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Abstract

Viral systems such as wild-type viruses, viral vectors, and virus-like particles are essential components of modern biotechnology

and medicine. Despite their importance, the commercial-scale production of viral systems remains highly inefficient for multiple

reasons. Computational strategies are a promising avenue for improving process development, optimization, and control, but

require a mathematical description of the system. This article reviews mechanistic modeling strategies for the production of

viral particles, both at the cellular and bioreactor scales. In many cases, techniques and models from adjacent fields such as

epidemiology and wild-type viral infection kinetics can be adapted to construct a suitable process model. These process models

can then be employed for various purposes such as in-silico testing of novel process operating strategies and/or advanced process

control.
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Abstract

Viral systems such as wild-type viruses, viral vectors, and virus-like particles are essential components of
modern biotechnology and medicine. Despite their importance, the commercial-scale production of viral
systems remains highly inefficient for multiple reasons. Computational strategies are a promising avenue
for improving process development, optimization, and control, but require a mathematical description of
the system. This article reviews mechanistic modeling strategies for the production of viral particles, both
at the cellular and bioreactor scales. In many cases, techniques and models from adjacent fields such as
epidemiology and wild-type viral infection kinetics can be adapted to construct a suitable process model.
These process models can then be employed for various purposes such as in-silico testing of novel process
operating strategies and/or advanced process control.
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1 Introduction

Viral systems such as wild-type viruses, viral vectors (e.g., Adeno-Associated Viruses (AAVs) and retroviruses [1]) and
virus-like particles (VLPs) have become essential components of modern biotechnology and medicine. These systems are
used in the production of vaccines (e.g., inactivated or attenuated whole viral vaccines [2], viral vector vaccines [3], and
VLP-based vaccines [4]), vaccine adjuvants and antiviral therapies [5], gene therapies [1], recombinant protein production
[6, 7], and drug delivery [8, 9].

The successful development and commercialization of many of these biotherapeutics require large-scale and high-yield
production of these viral systems. Scaling up and optimization of viral system manufacturing processes are currently
active areas of research. Some of the challenges are generally applicable to most viral systems, e.g., inefficient downstream
separation and purification [10], while others are system specific, e.g., low yields in recombinant AAV (rAAV) production
due to inefficient filling of capsids with the desired genetic material [11]. These challenges have motivated significant
research activity throughout the manufacturing and development pipeline e.g., engineering and optimizing cell lines [12,
13], engineering the viral system itself to facilitate production [14, 15], bioreactor process development and intensification
[12, 16], and improving the performance of downstream separation processes [10, 17].

One of the comparatively nascent developments in the viral systems production literature, which motivates this
review, is the development and application of mathematical modeling approaches to understanding the manufacturing
process both at the cellular and reactor scales. The use of modeling strategies in biotechnology is well-established (a
cursory search of the literature will reveal a plethora of studies and reviews on the topic e.g., [18, 19]) and has significantly
contributed to the development of the field. Incorporating modeling into the process research and development workflow
can contribute several benefits such as providing deeper process insights into the dynamics and multivariable interactions
present in the system [11, 20], enabling the deployment of advanced process control and monitoring strategies [20, 21],
enhance process optimization methodologies [22], and guide and accelerate the development of novel manufacturing
strategies [11, 23].

Fortunately, the development of process models for viral systems manufacturing is significantly aided by a compre-
hensive preexisting literature in adjacent fields such as wild-type viral infection, epidemiology, and chemical/biochemical
reactor engineering. At the cellular scale, detailed studies on the viral life cycle and infection kinetics provide the
basis for mapping the intracellular process steps and can serve as initial kinetic estimators. At the reactor scale, the
interactions between viruses and cells can be coarse-grained and approximated by functional forms that are analogous
to the compartment-modeling frameworks used to study infection at the scale of an individual human or a population.
These human-scale (e.g., [24–26]) and population-scale models (e.g., [27, 28]) are commonly used tools to understand
disease progression and the impact of specific interventions like anti-viral therapies or vaccination programs. Multiscale
approaches that combine cellular- and reactor-scale modeling are also commonly employed in the literature for similar
applications.

