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Abstract

In this paper, we consider the initial boundary value problem for a pseudo-parabolic Kirchhoff equation with logarithmic

nonlinearity. Using the potential well method, we obtain a threshold result of global existence and finite-time blow-up for the

weak solutions with initial energy J ( u 0 ) [?] d . When the initial energy J ( u 0 ) > d , we find another criterion for the

vanishing solution and blow-up solution. We also establish the decay rate of the global solution and estimate the life span of

the blow-up solution. Meanwhile, we study the existence of the ground state solution to the corresponding stationary problem.
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Abstract In this paper, we consider the initial boundary value problem for a pseudo-

parabolic Kirchhoff equation with logarithmic nonlinearity. Using the potential well method, we

obtain a threshold result of global existence and finite-time blow-up for the weak solutions with

initial energy J(u0) ≤ d. When the initial energy J(u0) > d, we find another criterion for the

vanishing solution and blow-up solution. We also establish the decay rate of the global solution

and estimate the life span of the blow-up solution. Meanwhile, we study the existence of the ground

state solution to the corresponding stationary problem.
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linearity

1 Introduction

In this paper, we are concerned with the following initial boundary value problem
ut −∆ut −M(‖∇u‖pp)∆pu = |u|q−1u log |u|, (x, t) ∈ Ω× (0, T ),

u(x, t) = 0, (x, t) ∈ ∂Ω× (0, T ),

u(x, 0) = u0(x), x ∈ Ω,

(1.1)

where Ω ⊂ Rn(n ≥ 1) is a bounded domain with smooth boundary, ∆pu = div(|∇u|p−2u), M(s) =

a + bs with a > 0 and b > 0, u0(x) ∈ W 1,p
0 (Ω) with u0(x) 6= 0. The parameters p and q satisfy

1 < 2p− 1 < q < p∗ − 1, where p∗ = np
n−p is the Sobolev conjugate of p.

Problem (1.1) belongs to the mixed type of the pseudo-parabolic equation [34] and the Kirchhoff

equation [22]. The diffusion coefficient M(·) can express the dependence on the global information

in the environment instead of the information at a local location. Another nonlocal mechanism

comes from the nonlocal operator B = (I−∆)−1, which leads the equation of (1.1) to an equivalent

form

ut − BM(‖∇u‖pp)∆pu = B|u|q−1u log |u|.
∗Supported by NSFC Grants No. 11871134, 12071058.
†Corresponding author. E-mail: mathcy@dlut.edu.cn
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The logarithmic nonlinearity appears naturally in the inflationary cosmology and the modern su-

per symmetric field theories [13, 27]. It also appears in the theory of continuous-state branching

processes [14, 15], Gravity-mediated super symmetric fracture model [20, 39]. Equations like (1.1)

have had a high profile in the study of many mathematical and physical phenomena such as popu-

lation dynamics, nonlinear elasticity, non-stationary fluid, image recovery, see [1, 6, 7, 35] and the

references therein.

With the successive development of remarkable methods, such as the convex method [23, 24],

the potential well method [30, 32], especially the functional analysis framework [28] introduced

by Lions, more and more excellent works have been done for the problems related to (1.1). Take

the parabolic equation with power like source for example, Han et al. [18] studied the parabolic

Kirchhoff ut −M(‖∇u‖22)∆u = |u|q−1u, and gave the global existence and uniqueness, finite time

blow-up and asymptotic behavior of solutions with subcritical, critical and supercritical initial

energy. The upper and lower bounds of the blow-up time of the solutions were supplemented

in [17]. [25] considered the parabolic p-Kirchhoff equation ut − M(‖∇u‖pp)∆pu = |u|q−1u and

described the impact of the p-Laplacian. Xu et al. [37] investigated the pseudo-parabolic equation

ut−∆ut−∆u = up, and proved the invariance of some sets, global existence, blow-up and asymptotic

behavior of solutions with different initial energies. Some other works studied the pseudo-parabolic

or thin film equation with non-local power like nonlinearity [4, 5, 31].

Due to its important physical applications and interesting mathematical properties, the loga-

rithmic nonlinearities are attacting more and more attention from researchers. Chen et al. [8, 9]

studied the semilinear heat and pseudo-parabolic equation ut− k∆ut−∆u = u log u, k = 0, 1. Us-

ing the potential well family and the logarithmic Sobolev inequality, they obtained the existence,

blow-up at infinity and isolate vacuum of the solution. Their works indicate that while taking

blow-up profile in hand, the logarithmic nonlinearity is more close to the one with linear source.

Ji et al. [21] found that the logarithmic nonlinearity behaves similar to power like source when

considering the existence of periodic solutions, while for the instability of periodic solutions, the

effect of the logarithmic nonlinearity is neither like the linear source nor the power like source. On

the basis of the above works, [3, 11, 10, 19, 29] discussed extensively the mixed pseudo-parabolic

p-Laplacian equation ut−∆ut−∆pu = |u|p−2u log u. Recently, [12, 16, 33, 36] attempted to ponder

the properties of the solutions for parabolic Kirchhoff equation with logarithmic nonlinearity.

Based on the potential well theory, this paper is devoted to discuss the global existence and

finite time blow-up for the solutions of (1.1), when the initial energy is subcritical, critical and

supercritical. Moreover, we also obtain the decay rate of the global solution and the life span of

the finite time blow-up solution. From our proof procedure, we find some impact of the logarithmic

nonlinearity. First, the logarithmic nonlinearity may lead to a positive limit of the potential well

depth d(δ) when δ → 0, which is different from the zero limit for the power like nonlinearity

case [5]. Due to this difference, some discussion need to be separated for 0 < J(u0) ≤ d0 and

d0 < J(u0) < d, respectively, see the lemmas in Section 2 and Remark 1. Secondly, here we can

not use the Lp logarithmic Sobolev inequality. Using this inequality can control the logarithmic

nonlinearity |u|q−1u log |u| by ‖∇u‖q+1
q+1, which can not be further controlled by ‖∇u‖p. Hence, we

use the property of Log function, which brings the norm of u in Lq+1+ε(Ω). The condition q + 1

2



being strictly less than p∗ is to guarantee the feasibility of the imbedding from W 1,p to Lq+1+ε.

