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Abstract

Place recognition technology is very important for autono-mous driving. To realize the large-scale recognition task of 3D point

clouds, we propose a large-scale 3D point cloud place recognition framework based on graph neural networks, which combines

local and global features. In extracting features, instance segmentation is performed on the large scene point clouds first, and

then the GNN network trains each segmented instance to obtain local attribute features. We construct a graph model with each

object as a node and the relationship between them as edges, then obtain the global topological structure features of the scene.

In calculating similar scores, we calculate the similarity vector of the global and local feature through a similarity network and

cosine similarity, respectively. Finally, we fuse the similarity vectors and calculate the final similarity score. This paper uses the

SemanticKitti and nuScenes datasets to verify the proposed method. Compared with the state-of-the-art deep learning-based

place recognition method, the proposed method achieves the best results in the SemanticKitti and nuScenes datasets.
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GNN-PR: 3D POINT CLOUD PLACE RECOGNITION

BASED ON GRAPH NEURAL NETWORK

WENLEI LIU, JIAJUN FEI and ZIYU ZHU

Place recognition technology is very important for autonomous driving. To real-
ize the large-scale recognition task of 3D point clouds, we propose a large-scale
3D point cloud place recognition method based on graph neural networks, which
combines local and global features. In extracting features, instance segmenta-
tion is performed on the large scene point clouds first, and then the GNN trains
each segmented instance to obtain local attribute features. We construct a graph
model with each object as a node and the relationship between them as edges,
then get the global topological structure features of the scene. In calculating
similar scores, we calculate the similarity vector of the global and local feature
through a similarity network and cosine similarity, respectively. Finally, we fuse
the similarity vectors and calculate the final similarity score. This paper uses
the SemanticKitti and nuScenes datasets to verify the proposed method. Com-
pared with the state-of-the-art deep learning-based place recognition method, the
proposed method achieves the best results in the SemanticKitti and nuScenes
datasets.

Key words: place recognition, graph neural network, similarity features, feature fusion

Introduction

With the development of technology, the
application of autonomous driving in our life
is more extensive, such as unmanned postal
delivery, truck transportation, and geologi-
cal surveying. High-precision positioning is
the main cornerstone of autonomous driving,
which provides reliable and accurate position-
ing of self-driving vehicles. The place recog-
nition technology can eliminate accumulated
errors in autonomous driving, which is essen-
tial for this task. Usually, the pose information
of two frames of data is used to calculate the
Euclidean distance, and the distance deter-
mines whether there is recognition, so the

Wenlei Liu is a postdoctoral fellow at the Institute of

Artificial Intelligence, Department of Computer Science,

Tsinghua University. Jiajun Fei and Ziyu Zhu is a doc-

toral student at the Department of Artificial Intelligence,

Department of Computer Science, Tsinghua University.

place recognition problem is transformed into
a binary classification problem. Image-based
methods are currently one of the most effec-
tive recognition methods. However, due to
changes in sunlight, weather, seasons, view-
ing angle, and structure, images of a vehicle’s
surroundings can vary widely, affecting recog-
nition accuracy and even resulting in recogni-
tion failure Barros et al. (2021b). Because the
geometric information of 3D point clouds is
less sensitive to lighting, seasonal, and struc-
tural changes, using 3D point clouds for place
recognition has better robustness.

Nowadays, there is much more literature
on deep learning-based place relocation meth-
ods. PointNetVLAD Uy and Lee (2018),
which combines PointNet Qi et al. (2017)
and NetVLAD Arandjelovic et al. (2016), is
the first network model for place recogni-
tion. PointNet extracts the features of each
point cloud and NetVLAD clusters and classi-
fies point cloud features, to realize end-to-end
training and inference. However, it lacks local
features and the ability to describe point

AI Magazine. 00(000): 1–12; doi:10.1002/aaai.0001
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Figure 1. The architecture of the GNN-PR. We utilize a method based on GNN of local
and global features fusion for place recognition.

features. LPD-net Liu et al. (2019) uses a
combination of adaptive local features and
graph-based neighborhood aggregation, which
uses DGCNN Wang et al. (2019) to dynam-
ically learn the feature and geometric space,
and finally uses NetVLAD for feature aggre-
gation to obtain a global descriptor. Although
this method improves the discrimination and
generalization ability, the number of model
parameters is relatively large. SG-PR Kong
et al. (2020) proposes a strategy based on
semantic graph recognition that uses the
semantic and topological information of the
point clouds. Inspired by the above methods,
this paper combines global and local features
to achieve recognition.