This review aims to consolidate existing literature on the dynamical modeling of upstream viral systems manufacturing
and outline a robust approach for constructing novel models. By breaking down the required model constituents and
processes at both the cellular and reactor scales, we show how a model can be formulated using information and strategies
from the various aforementioned fields.

2 Cellular-scale Models

2.1 Model Constituents

Cellular-scale models of viral processes describe the steps that map the viral production processes within an individual
cell. The specific steps vary, but in general capture uptake, unpacking, transport, replication, transcription, translation,
budding, and release processes occurring within the cell. Figure 1 provides an overview of the steps often included in
cellular-scale reaction-transport models of viral systems.

When establishing a cellular-scale model, the delineation of the model steps depends broadly on four characteristics:

1. Virus Type: The type of wild-type virus, viral vector, or VLP.

2. Cell Type: The type of cells being used to generate the virus, e.g., mammalian cells such as HEK293 or insect cells
such as Sf9. The cell type also impacts the kinetic parameter values used in the model.

3. Genetic Expression Approach: The method of expressing the gene(s) of interest, e.g., transient transfection, stable
expression, or wild-type infection.

4. Data Availability: The utility of the model depends on the type and quality of the available experimental data.

Unlike wild-type infection models, which seek to understand the timing and dynamics of wild-type viral infection,
recombinant models depict the cellular production of viral vectors or VLPs for therapeutic or experimental use. Although
recombinant viral system modeling is a less mature area of development, models have been created for viral vectors [11,
29], attenuated viruses for vaccines [30], and VLPs [31, 32]. Figure 2 shows an exemplar cellular-scale model output, in
which the dynamics of a transient AAV system are predicted and mapped to experimental measurements [11]. For a
thorough overview of wild-type infection models, refer to Ref. [33].

The focus of this section of the review is the mathematical approaches that enable cellular-scale viral modeling. These
mathematical strategies are often application agnostic, and can be readily applied to either wild-type or recombinant
systems.
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2.2 Mathematical Approaches

Cellular-scale models can be broadly categorized as either deterministic or stochastic. Deterministic models neglect the
inherent randomness and noise of the biological system and provide precise predictions. While the insights gleaned from
deterministic models are often useful, biological systems are inherently random, and stochastic elements can be included
to describe variations observed in experiments and to capture a more complete understanding of the system dynamics
[34, 35]. Srivastava et al. [36] is a helpful primer on the differences of applying deterministic and stochastic modeling
approaches to viral systems.

2.2.1 Deterministic Modeling

Deterministic models of viral systems often employ a system of ordinary differential equations (ODEs) or differential-
algebraic equations (DAEs) to describe the cellular-scale mass action kinetics. This approach assumes species homogeneity
within the cell. The steps outlined in Fig. 1 provide an overview of the steps often included in ODE- or DAE-based
reaction-transport models of recombinant viral systems. Three methods of gene delivery and production are highlighted:
(a) gene delivery through plasmid transfection, (b) gene delivery through recombinant viral infection and receptor
mediated endocytosis and (c) a stable producing cell line. Note that not all steps are relevant to all viral systems.

There is no consensus on the mathematical approaches used to describe many of the cellular-scale steps depicted
in Figure 1. Some mathematical approaches are summarized in Tables 1-2. Many of the differences in approach are
driven by differences in virus or application, but differences are also caused by a lack of understanding of the precise
mechanisms occurring at the process step, which is often rooted in experimental limitations that make it difficult to
extract the granular kinetic details of the complex biological interactions occurring in each step. Because of this, the
steps included in cellular-scale models often describe lumped phenomena.

As an example, consider the assembly step. Viral assembly is a complex process with many sub-steps: the capsid
proteins assemble, the nucleic acid becomes encapsulated within the capsid, and, in some cases, the virus obtains a
membrane coat. Modeling these interactions is an active area of research, and detailed mechanistic and physics-based
models exist that can provide a thorough description for many viral and VLP systems [37, 38]. However, as shown in
Table 1, the assembly rate of the viral particles and VLPs is often approximated in cellular-scale dynamical models
using Michaelis-Menton kinetics [39–41], limiting-substrate kinetics [11, 42, 43], or thermodynamic [31] approaches.
When building an integrated cellular-scale model, a balance between detail and computability needs to be struck. If the
approximation accurately predicts the rate and stoichiometry of the step, the model conclusions should be sufficient for
making population-scale productivity and product quality assessments.