Moreover, if comparing the life span in this work and in [5] for the pseudo-parabolic Kirchhoff

equation with power like nonlinearity, one can find that the time t0 in Theorem 5 (ii) is smaller

than that in Theorem 1.6 [5], which suggests that the logarithmic nonlinearity do contribute to

blowing-up, see Remark 3.

The rest of this paper is arranged as follows. Section 2 states some useful lemmas. Sections 3

and 4 deal with the global existence and the finite blow-up of the solutions of (1.1) in the case of

J(u0) ≤ d and J(u0) > d, respectively.

2 Preliminary

Definition 2.1 A function u(x, t) is said to be a weak solution to (1.1) on Ω× [0, T ), if u(x, 0) =

u0(x) ∈W 1,p
0 (Ω), u ∈ L∞(0, T ;W 1,p

0 (Ω)) with ut ∈ L2(0, T ;H1
0 (Ω)) and satisfies

(ut, ϕ) + (∇ut,∇ϕ) +M(‖∇u‖pp)(|∇u|p−2∇u,∇ϕ) = (|u|q−1u log |u|, ϕ),

for any ϕ ∈W 1,p
0 (Ω).

According to the potential well theory [26, 32, 37], the potential energy functional is

J(u) =
a

p
‖∇u‖pp +

b

2p
‖∇u‖2pp −

1

q + 1

∫
Ω
|u|q+1 log |u|dx+

1

(q + 1)2
‖u‖q+1

q+1, (2.1)

and the Nehari functional is

I(u) = a‖∇u‖pp + b‖∇u‖2pp −
∫

Ω
|u|q+1 log |u|dx. (2.2)

(2.1) and (2.2) imply that

J(u) =
1

q + 1
I(u) +

(
a

p
− a

q + 1

)
‖∇u‖pp +

(
b

2p
− b

q + 1

)
‖∇u‖2pp +

1

(q + 1)2
‖u‖q+1

q+1, (2.3)

d

dt
J(u) = −‖ut‖22 − ‖∇ut‖22, (2.4)

I(u) = −1

2

d

dt
(‖u‖22 + ‖∇u‖22). (2.5)

For any δ > 0, the modified Nehari functional can be defined as

Iδ(u) = δ(a‖∇u‖pp + b‖∇u‖2pp )−
∫

Ω
|u|q+1 log |u|dx.

Then we can define the Nehari manifold and the potential wells

N = {u ∈W 1,p
0 (Ω) : I(u) = 0, ‖∇u‖p 6= 0},

W = {u ∈W 1,p
0 (Ω) : J(u) < d, I(u) > 0}

⋃
{0},
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V = {u ∈W 1,p
0 (Ω) : J(u) < d, I(u) < 0},

Nδ = {u ∈W 1,p
0 (Ω) : Iδ(u) = 0, ‖∇u‖p 6= 0},

Wδ = {u ∈W 1,p
0 (Ω) : J(u) < d(δ), Iδ(u) > 0}

⋃
{0},

Vδ = {u ∈W 1,p
0 (Ω) : J(u) < d(δ), Iδ(u) < 0},

where d(δ) is the depth of the potential well and

d = d(1) = inf{J(u) : u ∈ N }, d(δ) = inf{J(u) : u ∈ Nδ}. (2.6)

Lemmas 2.1, 2.4 and 2.5 are similar to the lemmas in [3, 5, 9], so we omit their proofs.

Lemma 2.1 Assume λ > 0 and u ∈W 1,p
0 (Ω) with ‖∇u‖p 6= 0, then there hold

(i) lim
λ→0

J(λu) = 0, lim
λ→+∞

J(λu) = −∞.

(ii) There exits an unique λ∗ > 0 such that d
dλJ(λu)|λ=λ∗ = 0, namely λ∗u ∈ N . Furthermore,

d
dλJ(λu)|λ=λ∗ > 0 on (0, λ∗), d

dλJ(λu)|λ=λ∗ < 0 on (λ∗,∞), namely J(λu) takes the maximum at

λ = λ∗.

Lemma 2.2 For u ∈W 1,p
0 (Ω) with ‖∇u‖p 6= 0, rε(δ) = ( aδεe

Sq+1+ε )
1

q+1+ε−p , where 0 < ε < p∗ − q − 1,

S is the embedding coefficient of the Sobolev inequality ‖u‖q+1+ε ≤ S‖∇u‖p, we have

(i) If 0 < ‖∇u‖p ≤ rε(δ), then Iδ(u) > 0.

(ii) If Iδ(u) < 0, then ‖∇u‖p > rε(δ).

(iii) If Iδ(u) = 0, then ‖∇u‖p = 0 or ‖∇u‖p > rε(δ).

Proof (i) Using the property of the logarithmic function and the Sobolev embedding inequality,

we can get ∫
Ω
|u|q+1 log |u|dx ≤ 1

eε

∫
Ω
|u|q+1+εdx ≤ 1

eε
Sq+1+ε‖∇u‖q+1+ε

p ,

which with 0 < ‖∇u‖p < rε(δ) indicate that∫
Ω
|u|q+1 log |u|dx ≤ 1

eε
Sq+1+εrε(δ)

q+1+ε−p‖∇u‖pp = aδ‖∇u‖pp < aδ‖∇u‖pp + bδ‖∇u‖2pp .

This means Iδ(u) > 0.

(ii) can be directly derived from (i).

(iii) If ‖∇u‖p = 0, then Iδ(u) = 0. If Iδ(u) = 0 and ‖∇u‖p 6= 0, then

aδ‖∇u‖pp <
∫

Ω
|u|q+1 log |u|dx ≤ 1

eε
Sq+1+ε‖∇u‖q+1+ε

p ,

namely ‖∇u‖p > rε(δ). �

Lemma 2.3 d(δ) in (2.6) satisfies

(i) d(δ) ≥
(
a
p −

aδ
q+1

)
rε(δ) +

(
b

2p −
bδ
q+1

)
rε(δ), lim

δ→+∞
d(δ) = −∞.

(ii) d(δ) is monotonically increased on 0 < δ ≤ 1, monotonically decreased on δ > 1 and the

maximum is obtained at δ = 1. Moreover, there exists a unique δ̄ > 1 such that d(δ̄) = 0, and

d(δ) > 0 for 1 ≤ δ < δ̄.
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Proof (i) We can rewrite J(u) as

J(u) =
1

q + 1
Iδ(u) +

(
a

p
− aδ

q + 1

)
‖∇u‖pp +

(
b

2p
− bδ

q + 1

)
‖∇u‖2pp +

1

(q + 1)2
‖u‖q+1

q+1.

