was set to 0, as in Alonso-Garcia et al. (2021), 142 

because samples were haploid. We limited analyses to the first SNP per locus using --write-single-snp, 143 



and we used the --fstats option in the populations program to estimate expected heterozygosity and the 144 

percent of loci that were polymorphic for each species within each site. We estimated allelic 145 

differentiation (FST, Wright, 1943), and absolute genetic divergence DXY (Nei, 1987; Cruickshank & Hahn, 146 

2014) among site pairs for each species. Unlike FST, DXY is not sensitive to levels of within-population 147 

genetic diversity (Charlesworth, 1998; Nei, 1973) though it does depend on ancestral levels of genetic 148 

diversity (Cruickshank & Hahn, 2014).  149 

Landscape analyses 150 

 To estimate the percent forest surrounding each sampling location and between locations we 151 

used ArcGIS v.2.4 (Esri, Redlands, CA). We used the Esri 2020 Land Cover dataset that corresponded to 152 

scene 17P (Karra et al. 2021) to obtain forest cover of the study region. We quantified the amount of 153 

forest cover within a circle of radius 24 km for each sampling location (Figure S1). We chose this radius 154 

because Euglossine bees are capable of travel over tens of kilometers in a single day (D. H. Janzen, 155 

1971). To estimate the amount of forest between pairs of sampling locations we first used ArcGIS to 156 

calculate Euclidian (straight-line) geographic distances between all possible site pairs. Euclidian distances 157 

are the shortest distance between sites, and may traverse water. We also calculated “Broken-stick” 158 

geographic distances as in Davis et al. (2010), which are the shortest overland distances between two 159 

sites. For both types of distances we overlaid rectangles of width 1000 m and calculated the amount of 160 

forest between each pair of sites. We centered rectangles at each pair of sites and the percent forested 161 

area was quantified within that rectangle (Figure S1). Many sites are located near the coastlines of the 162 

Golfo Dulce or the Pacific Ocean. We did not clip the circular or rectangular buffers to the coastline if 163 

they extended into the water, so water was included as deforested area. We did this to obtain a realistic 164 

estimate of the proportion of forest cover relative to other land cover types and to reflect possible 165 

Euglossine bee flight paths, since some Euglossine species seem to have restricted dispersal over large 166 

bodies of water (da Rocha Filho et al., 2013). 167 



Statistical analyses 168 

 To determine if body size predicts dispersal we ran linear mixed models implemented using the 169 

lme4 package in R (Bates et al., 2014) with FST or DXY as the as the dependent variable, body size as the 170 

independent variable, and the pair of sites between which FST was calculated as the random effect. We 171 

also ran a model that included genus as an independent variable, to determine if the association we 172 

found between body size and dispersal held within genera or was driven by genus. We tested for 173 

statistical significance of the independent variable using likelihood ratio tests on nested models. In the 174 

results section we report estimates from the best model chosen via backward model selection, and chi-175 

square and associated P-values from likelihood ratio tests. We used species-site combinations with at 176 

least four sampled individuals in analyses that used FST or DXY, resulting in the removal of 10 individuals 177 

from these analyses (Table S1). 178 

 To determine if diet breadth predicts dispersal we compiled the number of morphospecies and 179 

genera of orchids visited for each species in the dataset from records reported in Roubik and Hanson 180 

(2004). We ran linear mixed models with FST or DXY as the dependent variable, the number of orchid 181 

morphospecies or genera as the independent variable, and bee genus, species, and the sites between 182 

which FST or DXY was calculated as random effects. We used likelihood ratio tests on nested models to 183 

assess the significance of independent variables. 184 

 We determined if deforested areas restrict dispersal while taking geographic distance into 185 

account by performing multiple regression on distance matrices (Wang, 2013) using the tseries R 186 

package (Trapletti et al., 2022). For each species, we performed MMRR four times using 10,000 187 

permutations. FST and DXY were highly correlated in our dataset (correlation coefficient = 0.97, 95% CI = 188 