Even when a step’s high-level mathematical structure is the same, the equation details can differ. For example,
multiple groups have modeled the transcriptional regulation of gene expression by tracking the number of ribosomes
available for translating the mRNA into protein [40, 42, 44, 45]. The models of Binder et al. [45] and Zitzmann et al. [40]
include ODEs for the translation complexes that form when an mRNA binds to a ribosome. Each translation complex
represents a polyribosome, and a cap is placed on the number of ribosomes available inside the cell. Aunins et al. [42] also
uses ODEs to describe the formation of translation complexes, but include an additional ODE that tracks the number of
available ribosomes. Lim et al. [44] instead uses an algebraic approach in which ribosomes are assigned to the various
mRNAs based on their length.

2.2.2 Stochastic Modeling

The propagation of stochastic effects often leads to cell-to-cell heterogeneity in viral systems. Including stochastic
elements in cellular-scale models can capture this heterogeneity, providing a more robust assessment of the range of
possible outcomes. For viral systems, these stochastic effects become increasingly relevant at low multiplicity of infection
(MOI) [36, 46]. However, even at high MOI, a range of cell-to-cell productivity spanning multiple orders of magnitude is
often observed [46, 47]. Wild-type viral stochastic modeling is an active area of development, and models have been built
for HIV [48], influenza [46], VSV [47], poliovirus [49], and others.

That said, these stochastic approaches have not been widely applied to recombinant systems. For linear systems and
systems operating near the thermodynamic limit at higher numbers of substrates, deterministic and stochastic approaches
should give similar results [50]. For some recombinant systems, such as monoclonal stable cell lines with multiple genomic
copies, these assumptions likely hold, and deterministic approaches are sufficient. However, for recombinant systems
operating with a lower or variable number of reactants, such as attenuated virus production processes, these assumptions
may not be valid and stochastic elements can be considered.

3 Reactor-scale Models

3.1 Model Constituents

A mechanistic model of a viral bioreactor at bioreactor length and time scales needs to consider four aspects,

1. Bioreactor Configuration: The reactor design and operating conditions are vital in writing the governing conservation
and balance equations describing the bioreactor.

2. Substrates and metabolites: A description of how key substrates and metabolites are transported into and out of
the bioreactor along with their production and/or consumption by cells.
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3. Viral Kinetics: A suitable model describing the kinetics of the viral infection and viral particle production process
is needed to specify the kinetics terms in the model.

4. Biomass: A description of how the biomass evolves within the system.

While this review focuses primarily on reactor-scale viral kinetics and biomass descriptions, the other reactor model
constituents will also be briefly considered.

3.2 Bioreactor Configuration

A variety of different bioreactor configurations for viral particle production have been explored in the literature [16, 51,
52]. The bioreactor configuration can have a significant impact on various aspects of the process such as its dynamics
(e.g., undesirable oscillatory behaviour in viral titers can be eliminated by employing a tubular plug-flow reactor (PFR)
instead of a continuously stirred tank reactor (CSTR) [53]), control, and optimization [16, 54]. While computational
fluid dynamics (CFD) models can be constructed for bioreactor configurations to explore and identify an optimal design
for a given process and viral system, commercial availability and practical limitations such as avoiding excessive shear
stress and the need to get enough oxygen to the cells limit the choice of bioreactor configurations. Also, experimental
validation of CFD models for some commercial bioreactor configurations are not available, so the predictive accuracy of
these models for those configurations is unknown [55–58].