When u ∈ Nδ, then Iδ(u) = 0 and Lemma 2.2 indicates that ‖∇u‖p > rε(δ). Thus

J(u) >

(
a

p
− aδ

q + 1

)
rε(δ) +

(
b

2p
− bδ

q + 1

)
rε(δ).

From the definition of d(δ), we can get

d(δ) ≥
(
a

p
− aδ

q + 1

)
rε(δ) +

(
b

2p
− bδ

q + 1

)
rε(δ).

For any δ > 0, if λu ∈ Nδ, then δ =
λq+1−p ∫

Ω (|u|q+1 log |λu|)dx
a‖∇u‖pp+bλp‖∇u‖2pp

and λ needs to satisfy

λ > exp

{
−
∫

Ω |u|
q+1 log |u|dx
‖u‖q+1

q+1

}
. (2.7)

When (2.7) holds, from a directly computation, we can derive that

dδ

dλ
=

λq−p‖u‖q+1
q+1

a‖∇u‖pp + bλp‖∇u‖2pp
+
λq
∫

Ω |u|
q+1 log(λ|u|)dx((q + 1− p)a‖∇u‖pp + (q − p)λpb‖∇u‖2pp )

λp(a‖∇u‖pp + bλp‖∇u‖2pp )2

> 0,

which means λ and δ have a one to one correspondence and further a positive correlation. Then

lim
δ→0+

λ(δ) = exp

{
−
∫

Ω |u|
q+1 log |u|dx
‖u‖q+1

q+1

}
, lim

δ→+∞
λ(δ) = +∞.

Thus from the definition of d(δ) and Lemma 2.1, we can get

lim
δ→+∞

d(δ) ≤ lim
δ→+∞

J(λu) = lim
λ→+∞

J(λu) = −∞,

lim
δ→0+

d(δ) ≤ lim
δ→0+

J(λu) = J

(
exp

{
−
∫

Ω |u|
q+1 log |u|dx
‖u‖q+1

q+1

}
u

)
.

(ii) Assume 0 < δ′ < δ′′ ≤ 1 or 1 < δ′′ < δ′. If u ∈ Nδ′′ , namely λ(δ′′) = 1, then δ′′ =∫
Ω |u|

q+1 log |u|dx
a‖∇u‖pp+b‖∇u‖2pp

and u must satisfy ∫
Ω
|u|q+1 log |u|dx > 0. (2.8)

Set v = λ(δ′)u, then from the one to one correspondence of λ and δ, v ∈ Nδ′ . Let h(λ) = J(λ(δ)u)

with λ(δ)u ∈ Nδ, then

h′(λ) = λp−1a‖∇u‖pp + λ2p−1b‖∇u‖2pp −
∫

Ω
λq|u|q+1 log |λu|dx =

1

λ
I(λu).

5



If 0 < δ′ < δ′′ ≤ 1, since λ(δ) increases as δ increases, then exp

{
−

∫
Ω |u|

q+1 log |u|dx
‖u‖q+1

q+1

}
< λ(δ′) <

λ(δ′′) = 1 and there exist δ∗ ∈ (δ′, δ′′) and λ∗ = λ(δ∗) ∈ (λ(δ′), 1), such that λ∗u ∈ Nδ∗ and

J(u)− J(v) = h(1)− h(λ(δ′)) =
1− λ(δ′)

λ∗
I(λ∗u)

=
1− λ(δ′)

λ∗
[
a(1− δ∗)‖λ∗∇u‖pp + b(1− δ∗)‖λ∗∇u‖2pp

]
> 0.

Therefore, for any u ∈ Nδ′′ , there exists v ∈ Nδ′ such that J(u) > J(v), which leads to d(δ′′) > d(δ′).

The case for 1 < δ′′ < δ′ is similarly and the latter part of (ii) follows from (i). �
Now, we can define

d0 = lim
δ→0+

d(δ), (2.9)

where d0 ≥ 0 from Lemma 2.3.

Lemma 2.4 For u ∈ W 1,p
0 (Ω), when d0 < J(u) < d, then the sign of Iδ(u) doesn’t change for

δ1 < δ < δ2, where δ1 < 1 < δ2 are the two roots of d(δ) = J(u); when J(u) ≤ d0, then the sign of

Iδ(u) doesn’t change for δ < δ2, where δ2 > 1 is the root of d(δ) = J(u).

Lemma 2.5 Assume u0 ∈W 1,p
0 and u is a weak solution of (1.1).

(i) If d0 < J(u0) < d, then d(δ) = J(u0) has two roots δ1 < 1 < δ2. If I(u0) > 0, then u ∈ Wδ,

δ1 < δ < δ2, 0 < t < T . If I(u0) < 0, then u ∈ Vδ, δ1 < δ < δ2, 0 < t < T .

(ii) If J(u0) ≤ d0, then d(δ) = J(u0) has a unique root δ2 ∈ (1, δ̄), where δ̄ is from Lemma 2.3. If

I(u0) > 0, then u ∈Wδ, δ < δ2, 0 < t < T . If I(u0) < 0, then u ∈ Vδ, δ < δ2, 0 < t < T .

(iii) If J(u0) = d and I(u0) > 0, then W is an invariant set. If J(u0) = d and I(u0) < 0, then V

is an invariant set.

Remark 1 For the power like nonlinearity [5], the limit of d(δ) as δ → 0 is zero. However, the

logarithmic nonlinearity may lead to a positive limit of d(δ) when δ → 0. Such difference results in

considering 0 < J(u0) ≤ d0 and d0 < J(u0) < d separately.

3 J(u0) ≤ d

In this section, we deal with the global existence and the blowing-up of the weak solution to

(1.1) under the condition J(u0) ≤ d.

Theorem 1 Let u0 ∈ W 1,p
0 (Ω) with J(u0) < d and I(u0) > 0, or with J(u0) = d and I(u0) ≥ 0.