[0.96, 0.98]), so we performed MMRR using only FST values. A matrix containing pairwise FST values 189 

among sites was the dependent variable, and the independent variables included a matrix containing 190 

pairwise geographic distances among sites, and a matrix specifying what percent of that distance was 191 



forested. For each species, we ran MMRR using predictor matrices that included Euclidian geographic 192 

distances and Broken-stick distances. We estimated the overall statistical significance of multiple 193 

comparisons using a modified false discovery rate procedure (Benjamini and Yekutieli 2001; Narum 194 

2006).  195 

 We examined if the way that deforested areas affected dispersal is mediated by body size by 196 

running linear mixed models in which the dependent variable was FST or DXY between site pairs, the 197 

interaction between body size and the percent forest between pairs of sites was the independent 198 

variable, the geographic distance between sites was a covariate, and genus and the site pair were 199 

random effects. We ran separate models using the percent forested area and geographic distance 200 

between site pairs calculated using Euclidian and Broken-stick geographic distances. The significance of 201 

the interaction between body size and the percent forest between pairs of sites was assessed using 202 

likelihood ratio tests on nested models. 203 

 To determine if sites that were surrounded by more forest had higher genetic diversity we ran 204 

linear mixed models implemented using the lme4 package in R (Bates et al., 2014; R Core Team, 2019). 205 

Either expected heterozygosity, the percent of loci that were polymorphic, or the number of private 206 

alleles was the dependent variable, the percent forest surrounding sites at a radius of 24 km was the 207 

independent variable, sample size was a covariate, and species was a random effect. We found 208 

differences in dispersal between bees in different genera (see results), so we also added genus as a 209 

predictor variable in the model. Significance of the independent variables was assessed using likelihood 210 

ratio tests on nested models. 211 

Results   212 

 Larger bees had higher genetic structure than smaller bees (For FST: Est. = 0.019, χ2 = 88.1, P < 213 

0.001; For DXY: Est = 0.00011, χ2 = 80, P < 0.001; Figure 3, Figure S2). This negative relationship between 214 

body size and dispersal distances was driven by bees of the larger genus Eulaema having higher FST and 215 



DXY values than bees of the smaller genus Euglossa. Genus significantly predicted dispersal estimates 216 

(For FST: Est. = 0.34, χ2 = 141, P < 0.001; For DXY: Est. = 0.0021, χ2 = 133, P < 0.001). FST ranged from 0.28 - 217 

0.55 for bees in the genus Eulaema and 0.015 - 0.19 for bees in the genus Euglossa across sites. DXY 218 

ranged from 0.0025 - 0.47 for bees in the genus Eulaema and 0.00067 - 0.0017 for bees in the genus 219 

Euglossa across sites (Table S2). 220 

 There was evidence that resource specialization predicted dispersal distances. Species that were 221 

reported to visit more orchid morphospecies or genera had higher estimates of FST between site pairs 222 

(For morphospecies: Est. = 0.0076, χ2 = 5.4, P = 0.02; For genera: Est. = 0.0091, χ2 = 4.9, P = 0.028; Figure 223 

S3). Species that visited more orchid morphospecies also had higher estimates of DXY (Est. = 0.000052, χ2 224 

= 5.9, P = 0.015), and there was a trend towards species that visited more orchid genera having higher 225 

genetic differentiation (Est. = 0.000034, χ2 = 3.1, P = 0.081).  226 

 The way that the amount of forested area among sites affected genetic differentiation 227 

depended on body size. The interaction between body size and the percent forest between pairs of sites 228 

was a significant predictor of FST among site pairs, such that increasing forest between sites was 229 

associated with higher FST between them for large bees but not for smaller bees (Figure S4). Broken-stick 230 

distance was a stronger predictor of genetic differentiation (For Euclidian distance: Interaction est. = 231 

0.00016, χ2 = 6.5, P = 0.011; for Broken-stick distance: Interaction est. = 0.00024, χ2 = 10.0 , P = 0.0016). 232 

