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Abstract

We consider the inverse coefficient problem of simultaneously determining the space dependent electric potential, the zero-th

order coupling term and the first order coupling vector of a two-state Schrödinger equation in an infinite cylindrical domain

of R n , n[?]2, from finitely many partial boundary measurements of the solution. We prove that these n+3 unknown scalar

coefficients can be Holder stably retrieved by ( n+1)-times suitably changing the initial condition attached at the system.
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Abstract. We consider the inverse coefficient problem of simultaneously determining the space dependent electric
potential, the zero-th order coupling term and the first order coupling vector of a two-state Schrödinger equation in
an infinite cylindrical domain of Rn, n ≥ 2, from finitely many partial boundary measurements of the solution. We
prove that these n+ 3 unknown scalar coefficients can be Hölder stably retrieved by (n+ 1)-times suitably changing
the initial condition attached at the system.
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1. INTRODUCTION

This is the second of two papers dealing with the stability issue in the inverse problem of determining the electric
potential and the coupling coefficients of a two-state quantum system, from local Neumann data. Two-state systems
are the simplest of non-trivial quantum systems that occur in nature. Examples include the quantum bit, or qubit,
which is the basic unit of quantum information in quantum computing, i.e. the quantum version of the classical binary
bit. In a classical system a bit is one state or the other but in quantum mechanics the qubit can be in a superposition
of both states simultaneously. This feature is fundamental to quantum computing. Another well known example is the
spin of the electron, in which the two levels can be taken by spin-up and spin-down. The two state formalism is used
to describe simple mixing of states, which leads to quantum phenomena with tremendous industrial applications such
as maser or laser. It is made of Schrödinger equations bound together through a linear gradient coupling. When the
two quantum states are constrained to a bounded spatial domain, it was proved in [19] that the electric potential and
the coupling are stably determined by finitely many partial boundary observations of the system. In the present work
we aim for the same type of identification result when the quantum motion is no longer bounded but may escape to
infinity in one direction over the course of time.

1.1. Settings. Throughout this article, ω is a bounded domain of Rn−1, n ≥ 2, with smooth boundary γ := ∂ω, and
Ω := ω × R. For T ∈ R+, we consider the following initial-boundary value problem (IBVP) with initial states u±0
and non-homogenous Dirichlet boundary conditions g±, for the coupled Schrödinger equations in the unknowns u±,

(1.1)



−i∂tu+ −∆u+ + q+u+ +A · ∇u− + pu− = 0 in Q := Ω× (0, T )

−i∂tu− −∆u− + q−u− −A · ∇u+ + pu+ = 0 in Q

u+(·, 0) = u+
0 , u

−(·, 0) = u−0 in Ω

u+ = g+, u− = g− on Σ := Γ× (0, T ),

where Γ := γ × R. Since Γ is unbounded, let us make the above boundary condition more precise. For all x ∈ Ω, we
write x = (x′, xn) where x′ = (x1, . . . , xn−1) ∈ ω and xn ∈ R, and using a standard density argument we extend the
mapping

C∞0 (R× (0, T ), H2(ω)) → L2(R× (0, T ), H
3
2 (ω))

w 7→
[
(xn, t) ∈ R× (0, T ) 7→ w(·, xn, t)|γ

]
,
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2 DETERMINING THE POTENTIAL AND THE GRADIENT COUPLING OF TWO-STATE QUANTUM SYSTEMS IN AN INFINITE WAVEGUIDE

to a bounded operator γ0 acting from L2(R × (0, T ), H2(ω)) into L2(R × (0, T ), H
3
2 (γ)). Then, for all u± ∈

L2(0, T,H2(Ω)), the boundary condition in (1.1) reads γ0u
± = g±.

In the present paper we aim to stably retrieve the electric potentials q± : Ω → R, the zero-th order coupling term
p : Ω → R and the first order coupling vector A : Ω → Rn, by finitely many partial boundary measurements over
the entire time-span (0, T ) of the solution u± to (1.1). In contrast with [19] where the spatial domain Ω is bounded,
here we consider an infinitely extended cylindrical domain and we address the problem of simultaneous identification
of non-compactly supported unknown coefficients p, q± and A. This requires a slightly different and technically more
demanding approach than the one implemented in [19].