Then (1.1) admits a global weak solution u. In addition, when n = 1, 2, the global solution is

unique; when n ≥ 3, the global bounded solution is unique.
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Proof To star with, we prove the global existence of solutions by the Galerkin method. The

approximate solution um(x, t) of (1.1) can be constructed by

um(x, t) =

m∑
j=1

αmj (t)φj(x), αmj (t) = (um, φj), m = 1, 2, ...,

(umt , φj) + (∇umt ,∇φj) +M(‖∇um‖pp)(|∇um|p−2∇um,∇φj) = (|um|q−1um log |um|, φj), (3.1)

um(x, 0) =
m∑
j=1

αmj (0)φj(x)→ u0(x) in W 1,p
0 (Ω), (3.2)

with {φj(x)}∞j=1 be the orthogonal base in W 1,p
0 (Ω).

In what follows, we consider the two cases respectively. For Case 1. J(u0) < d and I(u0) > 0,

according to (2.3) and 2p < q + 1, we have J(u0) > 0. By the convergence (3.2), there have

J(um(x, 0)) → J(u0) < d and I(um(x, 0)) → I(u0) > 0. Hence for sufficiently large m, there is

um(x, 0) ∈W , which with Lemma 2.5 indicates um(x, t) ∈W . Further there holds

d > J(um(x, 0)) =J(um(x, t)) +

∫ t

0
(‖umτ ‖22 + ‖∇umτ ‖22)dτ

>

∫ t

0
(‖umτ ‖22 + ‖∇umτ ‖22)dτ +

a(q + 1− p)
p(q + 1)

‖∇um‖pp

+
b(q + 1− 2p)

2p(q + 1)
‖∇um‖2pp +

1

(q + 1)2
‖um‖q+1

q+1, ∀t > 0.

Thus ∫ t

0
(‖umτ ‖22 + ‖∇umτ ‖22)dτ < d, ‖um‖q+1

q+1 < d(q + 1)2,

‖∇um‖pp <
dp(q + 1)

a(q + 1− p)
, ‖M(‖∇um‖pp)|∇um|p−2 · ∇um‖ p

p−1
< C,

where C is a constant independent on t. For the logarithmic nonlinearity, using the Sobolev

inequality and inf{xq log x, x ∈ (0, 1)} = − 1
eq with q > 0, we have∫

Ω
||um|q log |um||

q+ε+1
q+ε dx =

∫
{|um|≤1}

||um|q log |um||
q+ε+1
q+ε dx+

∫
{|um|>1}

|(|um|q log |um|)|
q+ε+1
q+ε dx

≤
(

1

eq

) q+ε+1
q+ε

· |Ω|+
(

1

eε

) q+ε+1
q+ε

‖um‖q+ε+1
q+ε+1

≤
(

1

eq

) q+ε+1
q+ε

· |Ω|+
(
Sq+ε

eε

) q+ε+1
q+ε

·
(

dp(q + 1)

a(q + 1− p)

) q+ε+1
p

, ∀t > 0,

where 0 < ε < p∗ − q − 1. According to the above boundedness estimations, there exist u ∈
L∞(0,∞;W 1,p

0 (Ω)) and a subsequence of {um}∞m=1 (still represented by {um}∞m=1), such that

umt ⇀ ut in L2(0,∞;H1
0 (Ω)),

um
∗
⇀u in L∞(0,∞;W 1,p

0 (Ω)),

7



um → u strongly in C(0, T ;L2(Ω)),

|um|q−1um · log |um| ∗⇀ |u|q−1u · log |u| in L∞(0,∞;L
q+ε+1
q+ε (Ω)),

M(‖∇um‖pp)|∇um|p−2 · ∇um ∗
⇀ξ in L∞(0,∞;L

p
p−1 (Ω)).

Similar to the process of [3, 25], we can prove ξ = M(‖∇u‖pp)|∇u|p−2∇u. Then for fixed j, sending

m→ +∞ in (3.1), u is a global weak solution satisfies Definition 2.1.

For Case 2. J(u0) = d and I(u0) ≥ 0, we set λs = 1− 1
s , s = 1, 2, ... and consider (1.1) with the

initial data u(x, 0) = λsu0(x). According to I(u0) ≥ 0 and Lemma 2.1, there exists an unique λ∗ ≥ 1

such that I(λ∗u0) = 0. Notice that λs < 1 ≤ λ∗, then I(λsu0) > 0, J(λsu0) < J(u0) = d. Due

to Case 1. and Lemma 2.5, for any s, there exists a global weak solution us ∈ L∞(0,∞;W 1,p
0 (Ω)),

such that us ∈W and

d > J(λsu0) =J(us) +

∫ t

0
(‖usτ‖22 + ‖∇usτ‖22)dτ

>

∫ t

0
(‖usτ‖22 + ‖∇usτ‖22)dτ +

a(q + 1− p)
p(q + 1)

‖∇us‖pp

+
b(q + 1− 2p)

2p(q + 1)
‖∇us‖2pp +

1

(q + 1)2
‖us‖q+1

q+1, ∀t > 0.

Similar to the estimations and limitations of Case 1., (1.1) has a global weak solution u with

I(u) ≥ 0 and J(u) ≤ d.

The last step is devoted to the uniqueness. Assume (1.1) has two global weak solution u and

v. Setting w = u− v and using the Young inequality, we can get

1

2

d

dt

∫
Ω
w2dx+

1

2

d

dt

∫
Ω
|∇w|2dx

≤1

2

d

dt

∫
Ω
w2dx+

1

2

d

dt

∫
Ω
|∇w|2dx+

1

p
(M(‖∇u‖p)−M(‖∇v‖p)) (‖∇u‖p − ‖∇v‖p)

≤
∫

Ω

(
q |θu+ (1− θ)v|q−1 log |θu+ (1− θ)v|+ |θu+ (1− θ)v|q−2 · (θu+ (1− θ)v)

)
w2dx,

where θ ∈ (0, 1) and w(x, 0) = 0. When n = 1, 2, we can get the boundedness of u from the

estimation of ‖∇u‖p and the imbedding inequality. Therefore, like the proof in [5, 3], by the

Gronwall inequality and the boundedness of u and v, we can obtain the uniqueness. �

Theorem 2 Let u0 ∈W 1,p
0 (Ω), u is the global solution obtained in Theorem 1.

(i) If J(u0) < d and I(u0) > 0, then u decays to zero and

‖u‖22 + ‖∇u‖22 ≤
[
(‖u0‖22 + ‖∇u0‖22)1−p + Ct

]− 1
p−1 ,

where C is a positive constant.