However, for DXY the association between the amount of forest between sites and genetic 233 

differentiation was not mediated by body size (For Euclidian distacne: χ2 = 0.033, P = 0.86; for Broken-234 

stick distance: χ2 = 0.024, P = 0.88). 235 

 When modeling each species separately, there was no evidence that deforested areas restricted 236 

dispersal. The percent of land that was deforested between pairs of sampling locations did not predict 237 

genetic differentiation for any species (Table S3). Geographic distance was not a predictor of dispersal 238 

for any species (Table S3). 239 



 There was some evidence that sites with more intact habitat had higher genetic diversity, and 240 

that genetic diversity was lower for larger bees. Expected heterozygosity was positively associated with 241 

the percent of land that was forested around sites (Range 0 - 0.41, Est. = 0.0031, χ2 = 6.6, P = 0.01, Figure 242 

4, Table S1). The percent of loci that were polymorphic was not influenced by the percent of land that 243 

was forested (χ2 = 0.22, P = 0.63). There were more private alleles in sites surrounded by more forest 244 

(Est. = 10.1, χ2 = 5.5, P = 0.019). Expected heterozygosity did not differ among genera (Chisq = 0.007, P = 245 

0.93), but the percent of polymorphic loci was lower for bees in the larger genus Eulaema (Est. = -0.75, 246 

Chisq = 6.6, P = 0.01).  247 

Discussion 248 

 We present a systematic investigation of morphological and landscape drivers of genetic 249 

structure for ten bee species within a clade, as well as an assessment of how genetic diversity varies 250 

with the amount of intact habitat surrounding sites. Body size was inversely related to genetic structure, 251 

and this was driven by differences between genera in the genetic differentiation among sites. Within 252 

genera, there were no associations of genetic structure and body size. There was evidence that floral 253 

fragrance resource specialization was associated with higher dispersal. Contrary to predictions, dispersal 254 

was not lower among sites separated by less forest. For larger bees, the presence of more forest among 255 

sites was associated with lower dispersal. Deforested landscapes were associated with lower genetic 256 

diversity. 257 

 The inverse association between body size and dispersal distance across genera, and the lack of 258 

association within genera contrasts with what has been found previously for bees. A significant positive 259 

relationship was found between body size and homing or foraging distance for 62 bee species from six 260 

families (Greenleaf et al., 2007). That study compiled observational data of short-term movement 261 

patterns, and did not include estimates of realized dispersal. A meta-analysis that examined associations 262 

between body size, and estimates of genetic structure based on microsatellites, found an overall 263 



negative relationship between body size and genetic differentiation across 42 species of bees (López-264 

Uribe et al., 2019). Despite that negative relationship overall, there was high variation in that dataset, 265 

suggesting traits other than body size are also likely important drivers of dispersal. Indeed, social species 266 

exhibited lower genetic structure than solitary species, which could be due to higher levels of kin 267 

competition for social species when compared to solitary species (West et al., 2002). In our case, it is 268 

possible that avoidance of kin competition contributes to the low genetic structure found for some 269 

species examined. However, we posit that kin competition is unlikely responsible for the higher genetic 270 

structure found in bees of the genus Eulaema because reports of nest sharing have been reported for 271 

species within both genera (Augusto & Garófalo, 2004; Cameron & Ramírez, 2001).  272 

 We outline several speculations for the higher genetic structure found in bees of the genus 273 

Eulaema. First, a greater degree of territoriality has been described for species in Eulaema than Euglossa 274 

(Kimsey, 1980). Second, it is possible that bees in the genus Eulaema experience higher predation risk 275 

when flying over deforested areas (Roubik, 1993). Eulaema tend to be black or very dark in coloration, 276 

while bees in the genus Euglossa tend to be brightly colored and iridescent. Iridescence may increase 277 

camouflage in open areas, which are becoming more prevalent with ongoing deforestation in the study 278 

area (Stan & Sanchez-Azofeifa, 2019). Third, Eulaema may experience a greater risk of overheating when 279 

flying over deforested areas. Iridescence reflects light (Seago., 2009), which may reduce heat gain for 280 

bees in the genus Euglossa as they travel over open areas (Mossakowski, 1979). The darker coloration of 281 