1.2. Motivations. The dynamics of the two states u± governed by (1.1) are bound together through linear gradient
coupling pu∓±A · ∇u∓. We refer the reader to [24] and the references therein for the relevance of these processes in
physics. Gradient coupling appears also naturally in quantum fields theory (see [2, 25]) or quantum cosmology (see
[9, 14]), and it is sometimes a first-order approximation of nonlinear coupling (see [28]).

Quantum wires are extremely narrow cylindrical structures which have a length-to-diameter ratio up to 108. Exam-
ples include carbon nanotubes, which are made of carbon a with diameter typically measured in nanometers. These
structures are commonly modeled by infinite three-dimensional cylindrical domains such as Ω, in which electrons are
essentially free to move in one direction. Quantum wires exhibit valuable physical properties for electronics, optics
and other fields of materials science and technology, see e.g., [1], and for this reason they have attracted a lot of
attention from the scientific community.

The IBVP (1.1) can be interpreted as the time-evolution of the spin of a spin- 1
2 particle such as an electron (whose

spin can have values ±~
2 , where ~ is the reduced Planck constant) confined in a carbon nanotube, see e.g., [13, 16].

Notice that for the sake of notational simplicity, the various physical constants such as ~, the charge and the mass of
the electron, are all taken equal to one in (1.1).

1.3. Bibliography. The mathematical literature devoted to inverse coefficient problems for the dynamic Schrödinger
equation is so extensive that this presentation is not intended to be exhaustive, but we can mention [4, 5, 7, 8, 22]
where zero-th or/and first order unknown coefficients of the Schrödinger equation are determined by the Dirichlet-
to-Neumann map. These articles assume knowledge of infinitely many boundary data, but in [3, 27] the real-valued
electric potential is stably retrieved by one partial lateral observation of the solution. This result was extended to
complex-valued electric potentials in [17]. The boundary measurement in [3, 17, 27] is taken on a subpart of the
boundary fulfilling a geometric condition related to geometric optics condition insuring observability. This condi-
tion was relaxed to arbitrarily small sub-boundaries in [5], provided the potential is known in the vicinity of the
boundary. The inverse problem of determining the magnetic vector potential of the autonomous Schrödinger equation
is addressed in [17]. The same problem for the space-varying part of the magnetic potential appearing in a non-
autonomous Schrödinger equation is treated in [12]. In both cases, the n-th dimensional unknown magnetic vector
potential, n ≥ 1, is retrieved from n partial Neumann data obtained by n-times suitably selecting the initial condition
attached at the magnetic Schrödinger equation.

The strategy of [3, 12, 17, 27] relies on a Carleman inequality specifically designed for the Schrödinger equation,
see [17, 26, 27] for actual examples of such weighted energy estimates. The idea of using a Carleman estimate for
solving inverse problems goes back to 1981 and was introduced by A. L. Bukhgeim and M. V. Klibanov in their seminal
article [11]. Since then, the Bukhgeim-Klibanov approach has been successfully applied to parabolic, hyperbolic and
Schrödinger systems and even to coupled systems of partial differential equations. We refer the reader to [18] and
references therein, for a complete survey of multidimensional inverse problems solved by the Bukhgeim-Klibanov
method.