To solve the problem of precise recogni-
tion in large scenes, we use the powerful
representation learning capabilities of GNN
Veličković et al. (2017) Wang, Cui, and Zhu
(2016) to learn the abstract features of point
cloud data and realize efficient recognition.

Graph model includes two types of character-
istics: attribute features and structural fea-
tures. Attribute features describe the inherent
attributes of the graph, which are the local
features of the object in the scene. Structural
features describe the nature of the association
with each other, which are the relationship
between objects in the scene, is the global fea-
tures. This paper fuses the local and global
features to relocate in large scenes. The archi-
tecture of the GNN-PR shows in Figure 1. The
source and target point cloud data are first
segmented, and the GNN model then trains
each instance segmentation object to obtain
the attribute features. The graph model takes
each instance segmentation object as a node
and their relationship as edges to get the
graph structural features. NTN Bai et al.
(2019) similarity networks calculate the simi-
larity vector of global features, and the simi-
larity vector of local features is calculated by
cosine similarity. Finally, the final recognition
score is calculated by the fusion method. The
best results of place recognition are achieved



AI MAGAZINE 3

in the SemanticKitti and nuScenes datasets.
The main contributions of this paper are the
following:

• We propose an innovative 3D point cloud
large-scale place recognition method based
on GNN.

• In calculating similarity scores, we fuse the
similarity vectors calculated by local and
global features, improving the matching
accuracy.

• The global features fuse topology features,
geometric features, and histogram features
to enhance the global expression ability of
features.

• Experiments on the Semankitti and
nuScenes datasets achieve the best results.

Related Work

Graph Model

Graphs represent the structural relationship
between different objects and are widely used
in autonomous driving. PointGNN Shi and
Rajkumar (2020) encodes the point cloud into
a neighboring graph with a fixed radius, GCN
predicts the type and shape of the object
that each vertex belongs to in the graph, and
detects multiple targets. Struc2vec Ribeiro,
Saverese, and Figueiredo (2017) is one method
of learning the potential representation of
the nodes’ structural features, which indepen-
dently assesses the similarity between nodes
and the consistency of edges. The structural
similarity between nodes only depends on
their degree, while the hierarchical similar-
ity depends on the whole network. SAGPool
Lee, Lee, and Kang (2019) is a graph pool-
ing method based on self-attention. It uses
the self-attention mechanism to distinguish
points that should be deleted or kept, achiev-
ing high efficiency. Wang, Ni, and Yang (2020)
Li et al. (2021) use the GNN model to achieve
bone-based action recognition.

Matching Method

Matching issues are crucial in recognition.
3DFeat-Net Yew and Lee (2018) is a pio-
neering work in 3D matching that learns 3D
local feature detection and descriptors. How-
ever, this method directly knows the attention
graph from the input points and only pays
attention to the structural information of the

local cluster. DH3D Du, Wang, and Cre-
mers (2020) proposes a unified global position
recognition and local 6DoF pose solution to
overcome the above problems. The Siamese
network learns 3D local descriptions from the
original 3D points. It integrates FlexConv
and Squeeze-and-Excitation (SE) to ensure
that the local learned descriptors capture
multi-level geometric information and channel
correlation. StickyPillars Fischer et al. (2021)
is a 3D feature matching method based on
end-to-end training of graph neural network,
which uses a multi-head attention mechanism
and crosses attention to achieve context aggre-
gation. ReAgent Bauer, Patten, and Vincze
(2021) is a registration method based on rein-
forcement learning. A discrete registration
strategy of imitation learning is adopted based
on a stable expert strategy.