(ii) If J(u0) = d and I(u0) > 0, then u decays to zero and

‖u‖22 + ‖∇u‖22 ≤
[
(‖u(t0)‖22 + ‖∇u(t0)‖22)1−p + C(t− t0)

]− 1
p−1 ,

where t0 > 0 and C is a positive constant.
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Proof (i) From Lemma 2.5, if d0 < J(u0) < d and I(u0) > 0, then u(x, t) ∈ Wδ, δ1 < δ < δ2,

where δ1 < 1 < δ2 are two roots of d(δ) = J(u0); if J(u0) ≤ d0 and I(u0) > 0, then J(u0) > 0 and

u(x, t) ∈ Wδ, 0 < δ < δ2, where δ2 > 1 are the root of d(δ) = J(u0). So we can choose δ1 < δ̃ < 1

such that

1

2

d

dt
(‖u‖22 + ‖∇u‖22) = −Iδ̃(u) + a(δ̃ − 1)‖∇u‖pp + b(δ̃ − 1)‖∇u‖2pp .

Using the Hölder inequality and the Poincaré inequality, we can obtain

1

2

d

dt
(‖u‖22 + ‖∇u‖22) ≤ b(δ̃ − 1)‖∇u‖2pp ≤ C(δ̃ − 1)(‖u‖2p2 + ‖∇u‖2p2 ),

where C is a constant. Noticing the inequality Kp(a
p + bp) ≥ (a + b)p with non-negative a, b and

positive constant Kp, then

1

2

d

dt
(‖u‖22 + ‖∇u‖22) ≤ C(δ̃ − 1)

(
‖u‖22 + ‖∇u‖22

)p
, (3.3)

which implies ‖u‖22 + ‖∇u‖22 ≤
[(
‖u0‖22 + ‖∇u0‖22

)1−p
+ C(1− δ̃)(p− 1)t

]− 1
p−1

with C depending

on k and p.

(ii) From Lemma 2.5, if J(u0) = d and I(u0) > 0, then J(u) < d and I(u) > 0. So we can take

any t0 > 0 as the initial time, and repeat the steps of (i) to get

‖u‖22 + ‖∇u‖22 ≤
[
(‖u(t0)‖22 + ‖∇u(t0)‖22)1−p + C(1− δ̃)(p− 1)(t− t0)

]− 1
p−1

.

�

Remark 2 If the initial data satisfies J(u0) = d and I(u0) = 0, then the global solution u obtained

in Theorem 1 satisfies J(u) = d and I(u) = 0, which means ‖u‖22 + ‖∇u‖22 = ‖u0‖22 + ‖∇u0‖22,

namely the global solution does not decay. In fact, such initial data do exist, it is the ground state

solution of (1.1).

Theorem 3 There exists a function u∗(x) ∈ N such that J(u∗) = inf
u∈N

J(u) = d. Further, u∗(x)

is the ground state solution of{
−M(‖∇u‖pp)∆pu = |u|q−1u log |u|, x ∈ Ω,

u(x) = 0, x ∈ ∂Ω,
(3.4)

namely u∗ ∈ Φ \ {0} and J(u∗) = inf
u∈Φ\{0}

J(u), where

Φ = {u ∈W 1,p
0 (Ω) : J ′(u) = 0 in W−1,p′(Ω)}

= {u ∈W 1,p
0 (Ω) : 〈J ′(u), ϕ〉 = 0,∀ϕ ∈W 1,p

0 (Ω)}.
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Proof In the first place, there exists a minimizing sequence {uk}∞k=1 ∈ N such that

d = lim
k→∞

J(uk) = lim
k→∞

{
a(q + 1− p)
p(q + 1)

‖∇uk‖pp +
b(q + 1− 2p)

2p(q + 1)
‖∇uk‖2pp +

1

(q + 1)2
‖uk‖q+1

q+1

}
.

The boundedness of ‖uk‖W 1,p
0 (Ω)

from the above equality induces that there exist a subsequence of

{uk}∞k=1 (still denoted by {uk}∞k=1) and u∗(x) ∈W 1,p
0 (Ω), such that

uk → u∗ weakly in W 1,p
0 (Ω) as k →∞,

uk → u∗ strongly in Lq+1+ε(Ω) as k →∞, q + 1 + ε < p∗.

Next we prove that u∗ ∈ N and J(u∗) = d. On the one hand, the weakly lower semi-continuity

of ‖ · ‖
W 1,p

0
implies that

a‖∇u∗‖pp + b‖∇u∗‖2pp ≤ lim inf
k→∞

(a‖∇uk‖pp + b‖∇uk‖2pp ) = lim
k→∞

∫
Ω
|uk|q+1 log |uk|dx. (3.5)

On the other hand, there exists ω = θuk + (1− θ)u∗ with θ ∈ (0, 1) such that∫
Ω
|uk|q+1 log |uk|dx−

∫
Ω
|u∗|q+1 log |u∗|dx

=

∫
Ω

((q + 1)|ω|q−1ω log |ω|+ |ω|q−1ω)(uk − u∗)dx

≤q + 1

eq
|Ω|

q+1
q ‖uk − u∗‖q+1 +

q + 1

eε
‖ω‖q+εq+1+ε‖uk − u

∗‖q+1+ε + ‖ω‖qq+1‖uk − u
∗‖q+1

→0, as k →∞,

which with (3.5) imply that

a‖∇u∗‖pp + b‖∇u∗‖2pp ≤
∫

Ω
|u∗|q+1 log |u∗|dx.

So we only need to exclude the case of a‖∇u∗‖pp + b‖∇u∗‖2pp <
∫

Ω |u
∗|q+1 log |u∗|dx. If it is true,

then by Lemma 2.1, there exists an unique 0 < λ∗ < 1 such that λ∗u∗ ∈ N and J(λ∗u∗) ≥ d.