Eulaema may also contribute to their being more susceptible to overheating in open areas. 282 

 The extent to which species are generalized or specialized in their resource requirements may 283 

also influence dispersal distances. For example, species that are more generalized in their resource 284 

requirements are expected to be able to disperse farther due to their ability to refuel en route (Bowler & 285 

Benton, 2005). However, an empirical survey of 740 species of varying tropic levels found no association 286 

between diet breadth and dispersal (Stevens et al., 2014). In addition, work specifically on bees also 287 



found no evidence that dispersal distances are associated with the degree of dietary specialization 288 

across 42 species (López-Uribe et al., 2019). Other types of resources requirements may also be 289 

important drivers of dispersal (Bowler & Benton, 2005). Our examination of the extent of floral 290 

generalization for fragrance collection revealed a negative association between the number of orchid 291 

morphospecies or genera visited and dispersal distances. Many tropical plants are locally rare (Wills et 292 

al., 2006), and it is possible that the positive association between floral specialization in orchids visited 293 

for fragrance collection and dispersal occurs because species that are more specialized travel farther to 294 

acquire specific resources.  295 

 We stress that our data do not suggest that the association between resource specialization and 296 

dispersal is a general pattern for Euglossine bees. Rather, the pattern was driven by a single species that 297 

had both the highest genetic differentiation and was also reported to visit the most genera and 298 

morphospecies of orchids (Eul. meriana; Figure S3). When this species was removed from the data set, 299 

resource specialization no longer predicted genetic differentiation (Table S4). 300 

 Our findings suggest that male Euglossine bees in the genus Euglossa maintain long distance 301 

travel even over deforested landscapes, and that species in Eulaema may show more restricted 302 

dispersal. This is somewhat surprising given that mark-recapture observations have documented high 303 

recapture rates over a monthly time period for species in Euglossa (T. Eltz et. al., 1999; López-Uribe et. 304 

al., 2008). However, other mark-recapture efforts documented male bees traveling tens of kilometers 305 

within a period of days through intact forest (Pokorny et al., 2015). In addition, past population genetic 306 

studies have typically found restricted dispersal for Euglossa species only for island populations (Boff et. 307 

al., 2014; da Rocha Filho et al., 2013). For populations separated by land, mitochondrial COI genotyping 308 

found identical haplotypes on both sides of the Andes mountains for bees in Euglossa and some genetic 309 

structuring in for Eulaema species (Dick et al., 2004). Microsatellite genotyping found low genetic 310 

structure for Eug. dilemma across 130 km (Zimmermann et al., 2011), Eug. dilemma and Eug. viridissima 311 



across 114 km (Soro, Quezada-Euan, Theodorou, Moritz, & Paxton, 2017), Eug. imperialis across 226 km 312 

(Suni, 2017), and Eug. championi across 80 km (Suni et al., 2014), but significant genetic structuring for 313 

Eul. bombiformis across just 14 km (Suni & Brosi, 2012). Taken together, the results of these studies and 314 

the current study suggest that there may be stronger barriers to movement for larger species, and they 315 

motivate future work on additional biotic and abiotic drivers of dispersal. 316 

 We found no support for our prediction that genetic differentiation would be higher between 317 

site pairs that were separated by less forest. Rather, for larger bees, a greater amount of forest between 318 

sites was associated with greater genetic differentiation between them. We speculate that this pattern 319 

could be explained, at least in part, by larger bees having higher resource requirements than smaller 320 

bees (Müller et al., 2006). As the amount of forest between sites is diminished, larger bees may travel 321 

farther to acquire sufficient resources (Harrison & Winfree, 2015). It is also possible that this pattern is 322 

driven by greater generalization of some larger species, which allows them to remain local when there is 323 

sufficient forest from which to acquire resources. In particular, Eul. meriana is one of the largest bees in 324 

our data set and is also reported to be the most generalized in terms of the orchids from which 325 