Place Recognition

The point-to-point recognition calculation
is too computationally expensive. Now the
global descriptor-based recognition method
is the primary method. M2DP He, Wang,
and Zhang (2016) projects 3D points onto
a series of 2D planes with different view-
points. By describing the projection of the
spatial density distribution of a point on
a plane, many density distributions of a
single cloud can be obtained. Scan Con-
text Kim and Kim (2018) proposes a global
descriptor based on a non-histogram. First,
a single 3D scan’s point cloud is encoded
into the context. The Nr (number of rings)
dimensional vector encoded from the scan-
ning context. Finally, the retrieved candidates
are compared with the query scanning con-
text. The candidate that meets the accep-
tance threshold and is closest to the query
is considered a loop. EPC-Net Hui et al.
(2021) is an efficient method for extracting
global descriptors. It contains two subnet-
works: proxy point convolutional neural net-
work (PPCNN) and grouped VLAD network
(G-VALD). The PPCNN is mainly extract
multi-scale local geometric features, while
the G-VLAD is mainly generate discrimi-
native global descriptors from the acquired
multi-scale local geometric features. AttDL-
Net Barros et al. (2021a) and PCAN Zhang
and Xiao (2019) apply the attention mecha-
nism to recognition to improve the accuracy
of position recognition.
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Graph Neural Network for Place
Recognition (GNN-PR)

This section introduces the 3D point cloud
large-scale place recognition method based
on graph neural networks. The main steps
include data preprocessing, GNN model train-
ing, similarity feature and score calcula-
tion. The data preprocessing unit performs
instance segmentation on point clouds and fil-
ters out certain noises and irrelevant objects
for relocation. GNN model training mainly
uses instance segmentation objects to obtain
local attributes and global structural fea-
tures. Similar features and score calculation
fuse local and global similarity vectors and
calculate similarity scores.

This paper adopts two-stage training. The
first stage is mainly to train the GNN model.
The features and super nodes obtained in this
stage are the basis for the second stage of
training. The second stage fuses global and
local features to calculate similarity scores
and then determines whether there is reloca-
tion.

Data Preprocessing

The primary purpose of data preprocessing is
to perform instance segmentation on 3D point
cloud data of large scenes. Firstly, the rela-
tively mature point cloud semantic segmen-
tation method obtains the semantic features.
Then the clustering method is used to cluster
each semantic in-formation to complete the
instance segmentation of the entire scene.

In semantic segmentation, we reference
the PolarSeg Zhang et al. (2020) method.
First, polar coordinates are used to quan-
tify point cloud data into grids, and then
U-net structure is used to obtain point cloud
semantic features and labels. This method has
achieved good results in the semantic seg-
mentation experiments of the SemanticKitti
and nuScenes datasets, therefore, we use the
semantic segmentation results for instance
segmentation.

The semantic segmentation results con-
tain point cloud data of the same kind but
belonging to different objects, and instance
segmentation needs to separate all objects.
The instance segmentation method is: accord-
ing to the number of instances included
in each semantic segmentation, use the

K-means++ method to cluster and obtain dif-
ferent instance objects with the same seman-
tics.

The First Stage: GNN Model Training

Each object in the instance segmentation
is used as the input of the GNN training
model. Each instance cluster contains instance
data, semantic labels, and instance labels.
The graph model is automatically constructed
according to each instance data. In building
the GNN model, each point cloud is taken as a
node and used to create edges within a certain
distance threshold. We select points within
0.5m from the point cloud to construct the
edge and use the reciprocal distance between
the two points as the weight. In other words,
the closer the space is, the higher the weight
is, the farther the distance is, and the lower
the weight is. The constructed graph model is
then used as the input to the training network.

The threshold selection method of the con-
struction edge is usually selected according
to the specific scene. A significant threshold
can be chosen for a large open scene, and a
small one can be selected for a dense scene.
For example, in the calculation of GNN fea-
tures, the distance between points in the same
object is relatively close, and the threshold of
the edge is selected to be small.