Given a choice of a bioreactor configuration, the corresponding macroscopic model equations can be derived by
considering mass, species, and energy balances across the bioreactor, drawing upon an concepts from an extensive chemical
engineering literature (e.g., see [59–61] and citations therein). The model equations for CSTRs and batch bioreactors
tend to be comparatively more straightforward (often expressible as ODEs and/or differential algebraic equations) than
other bioreactor configurations (typically partial differential equations, PDEs) with terms containing spatial derivatives).
The commonly employed assumption of perfect mixing in CSTR/batch reactors eliminate the need for the model to
capture spatial variations in key variables. In subsequent sections, only CSTR/batch reactor models will be considered to
simplify the presentation. The development of models for other bioreactor configurations is much more computationally
expensive and in many cases remain an area of research [62, 63].

3.3 Substrates and Metabolites

The transport and consumption/production of key substrates (e.g., gluclose, glutamate, and oxygen) and inhibitory
metabolites (e.g., lactate and ammonium) can be captured by including suitable transport equations based on the
bioreactor configuration (e.g., see [64–67]). Substrate- and metabolite-dependent effects on various terms such as the
growth and death rates of cells can be correspondingly implemented in the model [68]. The bioreactor model can be
simplified by omitting the model equations related to substrates and metabolites when these variables are kept constant
as part of the reactor’s regulatory control policy and/or when the concentrations of specific substrates/metabolites of
interest do not impact the process [69, 70].

3.4 Viral Kinetics and Biomass

For many viral systems, especially systems of infectious viral particles, the relationship between the virus particles and
the biomass is closely coupled and are often considered together. Prior to formulating the model, it is helpful to consider
a flow diagram to understand how the system dynamics impact the various components. As a first case, consider a
simplified batch bioreactor with three species of interest: target cells (T), infected cells (I), and virus particles (V). The
following assumptions are employed: Target cells grow exponentially with a rate constant µ, target cells are infected by
attachment of free viral particles with a rate constant k1, target cells die with a rate constant k2, infected cells undergo
apoptosis with a rate constant k3, virus particles are released upon apoptosis of infected cells with a proportionality
constant k4, and free virus particles degrade with a rate constant k5. It is often helpful to construct a flowchart describing
the processes of the system.

Figure 3 corresponds to one of the simplest models for viral particle production in a batch bioreactor,

dT

dt
= µT − k1TV − k2T,

dI

dt
= k1TV − k3I,

dV

dt
= −k1TV + k4I − k5V. (1)

This TIV model (and its variants, e.g., with additional terms to account for flow into and out of a bioreactor in a
continuous CSTR or modifying various terms within (1) to more accurately reflect actual processes) have been used to
model the production of viral particles of various viruses, e.g., Influenza [69, 71, 72], polio [73, 74], and dengue [75, 76].
As previously mentioned in the introduction, it is helpful to note the parallels between the TIV model and both patient
viral infection dynamical models (e.g., see [77–79] and citations therein) and compartment models in epidemiology (see
[80] and citations therein). These related fields have a rich literature which can serve as a source for formulating models
and extensions. For recombinant systems where the viral particle does not infect cells in the bioreactor, the reactor-scale
model would be much more closely aligned with well-established bioreactor models for recombinant protein production
(e.g., see [81, 82]).
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Multiple avenues for model extension are available. In some cases, it might be necessary to account for additional viral
or cell species. For example, some viruses are known to produce defective interfering particles (DIPs) during replication
which can impact system dynamics [71, 83]. Frensing et al. [71] extended the TIV model by including 3 additional
equations to track DIPs, cells infected with DIPs and cells co-infected with DIPs and standard virus particles (STVs),
and the proposed model was successfully able to qualitatively match experimental bioreactor results (see Figure 4 for
exemplar simulations). To integrate deeper insights of the cell population into the model, the equations for one or more
species of interest can be reformulated as a population balance model (PBM) with suitable intrinsic variables capturing
the dimensions in which the population varies [84–86]. Table 3 summarizes exemplar intrinsic variables considered in cell
population balance models with a focus on viral particle production.

4 Multiscale Models

Viral systems are inherently multiscale; infection and recombinant viral production are the result of a dynamic relationship
between different time and length scales. Coupling the cellular- and reactor-scale dynamics can improve model accuracy
and predictability for viral systems. This coupling often comes with increased model complexity and computational
requirements, which can be mitigated via strategic application of simplifying assumptions and/or referral to the literature
on the modeling and simulation of multiscale systems [87, 88].