fragrances are collected (Roubik & Hanson, 2004). This species also showed a positive association 326 

between the percent of land between sites that was forested and dispersal, although this association 327 

was not significant. It is possible that the lack of a significant association was due to limited statistical 328 

power, as sample sizes of Eul. meriana were rather low. Given that we also hypothesized that predation 329 

risks outside of open areas might be higher for larger, more visible species like Eul. meriana, an 330 

exploration of tradeoffs between resources acquired via travel across open areas and predation risk in 331 

open areas would be worthwhile.  332 

 While the way that the amount of forest affected FST was mediated by body size, this was not 333 

the case for DXY. These measures both provide insight into gene flow among populations but may reflect 334 

different time scales of divergence. DXY is the probability of nonidentity by descent of two alleles drawn 335 



in the two different populations averaged over all loci (Nei, 1987), while FST is the proportion of the total 336 

genetic variance contained in subpopulations. DXY may therefore reflect deeper divergence than FST 337 

(Cruickshank & Hahn, 2014; Nachman & Payseur, 2012). In addition, FST is affected by within-population 338 

levels of genetic variation (expected heterozygosity), while DXY is not. Expected heterozygosity was 339 

higher for sites that were surrounded by more forest, and it was is possible that this led to the 340 

discrepancy between measures of genetic differentiation. Indeed, the average expected heterozygosity 341 

across pairs of sites was associated with FST between those sites when distance between sites was taken 342 

into account and species and genera were random effects (linear mixed model est. = -0.000039, χ2 = 343 

29.8, P < 0.001). Other factors could result in differences between DXY and FST. DXY is more affected by 344 

mutation rates than FST (Rosenzweig et al., 2016), it may be more susceptible to small sample sizes 345 

(Clarkson et al., 2014), and it seems to be more affected by background selection (Matthey-Doret & 346 

Whitlock, 2019).  347 

 While there was no indication that a lack of forest restricted dispersal among sites, those that 348 

were surrounded by less forest had lower genetic diversity. These discordant influences of forest on 349 

genetic parameters could be explained by the rate at which inter versus intra-population genetic 350 

signatures of habitat fragmentation manifest (Peakall & Lindenmayer, 2006), or by methodological 351 

limitations such as small sample sizes (Richardson et al., 2016). With limited dispersal among fragments, 352 

genetic drift may quickly cause the loss of rare alleles in small populations (Allendorf, 1986). However, 353 

even given limited dispersal, the continued presence of common alleles may result in a lack of isolation 354 

by distance or resistance in the short term. Our finding both higher genetic diversity as well as 355 

significantly more private alleles in sites with more forest suggests that drift may be lower and effective 356 

population sizes higher in fragments surrounded by greater amounts of habitat. 357 

 Effects of habitat loss on genetic diversity have been documented across taxa, including 358 

mammals (Lino et al., 2019), plants (González et al., 2020), amphibians (Dixo, Metzger, Morgante, & 359 



Zamudio, 2009), and insects (Bickel et al., 2006). The susceptibility of populations to negative effects of 360 

habitat fragmentation depends on species-specific characteristics, such as habitat specialization and 361 

dispersal capacity (Sekar, 2012; Slade et al., 2013), as well as habitat availability in the surrounding area 362 

(Peakall & Lindenmayer, 2006). Species with high dispersal capacity may be less likely to suffer from 363 

negative effects of fragmentation if they can utilize other habitat patches. This should result in the 364 

maintenance of gene flow among patches and genetic diversity within patches. Lower dispersal capacity 365 

but a network of accessible patches should result in a pattern of isolation by distance. Low dispersal 366 

capacity and isolated fragments should lead to high genetic drift within patches and the loss of genetic 367 

diversity (Louy et al., 2007). Our results therefore suggest genetic drift may be higher in populations of 368 

bees in the genus Eulaema, as the percent of loci that were polymorphic was significantly lower, and 369 

genetic differentiation was higher. 370 

 Given that past work has revealed restricted dispersal across water in Euglossine bees (Boff et. 371 

al., 2014; da Rocha Filho et al., 2013, we may expect that broken-stick geographic paths may have better 372 

reflected patterns of genetic differentiation. However, travel over water as much as 2.5 km from the 373 

nearest land was observed for a species in the genus Eulaema that was not included in the current study 374 