The structure of the GNN training model
is shown in Figure 2. We use the graph col-
lapse network Ying et al. (2018) structure to
combine the graph collapse process and GNN
with learning layer-level tasks to obtain GNN
attribute features. We denote the graph is rep-
resented by G = (A,F ), where A is the adja-
cency matrix, F is the feature matrix of each
node, G contains k subgraphs {Gk}Kk=1, and
Nk represents the number of nodes included
in the subgraph Gk. G1, G2, G3, and G4

represent 4 subgraphs in Figure 2.
The network training process involves first

learning the features of each node through one
GNN model and then learning the probabil-
ity distribution of each cluster for each node
through another GNN model. This process is
expressed as follows:

Zl = fconv
(
Al, H l

)
(1)

Sl = Softmax
(
fpool

(
Al, H l

))
(2)
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Figure 2. The method of obtaining instance attribute features is based on GNN.

Where Z is the new node embedding, H is the
original node embedding, H0 is F , the adja-

cency matrix is Al ∈ Rnl×nl

, the cluster allo-

cation matrix is Sl ∈ Rnl×nl+1

, nl represents
the number of nodes in layer l, nl+1 represents
the number of nodes in layer l+1, the value of
Sl represents the probability that the node is
allocated to any cluster, and the supernode in
the next layer is the fully connected structure
of all nodes in the previous layer. fconv and
fpool are two independent GNN with the same
input but different parameters. fconv denotes
the calculation of new node embedding vec-
tors, and fpool represents the calculation of
allocation parameters.

According to the new node embedding Z
and cluster as-signment matrix S, the graph
model can be collapsed:

H l+1 = SlTZl (3)

Al+1 = SlTZlSl (4)

The above two formulas are the graph col-
lapse models, which implement the recursive
transformation of

(
Al, Zl

)
→

(
Al+1, Zl+1

)
.

Eq.(3) is the fusion operation on the infor-
mation within the cluster, and Eq.(4) is the
calculation of the adjacency matrix between
clusters. Figure 2 shows the collapsing and
fusing point cloud data into a new supernode.
The last layer of the cluster allocation matrix
is usually 1× 1, since the graph model of
the entire object needs to be collapsed into a
supernode. In other words, a point represents
the attribute features of an object.

The loss function mainly includes two
components in the training process: the
cross-entropy loss function and the connection
prediction loss.

Lloss = Lcross + Llink (5)

Where Lcross is the cross-entropy loss func-
tion of target prediction and Llink =
∥Ai, SlS

T
l ∥ is the connection prediction loss.

Because adjacent points usually are gathered
together, the error between the adjacency
matrix calculated by the cluster allocation
matrix and the adjacency matrix of the next
layer should be minimized as much as possi-
ble.

The Second Stage: Similarity Features and
Score Calculation
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Figure 3. Similar feature computation
network structure. We first fuse structural
and geometric features to obtain global
features and then merge local features.

The network structure of the similar fea-
ture calculation shows in Figure 3. In a similar
network feature calculation, three features
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are mainly involved: GNN attribute features,
GNN structural features, and geometric fea-
tures. The method of fusing local and global
features, on the other hand, calculates simi-
larity scores.

Topology features. Through the graph col-
lapse method, a supernode represents an
instance segmentation object, which describes
the attribute features of the object. At the
same time, the center of each object, which
is calculated by using the point clouds con-
tained in the instance segmentation cluster, is
the 3D position information of the supernode.
The relationship between objects in the large
scene represents the structural features. Con-
structing structural features involves taking
each supernode as the node and the connec-
tion relationship between them as the edge,
setting the threshold of building edge to 10m,
and finally obtaining the topology information
of the entire scene.

Geometric features. Geometric features
make full use of the spatial geometric infor-
mation of supernodes. First, normalize all the
supernodes in the scene, and then use the (x,
y, z) coordinate difference of the super nodes
to construct a covariance matrixMm×3, where
m is the number of supernodes, and then find
the eigenvalues and eigenvectors of the covari-
ance matrix, and the resulting eigenvalues are
used to construct the scene geometry for each
frame Liu et al. (2019). The three eigenvalues
calculated by the symmetric positive definite
matrix respectively satisfy: λi

1 ≥ λi
2 ≥ λi

3.
A 10-dimensional vector represents

the structural feature of these supern-
odes, including F3D features: curvature

change: Ci = λi
3/

∑3
j=1 λ

i
j , total variance:

Oi = 3

√∏3
j=1 λ

i
j/

∑3
j=1 λ

i
j , linear-

ity:
(
λi
1 − λi

2

)
/λi

1, eigenvalue entropy:

Ai = −
∑3

j=1

(
λi
j lnλ

i
j

)
, feature density:

Di = 3N/4
∏3

j=1 λ
i
j , N is the number

of supernodes. F2D features: scatter-
ing: Si,2D = λi

2D,1 + λi
2D,2, linearity:

Li,2D = λi
2D,2/λ

i
2D,1. FV feature: the verti-

cal component of the direction vector. FZ

features: maximum height difference and
maximum variance. After the 10-dimensional
feature passes through the MLP and Atten-
tion network, obtaining the global geometric
feature.

Global feature fusion method. As shown
in Figure 3, the global feature is a fusion of
geometric features and GNN structural fea-
tures. The topology features are obtained by
the GNN structural features, including two
parts: 1. The degree information of each node;
2. The clustering coefficient of each node, or
the number of edges between nodes in a clus-
ter, is divided by the number of possible edges
between them.

The geometric features and topology infor-
mation are fused together to obtain global
features, and then the global similarity score
is calculated by NTN-net. The NTN network
is shown in Figure 4, which is the interac-
tion between graphs and includes calculating
graph interactive feature and histogram fea-
ture. We assume that the feature vectors are
u1 and u2. Therefore, the histogram features
are:

Fhist = hist
(
σ
(
u1u

T
2

))
(6)

Where hist() is a normalized histogram func-
tion and returns statistical feature informa-
tion, σ is a nonlinear activation function.

The interactive feature information of the
graph is:

Finter = σ

(
uT
1 W1u2 +W2

[
u1

u2

]
+ b

)
(7)

Where W1, W2 are the learned parameters,
and b is the deviation vector.

Fhist and Finter are then fused and passed
through a fully connected layer to obtain a
global matching similarity score.

Similarity score calculation. The similar-
ity score calculation is mainly obtained by
fusing the global and local similarity scores.
Attention mechanisms can strengthen impor-
tant information and obtain iconic features.
The global similarity score obtains by using a
similar network to calculate the fused global
features. In contrast, the local feature simi-
larity score fscore obtains by using the cosine
similarity to calculate the similarity of the two
attribute features.

Because the relocation problem can be
transformed into a binary classification
problem, the cross-entropy loss function is
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Figure 4. NTN network structure.

used, and its calculation formula is as follows:

Lscore = − 1

N

N∑
i=1

[
f i
label · log(f i

score)

+ (1− f i
label) · log(1− f i

score)

(8)

where, f i
label is the ith pair of recognition

test label data, f i
score is the similarity score,

if it is recognition, it is 1, otherwise it is 0.

Experiment

Experimental setup

This paper uses the SemanticKitti and
nuScenes dataset to verify the proposed
method and compares it with the most
advanced methods. The SemanticKitti
dataset is a large-scale dataset based on the
64-line LIDAR of automobiles, containing 22
scenes and annotating 19 types of objects. We
selected 12 main types used for experiments.
The nuScenes dataset is a large-scale dataset
based on automotive 32-line LiDAR, anno-
tating 23 types of objects. We select 10 scenes
and 9 main classes for experiments. These
datasets are widely used in automatic driving
algorithm verification, and their sensor layout
and collected data are also consistent with
the real automatic driving scene.

Evaluation method: in the experiment, we
use the pose information of two frames to cal-
culate the Euclidean distance, which is used
to judge whether there is a closed loop. The
recognition problem transforms into a binary
classification problem, and its loss function is
the cross-entropy loss function of binary clas-
sification. Generally, the precision-recall (PR)
curve measures the experimental results of the
binary classification problem. F1 measures the
advantages and disadvantages of different PR
curves. F1 is the harmonic average of preci-
sion and recall, and its expression is: F1 =

2×P×R/ (P +R). To sum up, this paper will
use the PR curve and F1 to measure the effect
of recognition. In the experiment, when the
distance between the two frames is less than
3m, it is a positive example; when the dis-
tance between the two frames is greater than
20m, it is a negative example. We ignore the
frames between 3m and 20m to increase the
feature difference between positive and nega-
tive examples. The conditions for judging the
existence of a closed-loop are: the similarity
probability of the two frames exceeds a certain
threshold, and the difference in the number of
frames between the two frames is greater than
100. This paper mainly uses the deep learning
platform PyTorch to implement the proposed
method.