The literature is sparse regarding multiscale modeling of recombinant viral systems. However, as with cellular- and
reactor-scale models, analogous multiscale wild-type viral models can be leveraged for recombinant multiscale modeling
[89]. These wild-type models are typically motivated by mapping the spread and treatment of a virus within a population,
tissue, or cellular system, but many of the high-level mathematical approaches and considerations governing these systems
are directly relevant to recombinant application [89]. Additionally, there are relevant multiscale publications on non-viral
recombinant cellular systems (e.g., monoclonal antibodies), which are summarized by Kyriakopoulos et al. [90]. Note
that multiscale models in which cellular-scale dynamics are paired with reactor-scale dynamics are often referred to as
“structured” models in the literature [91].

One approach to incorporating multiscale dynamics is to couple the cellular-scale production of virus or VLP with
the infectivity state of the cell population. Information is often transferred unidirectionally from the reactor-scale to the
cellular-scale, such that the intracellular dynamics are affected by the infection state of the cell. Haseltine et al. [92]
demonstrated this approach for a general viral infection system using a series of integro-partial differential equations.
The group used simplifying assumptions to decouple the system [93], an approach that was also successfully employed to
model Influenza A infection and antiviral efficacy [94]. Dürr et al. [95] extended this Influenza A infection model by
using approximate moment methods to solve a population balance system, which was used to predict productivity effects
due to heterogenous gene overexpression and expedited the screening of suitable cell line candidates [96]. Hu & Bentley
[31] instead used a stochastic method to predict the infection pattern of a baculovirus insect system producing VLPs.
Protein synthesis and VLP formation within individual cells was then tied to the time since infection and the number of
infecting baculoviruses.

An alternative way to incorporate multiscale dynamics is to couple extracellular process variables to cellular-scale
dynamics, which can prove useful for recombinant systems that do not contain live infection dynamics. For example,
Ho et al. [97] linked the cellular-scale production of a monoclonal antibody to the reactor-scale glucose consumption
[98] and Jedrzejewski et al. [99] used Monod kinetics to link extracellular metabolite concentrations to a cellular-scale
glycosylation model [100]. These approaches linking cellular-scale dynamics to process variables have not been widely
extended to segregated cell population models, where, for example, the infection status of individual cells is tracked.
This simplification enables the model equations to remain a system of ODEs, greatly simplifying the solution approach.
Future applications can extend these approaches to include the cellular-scale effects from other industry-relevant process
variables such as dissolved oxygen and pH.

5 Parameter Estimation

A variety of parameter estimation techniques have been employed in the biological modeling literature to fit model
parameters to experimental data. Methods include linear and nonlinear least squares [101], heuristic search algorithms
[102, 103], and Kalman filtering [104], among others. For models of viral systems consisting of algebraic or differential
equations in which the available data is limited and noisy, Bayesian techniques strike a balance between complexity
and usefulness [105]. Since Bayesian estimation techniques allow inference of the entire probability distributions of the
estimated parameters, they are also able to quantify the uncertainty in the parameter estimates. Bayes theorem describes
the a posterior distribution P (θ|Y ) as a function of the experimental data Y and the a priori distribution P (θ) of the
model parameters θ,

P (θ|Y ) =
P (Y |θ)P (θ)

P (Y )
. (2)

Two parameter estimation approaches rooted in Bayes theorem are maximum likelihood (ML) and maximum a
posteriori (MAP) estimation [105]. ML estimation assumes no prior knowledge is available other than potentially bounds
on the model parameters, and P (θ) is assumed constant over the allowed parameters. Assuming zero-mean normally
distributed noise and using a logarithmic transformation, the ML estimator can be written as a function of the vector of
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measurements Y and model outputs f(X,θ) [105] by

min
θ

(Y − f(X,θ))⊤Vϵ
−1(Y − f(X,θ)) (3)

where X is the vector of state variables and Vϵ is the measurement error covariance matrix. ML estimation finds the
parameters that have the highest likelihood of fitting the data. The MAP estimator extends the ML estimator by
incorporating prior knowledge about the model parameters. This prior knowledge can be leveraged from literature results
or previous experiments. Assuming zero-mean normally distributed noise and normally distributed priors with means µ
and variances Vµ, the maximum a posterior estimator is [105]

min
θ

(Y − f(X,θ))⊤Vϵ
−1(Y − f(X,θ)) + (θ − µ)⊤Vµ

−1(θ − µ). (4)