However,

J(λ∗u∗) <
a(q + 1− p)
p(q + 1)

‖∇u∗‖pp +
b(q + 1− 2p)

2p(q + 1)
‖∇u∗‖2pp +

1

(q + 1)2
‖u∗‖q+1

q+1

≤ lim inf
k→+∞

a(q + 1− p)
p(q + 1)

‖∇uk‖pp +
b(q + 1− 2p)

2p(q + 1)
‖∇uk‖2pp +

1

(q + 1)2
‖uk‖q+1

q+1

≤ d,

which is a contradiction. Thus u∗ ∈ N and

a‖∇u∗‖pp + b‖∇u∗‖2pp = lim
k→∞

a‖∇uk‖pp + b‖∇uk‖2pp .
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Note the uniform convexity of W 1,p
0 (Ω) and the weak convergence of uk in W 1,p

0 (Ω), we can get

uk → u∗ strongly in W 1,p
0 (Ω) [2]. Then

J(u∗) =
a

p
‖∇u∗‖pp +

b

2p
‖∇u∗‖2pp −

1

q + 1

∫
Ω
|u∗|q+1 log |u|dx+

1

(q + 1)2
‖u∗‖q+1

q+1 = lim
k→∞

J(uk) = d,

which implies J(u∗) = inf
u∈N

J(u) = d.

At last, we prove that u∗ is the ground state solution of (3.4). Since u∗ ∈ N , we have

〈J ′(u∗), u∗〉 = I(u∗) = 0. According to the Lagrange multiplier method, there exists a constant

µ ∈ R such that

J ′(u∗)− µI ′(u∗) = 0,

which implies µ〈I ′(u∗), u∗〉 = 〈J ′(u∗), u∗〉 = 0. For any ϕ ∈W 1,p
0 (Ω), we can deduce that

〈I ′(u∗), ϕ〉 =
d

dτ
I (u∗ + τϕ)

∣∣∣
τ=0

=ap
(
|∇u∗|p−2 · ∇u∗,∇ϕ

)
+ 2bp‖∇u∗‖pp

(
|∇u∗|p−2 · ∇u∗,∇ϕ

)
− (q + 1)

(
|u∗|q−1 · u∗ log |u∗|, ψ

)
−
(
|u∗|q−1 · u∗, ψ

)
.

Choosing ϕ = u∗ in the above equality leads to

〈I ′(u∗), u∗〉 = ap‖∇u∗‖pp + 2bp‖∇u∗‖2pp − (q + 1)

∫
Ω
|u∗|q+1 log |u∗|dx− ‖u∗‖q+1

q+1,

which together with I(u∗) = 0 points that

〈I ′(u∗), u∗〉 = a(p− q − 1)‖∇u∗‖pp + b(2p− q − 1)‖∇u∗‖2pp − ‖u∗‖
q+1
q+1 < 0.

Consequently µ = 0 and J ′(u∗) = 0, which mean u∗ ∈ Φ \ {0}. From Φ \ {0} ⊂ N and J(u∗ = d),

we get

J(u∗) = inf
u∈Φ\{0}

J(u) = d,

which means that u∗(x) is the ground state solution of (3.4). �

Theorem 4 Let u0 ∈ W 1,p
0 (Ω) with J(u0) ≤ d and I(u0) < 0. Then the weak solution of (1.1)

blows up in finite time, namely there exists T > 0, such that

lim
t→T−

∫ t

0
(‖u‖22 + ‖∇u‖22)dτ = +∞.

Proof We give the proof by contradiction. Assume u is a global solution of (1.1). Let

H(t) =

∫ t

0
(‖u‖22 + ‖∇u‖22)dτ + (T ∗ − t)(‖u0‖22 + ‖∇u0‖22), t ∈ [0, T ∗],
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where T ∗ is a sufficiently large time. Then H(t) ≥ 0 with t ∈ [0, T ∗] and

(H ′(t))2 =

(
2

∫ t

0
((uτ , u) + (∇uτ ,∇u))dτ

)2

≤ 4H(t)

[∫ t

0
(‖uτ‖22 + ‖∇uτ‖22)dτ

]
, (3.6)

H ′′(t) = 2(ut, u) + 2(∇ut,∇u) = −2I(u), (3.7)

which lead to H ′′(t)H(t)− q+1
2 (H ′(t))2 ≥ H(t)

[
−2I(u)− 2(q + 1)

∫ t
0 ‖uτ‖

2
2 + ‖∇uτ‖22dτ

]
. If there

exist some σ1 > 0 such that

−2I(u)− 2(q + 1)

∫ t

0
‖uτ‖22 + ‖∇uτ‖22dτ > σ1, (3.8)

then [H
1−q

2 (t)]′′ ≤ σ1(1−q)
2 [H

1−q
2 (t)]

q+1
q−1 , which can result in the finite time blow-up of u.

In what follows, we prove such σ1 indeed exists. When J(u0) ≤ 0, then (2.3) and (2.4) lead to

J(u) ≤ 0 and I(u) < 0. Therefore from Lemma 2.2, we can derive ‖∇u‖p > rε(1) and

− 2I(u)− 2(q + 1)

∫ t

0
(‖uτ‖22 + ‖∇uτ‖22)dτ

=− 2(q + 1)J(u0) +
2a(q + 1− p)

p
‖∇u‖pp +

b(q + 1− 2p)

p
‖∇u‖2pp +

2

q + 1
‖u‖q+1

q+1

>σ1

with σ1 = 2a(q+1−p)
p rpε (1). When 0 < J(u0) < d and I(u0) < 0, then Lemma 2.5 implies that, either

d0 < J(u0) < d or 0 < J(u0) ≤ d0, Iδ̃(u) ≤ 0 and ‖∇u‖p > rε(δ̃) > 0 with δ̃ > 1 being the larger

roots of J(u0) = d(δ). Thus from (3.7), we find that

H ′′(t) = 2a(δ̃ − 1)‖∇u‖pp + 2b(δ̃ − 1)‖∇u‖2pp − 2Iδ̃(u) ≥ 2a(δ̃ − 1)rpε (δ̃),

which with (3.6) guarantees

‖u‖22 + ‖∇u‖22 ≥ H ′(t) ≥ 2a(δ̃ − 1)rpε (δ̃)t.

Thus there exists T∗ > 0 and σ1 > 0 such that (3.8) is established for t ≥ T∗. When J(u0) = d

and I(u0) < 0, Lemma 2.5 shows that there exists t0 > 0 such that I(u(t)) < 0, 0 < t < t0.