(D. H. Janzen, 1971). Neither Broken-stick nor Euclidian paths predicted patterns of genetic structure in 375 

the current study. This suggests that the species examined here may fly short distances over water when 376 

traveling, but we cannot rule out that limitations due to small sample sizes of some species, particularly 377 

in the genus Eulaema, may have limited our ability to detect patters if they indeed exist. 378 

 To our knowledge, this work is the first SNP-based assessment of genetic structure in Euglossine 379 

bees, and our results highlight risks to populations associated with habitat fragmentation. In particular, 380 

genetic diversity was lower in areas with less intact forest, suggesting that these bee species may be at 381 

risk of further genetic erosion as habitat fragmentation continues. In addition, our results suggest that 382 

large species may need to exert more and more energy traveling through degraded landscapes in the 383 



future. Our findings are largely consistent with patterns found previously for Euglossine bees, which 384 

employed mitochondrial haplotypes or microsatellite loci to characterize genetic structure. This 385 

contrasts somewhat with what has been found for bumble bees in temperate areas, where 386 

investigations of dispersal distances found discrepancies between patterns emerging from microsatellite 387 

versus SNP data (J. D. Lozier, 2014; Jeffrey D. Lozier, Jackson, Dillon, & Strange, 2016). The consistency 388 

found across studies in low genetic structure for smaller Euglossine bees validates the inverse 389 

relationship between dispersal distance and body size that was found in past work (Suni & Brosi, 2012), 390 

and motivates investigation into the extent to which species interactions mediate dispersal. 391 
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 671 
Figure 1. The species sampled, along with their body sizes. From left: Eulaema bombiformis (28 mm), 672 
Eulaema meriana (26 mm), Eulaema nigrita (20 mm), Euglossa imperialis (15 mm), Euglossa flammea 673 
(14 mm), Euglossa championi (13 mm), Euglossa maculilabris (12 mm), Euglossa mixta (11 mm), 674 
Euglossa dodsoni (10 mm), and Euglossa sapphirina (9 mm). 675 
  676 

      
 

 

Figure 2. Selected study species that vary in morphological features.  The three species on the far left belong to the genus Eulaema.  From left, 
species include Eul. bombiformis, Eul. meriana, and Eul. nigrita.  The remaining species belong to the genus Euglossa.  From left, species 
include Eug. imperialis, Eug. flammea, Eug. championi, Eug. maculilabris, Eug. mixta, Eug. dodsoni, and Eug. sapphirina. 
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 678 
 679 
Figure 2. Study area in Southern Costa Rica, extending from costal sites on the Osa Peninsula (bottom 680 
left) to a forested site at 1420 meters above sea level (top right). Image from Google Earth Pro v. 681 
7.3.4.8248. 682 
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Figure 1. Study area of the Osa Peninsula in southern Costa Rica.  Specimens were collected 
from six forested fragments in the summer of 2019.  Each forested fragment is represented by a 
green point above.  Light green regions in the landscape suggest deforestation and dark green 
regions suggest forest or agriculture.  Image was obtained from Google Earth Pro v. 7.3.4.8248. 
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 686 
 687 
Figure 3. For each species, FST (panels A & B) or DXY (panels C & D) between each pair of sites is plotted 688 
against the percent of forest between those sites that was forested. Panels A & C reflect Euclidian forest 689 
paths and panels B & D reflect Broken-stick forest paths. Colors represent different species and the size 690 
of the points is proportional to body size. See Figure S1 for a description of the difference between 691 
Euclidian and Broken-stick paths.   692 
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 695 
 696 

Figure 4. For each species, expected heterozygosity within sites is plotted against the percent of forest 697 
surrounding sites at a radius of 24 km from the sampling location. Colors represent different species. 698 
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