6 Conclusions

Demand is surging for products manufactured in viral systems. Nevertheless, the yields of even the most state-of-the-art
recombinant viral systems often fall short of market needs. Improvements to recombinant viral processes are urgently
needed to meet this demand and ensure the consistent manufacture of high-quality viral products. Dynamical modeling
is one way to realize high-impact process gains; understanding the cellular- and reactor-scale dynamics can increase
specific productivity, improve control of critical quality attributes (CQAs), and decrease the amount of time required for
process development by encouraging targeted experimentation. modeling can also inform other methods of upstream
process enhancement such as media development and process intensification, leading to even greater gains.

Many of the modeling methodologies summarized in this review were first applied to wild-type viral systems. Extending
these approaches to recombinant systems is not trivial, and often requires experimentation for model validation. That said,
advances in measurement technologies and synthetic biology will continue to improve the informativeness of experiments,
enabling even more comprehensive models. Additionally, as more products made in viral systems mature and scale into
manufacturing systems, dynamical models can be created with manufacturing-specific applications.

Acknowledgments

Financial support is acknowledged from the U.S. Food and Drug Administration (FD007458) and the Agency for Science,
Technology and Research (A*STAR), Singapore.

7



References

1. Warnock, J. N., Daigre, C. & Al-Rubeai, M. in Viral Vectors for Gene Therapy (eds Merten, O. &
Al-Rubeai, M.) 1st ed., 1–25 (Humana Press, New York, 2011).

2. Plotkin, S. History of vaccination. Proceedings of the National Academy of Sciences 111, 12283–12287
(Aug. 2014).

3. Ura, T., Okuda, K. & Shimada, M. Developments in viral vector-based vaccines. Vaccines 2, 624–641
(July 2014).

4. Mohsen, M. O., Zha, L., Cabral-Miranda, G. & Bachmann, M. F. Major findings and recent advances in
virus–like particle (VLP)-based vaccines. Seminars in Immunology 34, 123–132 (Dec. 2017).

5. Frensing, T. Defective interfering viruses and their impact on vaccines and viral vectors. Biotechnology
Journal 10, 681–689 (May 2015).

6. Shah, K. H., Almaghrabi, B. & Bohlmann, H. Comparison of expression vectors for transient expression
of recombinant proteins in plants. Plant Molecular Biology Reporter 31, 1529–1538 (Dec. 2013).

7. Wurm, F. & Bernard, A. Large-scale transient expression in mammalian cells for recombinant protein
production. Current Opinion in Biotechnology 10, 156–159 (Apr. 1999).

8. Wen, A. M. & Steinmetz, N. F. Design of virus-based nanomaterials for medicine, biotechnology, and
energy. Chemical Society Reviews 45, 4074–4126 (2016).

9. Ma, Y., Nolte, R. J. & Cornelissen, J. J. Virus-based nanocarriers for drug delivery. Advanced Drug
Delivery Reviews 64, 811–825 (June 2012).

10. Singh, N. & Heldt, C. L. Challenges in downstream purification of gene therapy viral vectors. Current
Opinion in Chemical Engineering 35, 100780 (Mar. 2022).

11. Nguyen, T. N., Sha, S., Hong, M. S., Maloney, A. J., Barone, P. W., Neufeld, C., Wolfrum, J., Springs,
S. L., Sinskey, A. J. & Braatz, R. D. Mechanistic model for production of recombinant adeno-associated
virus via triple transfection of HEK293 cells. Molecular Therapy - Methods & Clinical Development 21,
642–655 (June 2021).

12. Kiesslich, S. & Kamen, A. A. Vero cell upstream bioprocess development for the production of viral
vectors and vaccines. Biotechnology Advances 44, 107608 (Nov. 2020).