This paper mainly conducts four experi-
ments: first, compare the effectiveness of the
proposed method with advanced methods;
then conduct robustness experiments; then
conduct fusion experiments to compare differ-
ent fusion methods; finally, study the influence
of the topological radius on the positioning
accuracy.

Comparative Experiment

Quantitative calculation analysis. This
paper compares results with the most
advanced recognition methods based on deep
learning to verify the effectiveness of the
3D point cloud large-scale place recogni-
tion method based on GNN. The comparison
methods in this paper are PNV Uy and Lee
(2018), SC Kim and Kim (2018), LPD Liu
et al. (2019), SG-PRKong et al. (2020), and
EPC Hui et al. (2021).

In this paper, the PR curve of the compar-
ative experiment is shown in Figure 5, and the
maximum F1 score is shown in Table 1. The
GNN-PR has a relatively good effect on all
datasets by comparing the results. The exper-
imental results are relatively stable, and the
F1 score for all datasets is the highest. In the
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KITTI00 KITTI02

KITTI05 KITTI08

nuScenes

Figure 5. The Precision-Recall (PR) curves obtained from recognition comparison
experiments on SemanticKitti and nuScenes datasets

KITTI08 dataset, the effect of other methods
has significantly decreased due to the reverse
closed loop, while GNN-PR still maintains rel-
atively good performance. Mainly because of
the following: 1. This paper uses the local
and global features fusion method to cap-
ture richer information, better adaptability to
environmental changes and stronger robust-
ness; 2. This paper uses GNN features, which
usually reflect the essential attributes of point
cloud instance objects, which are only related

to their point cloud data. Thus, the impact on
the environment is relatively small.

Qualitative analysis. This experiment
uses KITTI05 for qualitative experiments and
the place recognition diagram in Figure 6.
Here, the 821th frame and the 2570th frame
are examples of descriptions. Although the
vehicle passes through the intersection from
different directions, it can still be recognized
commonly and located accurately by the
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Table 1. F1 max score on datasets

Method 00 02 05 08 nuS
PNV 0.882 0.791 0.734 0.765 0.785
SC 0.937 0.858 0.955 0.811 0.935
LPD 0.892 0.923 0.924 0.907 0.921
SG-PR 0.969 0.891 0.905 0.900 0.965
EPC 0.958 0.930 0.962 0.936 0.963
GNN-PR 0.975 0.951 0.978 0.943 0.971

proposed method in this paper. Frame 821
first passes through the intersection, and
after detouring ”8”, it passes through the
intersection again. At this time, it forms a
closed loop, eliminating the cumulative error.
This paper uses GNN features to perform
feature matching. The two sub-graphs at the
top of Figure 6 are topological structure dia-
grams of two frames. Each node represents a
different object in the scene, and the edges
between nodes represent the connection rela-
tionship between objects. The greater the
weight of the edge, the closer the relationship
between them. Graph structure for matching
can improve the relocation accuracy and the
system’s robustness.
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Figure 6. KITTI05 palce recognition
diagram

Robustness Test

In this experiment, dynamic objects are
removed, and static objects are used to build
a graphic model, which facilitates the expres-
sion of a scene. However, some dynamic
objects in the natural environment, such

as pedestrians, bicycles, and motor vehicles,
appear in the background. To achieve effec-
tive recognition, it is necessary to consider the
impact of these dynamic points on the match-
ing. In the robustness test experiment, some
points delete randomly to verify the influence
of dynamic objects occlusion on the recogni-
tion accuracy. The point cloud data obtained
by LIDAR from different angles are different,
affecting the relocation method’s stability. It
must consider the impact of angle changes on
the experimental results. In this experiment,
the robustness of the proposed method to the
angle transformation is verified by changing
the angle randomly.