In all the aforementioned papers, the Schrödinger equation under study is posed in a bounded spatial domain. The
inverse problem of determining the electric potential of the Schrödinger equation stated in an infinite waveguide is
examined in [6, 21]. This is achieved by mean of a specifically designed Carleman estimate for the Schrödinger
equation in an unbounded cylindrical domain, which is established in [20]. All the articles listed above are concerned
with the "one state" Schrödinger equation. In [23], assuming that the gradient coupling vector is known, the authors
show that the zero-th order coupling term of a two state magnetic Schrödinger equation is uniquely determined by one
partial Neumann data. Recently in [29], the electric potential of a strongly coupled Schrödinger equations in a bounded
spatial domain was Lipschitz stably retrieved by one partial (internal or boundary) measurement of the solution to the
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system. In [19], the zero-th and first order coefficients of the coupling are Lispchitz stably recovered by finitely many
partial boundary observations of the solution. The coupled Schrödinger equations under study in [19, 23, 29] are posed
on a bounded spatial domain. In the present paper, we aim to extend the result of [19] to the case of an unbounded
waveguide.

1.4. Notations. Throughout this text x = (x1, ..., xn) is a generic point of Ω that is sometimes written x = (x′, xn)
where x′ = (x1, · · · , xn−1) ∈ ω is the variable of the transverse section of Ω and xn ∈ R is the longitudinal variable.
For all x = (x′, xn) ∈ Γ, the outward unit normal ν to Γ reads ν(x) = ν(x′) = (ν′(x′), 0)T , where ν′(x′) ∈ Rn−1 is
the outgoing normal vector to γ at x′ and aT denotes the transpose of the row vector a.

For all i = 1, . . . , n we set ∂i := ∂
∂xi

in such a way that ∇ := (∂1, . . . , ∂n)T (resp., ∇′ := (∂1, . . . , ∂n−1)T ) is
the gradient operator with respect to x = (x1, . . . , xn) (resp., x′ = (x1, . . . , xn−1)). Similarly, we write ∂t = ∂

∂t . For
the sake of shortness we write ∂2

ij , i, j = 1, . . . , n, instead of ∂i∂j and as usual we denote by ∆ the Laplace operator
∂2

1 + . . .+ ∂2
n. Next, for any multi-index k = (k1, . . . , kn) ∈ Nn0 , where N0 := {0} ∪N, we put |k| := k1 + . . .+ kn

and ∂kx = ∂k11 . . . ∂knn . .
Further, the symbol · denotes the scalar product in Cm, m ∈ N, and we set |ζ| :=

√
ζ · ζ for all ζ ∈ Cm. We simply

write ∇· for the divergence operator in Rn and we set ∂νu := ∇u · ν = ∇′ · ν′.
Finally, for all r > 0 and s > 0, we introduce Hr,s(Σ) := L2(0, T ;Hr(Γ)) ∩ Hs(0, T ;L2(Γ)) where Hs(Γ)

denotes the usual Sobolev space on Γ of order s.

1.5. Main results. Prior to investigating the inverse problem under study in this article, we examine the well-
posedness issue for the forward problem associated with (1.1). For this purpose we introduce the Hamiltonian operator
acting on (C∞0 (Q)′)2,

H(A, p, q±) :=

 −∆ + q+ A · ∇+ p

−A · ∇+ p −∆ + q−


and state the following existence, uniqueness and regularity result for the solution to the IBVP (1.1).

Proposition 1.1. Let m ∈ N and assume that γ is C2(m+1). Let A ∈ W 2m+1,∞(Ω,Rn) ∩ C2(m−1)(Ω,Rn) be such
that∇·A = 0 a.e. in Ω, let p ∈W 2m+1,∞(Ω,R)∩C2(m−1)(Ω,R) and let q± ∈W 2m+1,∞(Ω,R)∩C2(m−1)(Ω,R)
satisfy

‖A‖W 2m+1,∞(Ω) + ‖p‖W 2m+1,∞(Ω) +
∥∥q+

∥∥
W 2m+1,∞(Ω)

+
∥∥q−∥∥

W 2m+1,∞(Ω)
≤M,

for some a priori fixed positive constant M . Then, for all g = (g+, g−)T ∈ H2(m+7/4),m+7/4(Σ)2 and all u0 =
(u+

0 , u
−
0 )T ∈ H2m+3(Ω)2 fulfilling the following compatibility conditions

(1.2) ∂`tg(·, 0) = (−i)`H(A, p, q±)`u0 on Γ, ` = 0, · · · ,m,
the IBVP (1.1) admits a unique solution u = (u+, u−)T ∈ ∩m+1

`=0 H
m+1−`(0, T ;H2`(Ω)2). Moreover, there exists a

positive constant C, depending only on ω, T and M such that

(1.3)
m+1∑
`=0

‖u‖Hm+1−`(0,T ;H2`(Ω)2) ≤ C
(
‖u0‖H2m+3(Ω)2 + ‖g‖H2(m+7/4),m+7/4(Σ)2

)
.