13. Genzel, Y. Designing cell lines for viral vaccine production: Where do we stand? Biotechnology Journal
10, 728–740 (May 2015).

14. Li, C. & Samulski, R. J. Engineering adeno-associated virus vectors for gene therapy. Nature Reviews
Genetics 21, 255–272 (Apr. 2020).

15. Jordan, I., Horn, D., John, K. & Sandig, V. A genotype of Modified Vaccinia Ankara (MVA) that facilitates
replication in suspension cultures in chemically defined medium. Viruses 5, 321–339 (Jan. 2013).

16. Gallo–Ramı́rez, L. E., Nikolay, A., Genzel, Y. & Reichl, U. Bioreactor concepts for cell culture-based viral
vaccine production. Expert Review of Vaccines 14, 1181–1195 (Sept. 2015).

17. Wolf, M. W. & Reichl, U. Downstream processing of cell culture-derived virus particles. Expert Review of
Vaccines 10, 1451–1475 (Oct. 2011).

18. Lee, S. Y., Lee, D.-Y. & Kim, T. Y. Systems biotechnology for strain improvement. Trends in Biotechnology
23, 349–358 (July 2005).

19. Bailey, J. Mathematical modeling and analysis in biochemical engineering: Past accomplishments and
future opportunities. Biotechnology Progress 14, 8–20 (Feb. 1998).

20. Udugama, I. A., Lopez, P. C., Gargalo, C. L., Li, X., Bayer, C. & Gernaey, K. V. Digital Twin in
biomanufacturing: challenges and opportunities towards its implementation. Systems Microbiology and
Biomanufacturing 1, 257–274 (July 2021).

21. Hong, M. S., Severson, K. A., Jiang, M., Lu, A. E., Love, J. C. & Braatz, R. D. Challenges and opportunities
in biopharmaceutical manufacturing control. Computers & Chemical Engineering 110, 106–114 (Feb.
2018).

22. Narayanan, H., Luna, M. F., Stosch, M., Cruz Bournazou, M. N., Polotti, G., Morbidelli, M., Butté, A.
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58. Löffelholz, C., Kaiser, S. C., Kraume, M., Eibl, R. & Eibl, D. in Disposable Bioreactors II (eds Eibl, D. &
Eibl, R.) 1st ed., 1–44 (Springer Berlin Heidelberg, Heidelberg, 2013).

59. O.Levenspiel. Chemical Reaction Engineering 3rd ed. (John Wiley & Sons, New York, 1999).

60. G.F.Froment, K.B. Bischoff & DeWilde, J. Chemical Reactor Analysis and Design 3rd ed. (John Wiley &
Sons, Inc., Hoboken, NJ, USA, 2010).

61. Fogler, S. H. Elements of Chemical Reaction Engineering 5th ed. (Prentice Hall, 2016).

62. Teng, X., Li, C., Yi, X. & Zhuang, Y. A novel scale-up strategy for cultivation of BHK-21 cells based on
similar hydrodynamic environments in the bioreactors. Bioresources and Bioprocessing 8, 74 (Dec. 2021).

63. Li, X.-R., Yang, Y.-K., Wang, R.-B., An, F.-L., Zhang, Y.-D., Nie, J.-Q., Ahamada, H., Liu, X.-X.,
Liu, C.-L., Deng, Y., Bai, Z.-H., Li, Y. & Liu, X.-R. A scale-down model of 4000-L cell culture process for
inactivated foot-and-mouth disease vaccine production. Vaccine 37, 6380–6389 (Oct. 2019).

64. Hong, M. S. & Braatz, R. D. Mechanistic modeling and parameter-adaptive nonlinear model predictive
control of a microbioreactor. Computers & Chemical Engineering 147, 107255 (Apr. 2021).

65. Craven, S., Whelan, J. & Glennon, B. Glucose concentration control of a fed-batch mammalian cell
bioprocess using a nonlinear model predictive controller. Journal of Process Control 24, 344–357 (Apr.
2014).