Table 2 shows the proposed method’s
robustness to occlusion and angle changes.
Because GNN-PR uses the instance segmen-
tation object as the node, it has higher-level
abstract features. It is thus insensitive to local
feature and angle changes and has better
stronger robustness. PNV and LPD are based
on PointNet to extract features, and the abil-
ity to describe point features is insufficient, so
it is easy to receive interference. SC adopts
the method of scanning context and intro-
duces repetitive calculation, which is robust
to disturbances. SG-PR builds the model and
recognition based on semantic features, robust
against disturbances. EPC improves adapt-
ability to the environment through efficient
global features and has better robustness.

Research on Fusion Method

This paper studies the fusion method of
GNN attribute, topological structure features
and geometric features. The GNN attribute
features, topological structure features, and
geometric features are abbreviated as ATT,
SRT, and GEO. (ATT+STR)+ GEO means
that attribute features and topology features
are fused first, then GEO features. (ATT+
GEO)+STR indicates that attribute features
merge with GEO features first, then topology



10 AI MAGAZINE

Table 2. Results of robustness experiment

00 02 05 08 nuS Cmp
PNV 0.777 0.696 0.632 0.718 0.767 -9.2%
SC 0.916 0.847 0.925 0.721 0.929 -3.5%
LPD 0.831 0.869 0.871 0.859 0.885 -4.1%
SG-PR 0.951 0.856 0.874 0.849 0.962 -3.0%
EPC 0.950 0.921 0.961 0.932 0.959 -0.5%
GNN-PR 0.972 0.947 0.975 0.938 0.969 -0.3%

Figure 7. Experimental results of different
fusion methods

Figure 8. The influence of topology radius
on recognition

features. The third method involves concate-
nating all the features together. The fourth
method is the weighted sum of all features.
We use nuScenes to study the fusion method.

The experimental results are shown in
Figure 7. The fusion method improves the
matching accuracy, makes the results more
stable, and has strong robustness. Analysis
of the nature of features, local features rep-
resent the intrinsic properties of each object,
and global features include the macroscopic
features of the entire system. The fusion of
features with different properties can learn
from each other and make full use of features.
The fusion method has strong robustness to
random disturbances.

We compared the operating efficiency of
different fusion methods, because the basic
components of different fusion methods are
the same, so the number of parameters of
fusion methods is similar, about 4M. In
the experiments on the SemanticKitti and
nuScenes datasets, the running time of the
first stage is 10 ∼ 12ms, and the average run-
ning time of the second stage is about 5ms,
which basically meets the real-time require-
ments of relocation in autonomous driving.

Topological Radius Influence

The topological radius plays a decisive role in
the topological structure features. The larger
the topological radius, the more associated
objects. The more edges to construct the
graph model, the stronger the object con-
straint relationship. This paper verifies the
influence of topology radius on recognition
accuracy through experiments. This experi-
ment studies the recognition accuracy when
the topological radius is 3m, 5m, 10m, 15m,
and 20m. The experimental results are shown
in Figure 8.

It can be seen from experiments that the
larger the topology radius, the higher the
recognition accuracy, but when the radius
exceeds a threshold, the increase in accu-
racy will slow down. The main reasons are:
when the radius is small, there are more
isolated points, and the connection between
objects becomes weak, so the effect on recog-
nition will also decrease. When the radius is
large, the number of objects associated with
each object is relatively large, the coupling
between objects is too strong, easy to receive
interference and poor robustness.



AI MAGAZINE 11

Conclusion

This paper proposed an innovative method for
3D point cloud large-scale place recognition
based on GNN. It fused the local and global
features to calculate similarity scores and
improve accuracy and robustness. The fusion
of topological structure and geometric fea-
tures improved the expression ability of global
features. The experiment on SemanticKitti
and nuScenes datasets proved the effective-
ness of this method. However, the proposed
method in this paper still needs improvement.
For example, this method performed rela-
tively poor when distinguishing similar scenes
in different locations since the more abstract
features express weaker local subtle features.
The next step will be to take measures to
improve the problems of this method.
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