Notice that the divergence-free condition on A requested by Proposition 1.1 is to guarantee that H(A, p, q±) en-
dowed with homogeneous Dirichlet boundary condition on Γ, has a self-adjoint realization H(A, p, q±) in L2(Ω)2,
see [19, Lemma 2.1]. As a consequence the operator −iH(A, p, q±) is m-dissipative in L2(Ω)2, and since the IBVP
(1.1) is equivalently rewritten as 

−i∂tu+H(A, p, q±)u = 0 in Q

u(·, 0) = u0 in Ω

u = g on Σ,

the statement of Proposition 1.1 follows by arguing in the same way as in the proof of [19, Lemma 2.3].
We point out that the regularity assumptions on the coefficients A, p and q±, the initial states u±0 and the boundary

conditions g±, in Proposition 1.1, are only sufficient conditions ensuring a higher order of regularity of the solution
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u± to (1.1), as requested by the analysis of the inverse problem under study in this article. As a matter of fact the
Bukhgeim-Klibanov method requires ∂tu± and ∂t∇u± to be bounded in Q, which can be achieved upon taking m in
Proposition 1.1, sufficiently large relative to n. Namely, we choose

(1.4) N ∈ N ∩
(
n+ 2

4
+ 1,

n+ 2

4
+ 2

]
,

pick M , κ, %, a, p and q in R+, and for A0 ∈ W 2N+1,∞(Ω,Rn) ∩ C2(N−1)(Ω,Rn), p0 ∈ W 2N+1,∞(Ω,R) ∩
C2(N−1)(Ω,R) and q±0 ∈W 2N+1,∞(Ω,R) ∩ C2(N−1)(Ω,R), we introduce the set of unknown electric potentials as

Pp(p0) :=
{
p ∈W 2N+1,∞(Ω,R) ∩ C2(N−1)(Ω,R) s.t. ‖p‖W 2N+1,∞(Ω) ≤M,(1.5)

∂kxp = ∂kxp0 on Γ, k = 0, . . . , 2(N − 1) and |(p− p0)(·, xn)| ≤ pe−κ〈xn〉
%

, xn ∈ R
}
,

the set of unknown zero-th order coupling coefficients as Pq(q±0 ), and the set of unknown first order coupling vectors
as

Aa(A0) :=
{
A ∈W 2N+1,∞(Ω,Rn) ∩ C2(N−1)(Ω,R) s.t. ‖A‖W 2N+1,∞(Ω)n ≤M, ∇ ·A = 0 in Ω,(1.6)

∂kxA = ∂kxA0 on Γ, |k| = 0, . . . , 2(N − 1) and |(A−A0)(·, xn)| ≤ ae−κ〈xn〉
%

, xn ∈ R
}
.

Here, the notation ∂kx for |k| = m ∈ N0 is a shorthand for ∂k11 . . . ∂knn where k = (k1, . . . , kn) ∈ Nn0 satisfies
|k| = k1 + . . .+ kn = m.

Then, the main result of this article can be stated as follows.

Theorem 1.2. Assume that γ is C2(N+1). For j = 1, 2, let Aj ∈ Aa(A0) satisfy

(1.7) ∃y∗ ∈ R+, a1,n(x′, xn) = a2,n(x′, xn), x′ ∈ ω, xn ∈ (−y∗, y∗),
let pj ∈ Pp(p0) and let q±j ∈ Pq(q±0 ).