Then (3.7) leads to H ′′(t) > 0 and ‖ut‖22 + k‖∇ut‖22 6= 0 for 0 < t < t0. Therefore J(u(t0)) =

d−
∫ t0

0 (‖uτ‖2 +k‖∇uτ‖2)dτ = d1 < d. We can choose t0 as the initial time and complete the proof

according to the case J(u0) < d and I(u0) < 0. �

Theorem 5 Let u0 ∈ W 1,p
0 (Ω) with J(u0) ≤ d and I(u0) < 0. Then we have the following life

span estimation of the blow-up solution in Theorem 4.

(i) If J(u0) < 0, then T ≤ ‖u0‖22+‖∇u0‖22
(1−q2)J(u0)

.

(ii) If 0 ≤ J(u0) ≤ d, then T ≤ 4‖u0‖22+4‖∇u0‖22
(q−1)2(

a(q+1−p)
p(q−1)

‖∇u(t0)‖pp+
b(q+1−2p)

2p(q−1)
‖∇u(t0)‖2pp −J(u0))

+ t0, where t0

satisfies 2(q + 1)J(u0) < min
t∈[t0,T )

(
2a(q+1−p)

p ‖∇u(t)‖pp + b(q+1−2p)
p ‖∇u(t)‖2pp + 2

q+1‖u(t)‖q+1
q+1

)
.
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Remark 3 We omit the proof for Theorem 5. It can be proved analogue to Theorem 1.6 [5].

Compared to the life span in [5] for the pseudo-parabolic Kirchhoff equation with power like nonlin-

earity, the time t0 in Theorem 5 (ii) is smaller than that in Theorem 1.6 [5], which suggests that

the logarithmic nonlinearity do contribute to blowing-up.

4 J(u0) > d

In this section, we investigate the conditions that ensure the global existence or finite time blowing-

up of solution to (1.1). Inspired by the ideas in [18, 25, 37, 38], we need to introduce some new

notations. For a positive constant σ > d, we let

Jσ = {u ∈W 1,p
0 (Ω) : J(u) < σ} and N σ = N ∩ Jσ.

It is easy to find that

N σ = {u ∈W 1,p
0 (Ω) : I(u) = 0,

(
a

p
− a

q + 1

)
‖∇u‖pp+

(
b

2p
− b

q + 1

)
‖∇u‖2pp +

1

(q + 1)2
‖u‖q+1

q+1 < σ}.

Then we define

λσ = inf{‖u‖22 + ‖∇u‖22 : u ∈ N σ}, Λσ = sup{‖u‖22 + ‖∇u‖22 : u ∈ N σ},

which have been discussed in the following theorems.

Theorem 6 λσ ≥



[
aεe

βq+1+ε
κp−θ(q+1+ε) +

bεe

βq+1+ε
κ2p−θ(q+1+ε)

] 2
(1−θ)(q+1+ε)

, p− θ(q + 1 + ε) > 0,[
aεe

βq+1+ε
κ̃p−θ(q+1+ε) +

bεe

βq+1+ε
κ̃2p−θ(q+1+ε)

] 2
(1−θ)(q+1+ε)

, 2p− θ(q + 1 + ε) < 0,[
aεe

βq+1+ε
κ̃p−θ(q+1+ε) +

bεe

βq+1+ε
κ2p−θ(q+1+ε)

] 2
(1−θ)(q+1+ε)

, p ≤ θ(q + 1 + ε) ≤ 2p.

and

Λσ ≤ 2|Ω|
p−2
p κ̃2,

where 0 < ε < p∗−q−1, θ satisfies θ(1
2−

1
p+ 1

n) = 1
2−

1
q+1+ε , κ̃ = min

{(
pσ(q+1)
a(q+1−p)

)1/p
,
(

2pσ(q+1)
b(q+1−2p)

)1/2p
}

,

κ is the unique positive solution of f(y) = d with

f(y) =
b(q + 1− 2p)

2p(q + 1)
y2p +

a(q + 1− p)
p(q + 1)

yp +
Sq+1

1

(q + 1)2
yq+1, y ∈ R. (4.1)

Proof We first give the upper bound and lower bound of ‖∇u‖p. On the one hand, from (2.6), we

have

d = inf
u∈N

J(u)
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= inf
u∈N

[
a(q + 1− p)
p(q + 1)

‖∇u‖pp +
b(q + 1− 2p)

2p(q + 1)
‖∇u‖2pp +

1

(q + 1)2
‖u‖q+1

q+1

]
≤ inf

u∈N

[
a(q + 1− p)
p(q + 1)

‖∇u‖pp +
b(q + 1− 2p)

2p(q + 1)
‖∇u‖2pp +

Sq+1
1

(q + 1)2
‖∇u‖q+1

p

]
= inf

u∈N
f(‖∇u‖p),

where S1 is the embedding coefficient of the Sobolev inequality ‖u‖q+1 ≤ S1‖∇u‖p, f(·) is given in

(4.1). Since f(·) is strictly increasing on [0,+∞) and f(0) = 0, there exists an unique κ such that

f(κ) = d. Then for any u ∈ N , there is

‖∇u‖p ≥ κ > 0. (4.2)

On the other hand, if u ∈ N σ, there holds

‖∇u‖p ≤ κ̃ = min

{(
pσ(q + 1)

a(q + 1− p)

)1/p

,

(
2pσ(q + 1)

b(q + 1− 2p)

)1/2p
}
. (4.3)

In what follows, we derive the lower bound of λσ and the upper bound of Λσ. By the Gagliardo–

Nirenberg inequality [2], we get

‖u‖q+1+ε ≤ β‖u‖(1−θ)2 ‖∇u‖θp,

where β is a positive constant and θ(1
2 −

1
p + 1

n) = 1
2 −

1
q+1+ε . Then it follows from the above

inequality that for any u ∈ N and 0 < ε < p∗ − q − 1

a‖∇u‖pp + b‖∇u‖2pp ≤
∫

Ω
|u|q+1 log |u|dx ≤ 1

εe
‖u‖q+1+ε

q+1+ε ≤
1

εe
βq+1+ε‖u‖(1−θ)(q+1+ε)

2 ‖∇u‖θ(q+1+ε)
p ,

which says

a‖∇u‖p−θ(q+1+ε)
p + b‖∇u‖2p−θ(q+1+ε)

p ≤ 1

εe
βq+1+ε‖u‖(1−θ)(q+1+ε)

2 . (4.4)

For the lower bound of λσ, we divide into three cases to discuss.