66. Craven, S., Shirsat, N., Whelan, J. & Glennon, B. Process model comparison and transferability across
bioreactor scales and modes of operation for a mammalian cell bioprocess. Biotechnology Progress 29,
186–196 (Jan. 2013).

67. Brotherton, J. & Chau, P. Modeling of axial-flow hollow fiber cell culture bioreactors. Biotechnology
Progress 12, 575–590 (Oct. 1996).
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94. Heldt, F. S., Frensing, T., Pflugmacher, A., Gröpler, R., Peschel, B. & Reichl, U. Multiscale modeling of
Influenza A virus infection supports the development of direct-acting antivirals. PLoS Computational
Biology 9 (ed Koelle, K.) e1003372 (Nov. 2013).
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Table 1: Mathematical approaches used in cellular-scale viral models. Many of the process steps summarized in
Figure 1 have been described using multiple mathematical approaches.

Mathematical Approach Equation Structure Step References

Power Law vo = k
∏N

i [Si]
αi Plasmid Uptake (1A) [11]

Viral Uptake (1B) [40, 41, 44]

Unpacking (2) [39]

Migration to Nucleus (3) [39, 106]

Replication (4) [32, 42]

Transcription (5) [32]

Translation (6) [39, 41]

Assembly (7) [11, 42, 43]

Release (8) [11, 41]

Power Law with Limiting
or Regulating Protein

d[Ci]
dt = kb[Pi][Si]

d[Si+1]
dt = k[Ci]

Viral Uptake (1B) [32, 39, 106, 107]

Replication (4) [39, 40, 44]

Transcription (5) [40, 44]

Translation (6) [40, 42, 44, 45]

Power Law With Time Delay vo = k[Si](t− δt) Migration to Nucleus (3) [32]

Translation (6) [31]

Michaelis-Menton vo = vmax[Si]
[Si]+KM

Transcription (5) [41]

Translation (6) [32]

Assembly (7) [39–41]

Thermodynamics [n] =
∏n

i=2 Ki[1]
n Assembly (7) [31]

Table 2: Variables used in Table 1 to describe cellular-scale modeling mathematical approaches.

Variable Description

Ci Protein complex i

k Rate constant

Ki Association constant

Km Concentration of substrate needed to achieve half the maximal reaction rate

n Number of subunits in VLP

N Number of reacting species

Pi Binding protein i

Si Reactant i

vmax Maximum achievable reaction rate

vo Rate of reaction

αi Order of reactant i
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Table 3: Exemplar intrinsic variables considered in PBMs for biotechnology. Where possible, references to the
literature considering viral systems are provided.

Intrinsic variable Description Reference

Cell age/
Post-infection cell age

Enables age-based effects e.g., cell death
and reproduction to be captured

[92, 93, 108, 109]

Cell mass/volume/size
These properties can be measured and used

to capture similar effects as cell age
[110–112]

Intracellular DNA/RNA content Provide deeper insights into the cell state [95, 113–115]

Fluorescence
Provides information on the extent/progress

of infection in the cell population.
Data can be obtained from flow cytometry

[116–118]
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Figure 1: Typical steps included in cellular-scale models of recombinant viral systems. Gene delivery to a host
cell via (A) plasmid transfection and (B) recombinant viral infection. (C) Production of a viral vector via a
stable cell line.
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Figure 2: Dynamical cellular-scale model outputs for a recombinant AAV production process. In this study,
Nguyen et al. [11] created a model mapping the generation of recominant AAVs via transient transfection. The
model was fit to experimental results and used to elucidate the mechanisms driving the low proportion of full
capsids produced by the system. These plots were regenerated using software available at github [119].

Figure 3: Flowchart for a simplified TIV system adapted from [69]; see [120] for additional examples of flow
charts for more complex systems.
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Figure 4: Exemplar reactor-scale simulations performed using the TIV (left) and extended model (right) in
a CSTR from [71]. Frensing et al. [71] observed oscillatory behaviour during experimental runs which was
explained by the presence of DIPs. This effect was captured in the extended model which introduced additional
species to track DIPs and cells either infected with DIPs or co-infected cells.
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