Then, there exist a sub-boundary γ∗ ⊂ ∂ω and a set of n + 1 initial states uk0 = (u+,k
0 , u−,k0 )T ∈ H2N+3(Ω)2

and boundary conditions gk = (g+,k, g−,k)T ∈ H2(N+7/4),N+7/4(Σ)2, k = 1, . . . , n+ 1, fulfilling the compatibility
conditions

(1.8) ∂`tg
k(·, 0) = (−i)`H(A0, p0, q

±
0 )`uk0 on Γ, ` = 0, · · · , N,

such that for all θ ∈
(
0, 1

2

)
, the following estimate

‖A1 −A2‖2L2(Ω) + ‖p1 − p2‖2L2(Ω) +
∥∥q+

1 − q
+
2

∥∥2

L2(Ω)
+
∥∥q−1 − q−2 ∥∥2

L2(Ω)
(1.9)

≤ C

n+1∑
k=1

(∥∥∥∂ν∂tu−,k1 − ∂ν∂tu−,k2

∥∥∥θ
L2(Σ∗)

+
∥∥∥∂ν∂tu+,k

1 − ∂ν∂tu+,k
2

∥∥∥θ
L2(Σ∗)

)
,

holds for some positive constant C depending only on ω, T , γ∗, M , y∗, θ, κ, %, a, p, q and (u±,k0 , g±,k), k =

1, . . . , n + 1. Here, Σ∗ := γ∗ × R × (0, T ) and ukj = (u+,k
j , u−,kj )T , for j = 1, 2, is the solution to (1.1) given by

Proposition 1.1, where (Aj , pj , q
±
j , u

±,k
0 , g±,k) is substituted for (A, p, q±, u±0 , g

±).

1.6. Brief comments. Theorem 1.2 claims that n + 1 Neumann data stably determine n + 2 unknown scalar coeffi-
cients (strictly speaking there are n+3 unknown scalar coefficients in the inverse problem that Theorem 1.2 is dealing
with, but since the n components of the gradient coupling vector are bound together through the divergence free con-
dition, they only amount for n − 1 free unknown scalar coefficients). This may seem surprising from the viewpoint
of the analysis of inverse problems, but it should be noticed that Assumption (1.7) implies full knowledge of the n-th
component of A on a bounded subpart of Ω.

The statement and the strategy of the proof of Theorem 1.2 are very similar to the ones of [19, Theorem 1.2], which
holds for a bounded spatial domain Ω. Nevertheless, there are two major differences in the derivation of Theorem 1.2
as compared to the one of [19, Theorem 1.2]. Firstly, the Carleman estimate that is used in Section 3 below is designed
for a Schrödinger equation in an unbounded cylindrical domain, and it is slightly different from the one used in [19],
which is specific to the Schrödinger equation in a bounded domain. Secondly, the construction of the initial states u0
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used for probing the system in the analysis of the inverse problem under examination in this article, is more delicate
than in [19]. This is due to the fact that it is technically more challenging to design a suitable set of L2(Ω)-initial
states u0 when the domain Ω is infinitely extended, than in the case where Ω is bounded. As can be seen from Section
3, this L2-condition will be satisfied by introducing an additional decay with respect to the infinite direction of the
waveguide.

1.7. Outline. The paper is designed as follows: In the following section we collect several technical results needed
for the proof of Theorem 1.2, which is given in Section 3.

2. PRELIMINARIES

We first establish that the solution to (1.1) is bounded in Q.

2.1. Boundedness of the solution. The result we have in mind is as follows.

Lemma 2.1. Assume that conditions of Proposition 1.1 are satisfied with m = N , where N is the same as in (1.4).
Then, the solution u to (1.1) lies in W 1,∞(0, T ;W 1,∞(Ω)2) and satisfies

‖u‖W 1,∞(0,T ;W 1,∞(Ω)2) ≤ C,

for some positive constant C depending only on ω, T , M , u0 and g.