Case 1: p− θ(q + 1 + ε) > 0, then using (4.2) and (4.4), we have

λσ = inf
u∈N σ

{
‖u‖22 + ‖∇u‖22

}
≥ inf

u∈N

{
‖u‖22 + ‖∇u‖22

}
≥ inf

u∈N

[
aεe

βq+1+ε
‖∇u‖p−θ(q+1+ε)

p +
bεe

βq+1+ε
‖∇u‖2p−θ(q+1+ε)

p

] 2
(1−θ)(q+1+ε)

≥
[

aεe

βq+1+ε
κp−θ(q+1+ε) +

bεe

βq+1+ε
κ2p−θ(q+1+ε)

] 2
(1−θ)(q+1+ε)

.

Case 2: 2p− θ(q + 1 + ε) < 0, then using (4.3) and (4.4), we have

λσ = inf
u∈N σ

{
‖u‖22 + ‖∇u‖22

}
14



≥
[

aεe

βq+1+ε
κ̃p−θ(q+1+ε) +

bεe

βq+1+ε
κ̃2p−θ(q+1+ε)

] 2
(1−θ)(q+1+ε)

.

Case 3: p ≤ θ(q + 1 + ε) ≤ 2p, then using (4.2), (4.3) and (4.4), we have

λσ = inf
u∈N σ

{
‖u‖22 + ‖∇u‖22

}
≥
[

aεe

βq+1+ε
κ̃p−θ(q+1+ε) +

bεe

βq+1+ε
κ2p−θ(q+1+ε)

] 2
(1−θ)(q+1+ε)

.

For the upper bound of Λσ, using the Hölder inequality and (4.3), we have

Λσ = sup
u∈N σ

{
∥∥u‖22 + ‖∇u‖22

}
≤ sup

u∈Nσ

2|Ω|
p−2
p ‖∇u‖2p

≤ 2|Ω|
p−2
p κ̃2.

�

Theorem 7 Assume u0 ∈W 1,p
0 (Ω) with J(u0) > d.

(i) If I(u0) > 0, ‖u0‖22 + ‖∇u0‖22 ≤ λJ(u0), then u exists globally and decays to zero as t→∞.

(ii) If I(u0) < 0, ‖u0‖22 + ‖∇u0‖22 ≥ ΛJ(u0), then u blows up in finite time.

Proof Let u be a solution of (1.1), and T (u0) be the maximal existence time of u.

(i) First, we assert that if I(u0) > 0 and ‖u0‖22 + k‖∇u0‖22 ≤ λJ(u0), then

I(u(t) > 0, 0 ≤ t < T (u0). (4.5)

Otherwise there exists t0 ∈ (0, T (u0)) such that

I(u(t)) > 0, 0 ≤ t < t0 and I(u(t0)) = 0. (4.6)

On the one hand, it can be seen from (2.5) and (4.6) that

d

dt
(‖u‖22 + ‖∇u‖22) < 0, 0 < t < t0.

Then we have

‖u(t0)‖22 + ‖∇u(t0)‖22 < ‖u(t0)‖22 + ‖∇u(t0)‖22 ≤ λJ(u0). (4.7)

On the other hand, the non-increasing property of J(u) in (2.4) indicates that J(u(t0)) < J(u0),

which with the definition of Jσ leads to u(t0) ∈ JJ(u0). Thus u(t0) ∈ N J(u0). According to the

definition of λJ(u0), we can get

‖u(t0)‖22 + ‖∇u(t0)‖22 ≥ λJ(u0),

which contradicts (4.7). Hence (4.5) is correct.
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Next we can verify that T (u0) = +∞. Using (2.3), (2.4) and (4.5), there holds

J(u0) ≥ J(u) =
1

q + 1
I(u) + (

a

p
− a

q + 1
)‖∇u‖pp + (

b

2p
− b

q + 1
)‖∇u‖2pp +

1

(q + 1)2
‖u‖q+1

q+1

> (
a

p
− a

q + 1
)‖∇u‖pp + (

b

2p
− b

q + 1
)‖∇u‖2pp +

1

(q + 1)2
‖u‖q+1

q+1,

which means ‖∇u‖p and ‖u‖q=1 are bounded and further T (u0) = +∞.

At last, we prove that u → 0 as t → ∞. Define the ω − limit set of u0 by ω(u0) =⋂
t≥0
{u(·, s) : s ≥ t}. Then for any ω ∈ ω(u0), we have

‖ω‖22 + ‖∇ω‖22 < ‖u0‖22 + ‖∇u0‖22 ≤ λJ(u0), J(ω) ≤ J(u0).

So that ω(u0) ∩N = ∅. Since I(u) > 0, then from (2.4), we obtain

J(u) >

(
a

p
− a

q + 1

)
‖∇u‖pp +

(
b

2p
− b

q + 1

)
‖∇u‖2pp +

1

(q + 1)2
‖u‖q+1

q+1 ≥ 0,

which with the non-increasing property of J(u) tells us that

lim
t→∞

J(u(t)) = c,

where c is a constant. Taking any ω ∈ ω(u0) as the initial data, then the solution uω(t) has

J(uω(t)) = c for all t ≥ 0. Using (2.4) again, we achieve uω(t) ≡ ω. which with (2.5) means

I(ω) = 0. It’s a contradiction. Then ω(u0) = 0, namely u→ 0 as t→∞.

(ii) If I(u0) < 0, ‖u0‖22 + ‖∇u0‖22 ≥ ΛJ(u0), then similar to (i), we can get I(u(t)) < 0,

u(t) ∈ JJ(u0) for 0 ≤ t < T (u0). If T (u0) =∞, then for any ω ∈ ω(u0), we conclude that

‖ω‖22 + ‖∇ω‖22 > ΛJ(u0), J(ω) ≤ J(u0).

Then ω(u0) ∩N = ∅. Similar to (i), ω(u0) = {0}. However due to I(u) < 0, we have

a‖∇u‖pp < a‖∇u‖pp + b‖∇u‖2pp <

∫
Ω
|u|q+1 log |u|dx ≤ 1

eε
‖u‖q+1+ε

q+1+ε <
Sq+1+ε

eε
‖∇u‖q+1+ε

p ,

which means ‖∇u‖p ≥
(

aeε
Sq+1+ε

) 1
q+1+ε−p . It is a contradiction. Then T (u0) < +∞. �
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