Proof. We have u ∈ H2(0, T,H2(N−1)(Ω)2) by Proposition 1.1, with 2(N − 1) > n
2 + 1 from (1.4). Since Hk(Ω)

is continuously embedded in L∞(Ω) for all k > n
2 , according to [21, Lemma 2.7] (which extends the corresponding

well-known Sobolev embedding theorem in Rn, see e.g. [10, Corollary IX.13] or [15, Section 5.10, Problem 18], to
the case of the unbounded cylindrical domain Ω), the result follows from this and (1.3). �

2.2. Global Carleman estimate for the Schrödinger equation in ω × R. For further use we introduce a global
Carleman estimate specifically designed for the Schrödinger equation in the unbounded cylindrical domain Ω, which
is borrowed from [20, Proposition 3.3 and Lemma 4.2].

For this purpose we pick a function α ∈ C4(ω,R+) and an open subset γ∗ ⊂ ∂ω satisfying the following condi-
tions:

Assumption 2.2.
(i) ∃c ∈ R+ s.t. |∇′α(x′)| ≥ c for all x′ ∈ ω.

(ii) ∀x′ ∈ γ \ γ∗, ∂να(x′) = ∇′α(x′) · ν′(x′) < 0.
(iii) ∃λ0 ∈ R+, ∃c ∈ R+ s.t.

λ |∇′α(x′) · ζ|2 +D2α(x′, ζ) ≥ c |ζ|2 , ζ ∈ Rn−1, x′ ∈ ω, λ ≥ λ0,

where D2α(x′) :=
(
∂2
i,jα(x′)

)
1≤i,j≤n−1

and D2α(x′, ζ) denotes the Rn−1-scalar product of D2α(x′)ζ with ζ.

We point out that there exist α and γ∗ fulfilling the above conditions (i), (ii) and (iii). As a matter of fact, for
all x′0 ∈ Rn−1 \ ω fixed, this is the case of the function α(x′) = |x′ − x′0|

2 and any open subset γ∗ ⊂ γ such that
{x′ ∈ γ; (x′ − x′0) · ν(x′) ≥ 0} ⊂ γ∗.

Next, putting K := r ‖α‖L∞(ω) for some r ∈ (1,+∞), we set

(2.10) β(x) := α(x′) +K, x = (x′, xn) ∈ Ω,

and we introduce the following weight functions on Q̃ := Ω× (−T, T ):

(2.11) ϕ(x, t) :=
e2β(x)

(T + t)(T − t)
and η(x, t) :=

e2K − eβ(x)

(T + t)(T − t)
, (x, t) ∈ Q̃.

Let us notice for further use that

(2.12) η(x, t) ≥ η0(x) > 0, (x, t) ∈ Q̃,
where η0(x) := η(0, x) for all x ∈ Ω. This being said, we may now state the global Carleman estimate established in
[20, Proposition 3.3 and Lemma 4.2].
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Proposition 2.3. Suppose that α and γ∗ fulfill Assumption 2.2. Let β be as in (2.10) and let ϕ and η be defined by
(2.11). Then, there exist two constants s0 > 0 and C > 0, depending only on T , ω and γ∗, such that the estimate

s−1/2
∥∥e−sη∇′w∥∥2

L2(Q̃)
+ s−1/2

∥∥e−sηw∥∥2

L2(Q̃)
+
∥∥e−sη0w(·, 0)

∥∥2

L2(Ω)

≤ Cs−3/2

(
s
∥∥∥e−sηϕ1/2 |∂νβ|

1
2 ∂νw

∥∥∥2

L2(Σ̃∗)
+
∥∥e−sηLw∥∥2

L2(Q̃)

)
holds whenever s ≥ s0 and w ∈ L2(−T, T ;H1

0 (Ω)) satisfies Lw ∈ L2(Q̃) and ∂νw ∈ L2(Σ̃∗). Here, Σ̃∗ :=
(−T, T )× Γ∗ and Γ∗ := γ∗ × R.

Armed with Proposition 2.3, we turn now to proving the main result of this article.

3. PROOF OF THEOREM 1.2

3.1. Linearization, time-differentiation and all that. We start by linearizing the system (1.1). For this purpose
we consider the two solutions uj = (u+

j , u
−
j )T , j = 1, 2, to the IBVP (1.1) where (Aj , pj , q

±
j ) is substituted for

(A, p, q±). Then, u± := u±1 − u
±
2 solves

(3.13)



−i∂tu+ −∆u+ + q+
1 u

+ = −A1 · ∇u− −A · ∇u−2 − q+u+
2 − p1u

− − pu−2 in Q

−i∂tu− −∆u− + q−1 u
− = A1 · ∇u+ +A · ∇u+

2 − q−u
−
2 − p1u

+ − pu+
2 in Q

u+(·, 0) = 0, u−(·, 0) = 0 in Ω

u+ = 0, u− = 0 on Σ,

where A := A1 − A2, p := p1 − p2 and q± := q±1 − q
±
2 . Further, u± lies in H2(0, T ;L2(Ω)) ∩H1(0, T ;H2(Ω) ∩

H1
0 (Ω)), we differentiate (3.13) with respect to the time-variable and find that

−i∂tv+ −∆v+ + q+
1 v

+ = −A1 · ∇v− −A · ∇∂tu−2 − q+∂tu
+
2 − p1v

− − p∂tu−2 in Q

−i∂tv− −∆v− + q−1 v
− = A1 · ∇v+ +A · ∇∂tu+

2 − q−∂tu
−
2 − p1v

+ − p∂tu+
2 in Q

v+(·, 0) = −i(A · ∇u−0 + q+u+
0 + pu−0 ) in Ω

v−(·, 0) = −i(−A · ∇u+
0 + q−u−0 + pu+

0 ) in Ω

v+ = 0, v− = 0 on Σ,

where v± := ∂tu
±. The next step is to extend u±2 to Q̃ = Ω × (−T, T ) by setting u±2 (x, t) := u±2 (x,−t) for a.e.

(x, t) ∈ Ω × (−T, 0). Since u±0 , A, p and q± are-real valued, it is not hard to see that the function v±, extended to
Ω× (−T, 0) as v±(x, t) := −v±(x,−t), satisfies
(3.14)

−i∂tv+ −∆v+ + q+
1 v

+ = −A1 · ∇v− −A · ∇∂tu−2 − q+∂tu
+
2 − p1v

− − p∂tu−2 in Q̃

−i∂tv− −∆v− + q−1 v
− = A1 · ∇v+ +A · ∇∂tu+

2 − q−∂tu
−
2 − p1v

+ − p∂tu+
2 in Q̃

v+(·, 0) = −i(A · ∇u−0 + q+u+
0 + pu−0 ) in Ω

v−(·, 0) = −i(−A · ∇u+
0 + q−u−0 + pu+

0 ) in Ω

v+ = 0, v− = 0 on Σ̃ := Γ× (−T, T ).

Put µ± :=
∥∥∥e−sη0ϕ1/2 |∂νβ|1/2 ∂νv±

∥∥∥2

L2(Σ̃∗)
. Then, applying Proposition 2.3 to (3.14), we get for all s ≥ s0 that

s−1/2
∥∥e−sη∇′v±∥∥2

L2(Q̃)
+ s−1/2

∥∥e−sηv±∥∥2

L2(Q̃)
+
∥∥e−sη0v±(·, 0)

∥∥2

L2(Ω)
(3.15)

≤ Cs−3/2
(
sµ± +

∥∥e−sη (±A1 · ∇v∓ ±A · ∇∂tu∓2 + q±∂tu
±
2 + p1v

∓ + p∂tu
∓
2

)∥∥2

L2(Q̃)

)
,
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for some positive constantC depending only on ω, T and γ∗. Taking into account that ‖A1‖L∞(Ω) ≤M , ‖p1‖L∞(Ω) ≤
M , and that the two functions ∂tu±2 and ∇∂tu±2 are bounded on Q̃ by some positive constant depending only on ω,
T , M , u0 and g according to Lemma 2.1, (2.12) and (3.15) then yield that

s−1/2
∥∥e−sη∇′v±∥∥2

L2(Q̃)
+ s−1/2

∥∥e−sηv±∥∥2

L2(Q̃)
+
∥∥e−sη0v±(·, 0)

∥∥2

L2(Ω)

≤ Cs−3/2
(
sµ± +

∥∥e−sη∇x′v∓∥∥2

L2(Q̃)
+
∥∥e−sηv∓∥∥2

L2(Q̃)
+
∥∥e−sη0A∥∥2

L2(Ω)n
+
∥∥e−sη0q±∥∥2

L2(Ω)
+
∥∥e−sη0p∥∥2

L2(Ω)

)
,

provided s ≥ s0. Here and in the remaining part of this proof, C denotes a generic positive constant which may change
from line to line. Although the constant C depends only on ω, T , γ∗, M , u0 and g in the above estimate, in the sequel
it might also depend on one or several of the parameters n, y∗, κ, %, a, p, q and θ of the problem, as well. Nevertheless,
we shall not systematically specify the dependence of C with respect to the above mentioned parameters.

As a consequence we have

s−
1
2

(
1− Cs−1

)∑
`=±

(∥∥e−sη∇′v`∥∥2

L2(Q̃)
+
∥∥e−sηv`∥∥2

L2(Q̃)

)
+
∑
`=±

∥∥e−sη0v`(·, 0)
∥∥2

L2(Ω)

≤ Cs−
3
2

(∥∥e−sη0A∥∥2

L2(Ω)n
+
∥∥e−sη0p∥∥2

L2(Ω)
+
∥∥e−sη0q+

∥∥2

L2(Ω)
+
∥∥e−sη0q−∥∥2

L2(Ω)
+ s

(
µ+ + µ−

))
,

provided s ≥ s0. Thus, taking s1 := max(s0, 2C) in the above estimate, we infer from (3.14) that∥∥e−sη0 (q+u+
0 +A · ∇u−0 + pu−0

)∥∥2

L2(Ω)
+
∥∥e−sη0 (q−u−0 −A · ∇u+

0 + pu+
0

)∥∥2

L2(Ω)
(3.16)

≤ Cs−
3
2

(∥∥e−sη0A∥∥2

L2(Ω)n
+
∥∥e−sη0p∥∥2

L2(Ω)
+
∥∥e−sη0q+

∥∥2

L2(Ω)
+
∥∥e−sη0q−∥∥2

L2(Ω)
+ s

(
µ+ + µ−

))
,

whenever s ≥ s1.
The rest of the proof is to adequately choose n + 1 initial states uk0 := (u+,k

0 , u−,k0 )T , k = 1, . . . , n + 1, in order
to estimate each of the four unknown functions A, p and q± separately, in terms of the corresponding boundary data

µ±k :=
∥∥∥e−sη0ϕ1/2 |∂νβ|1/2 ∂νv±,k

∥∥∥2

L2(Σ̃∗)
, where v±,k is the solution to (3.14) with u±0 = u±,k0 .

3.2. Building n+ 1 suitable initial data. We proceed in two steps.
Step 1: Estimation of p, q± and an. We pick ε ∈ (0, 1), put u+,1

0 (x′, xn) := 0, u−,10 (x′, xn) := 〈xn〉−
1+ε
2 for all

(x′, xn) ∈ Ω and take u±0 = u±,10 in (3.16). For all s ≥ s1, we get that∥∥∥e−sη0 (2〈xn〉−
1+ε
2 p− (1 + ε)〈xn〉−

5+ε
2 xnan

)∥∥∥2

L2(Ω)
+ 4

∥∥∥e−sη0〈xn〉− 1+ε
2 q−

∥∥∥2

L2(Ω)

≤ Cs−
3
2

(∥∥e−sη0A∥∥2

L2(Ω)n
+
∥∥e−sη0p∥∥2

L2(Ω)
+
∥∥e−sη0q+

∥∥2

L2(Ω)
+
∥∥e−sη0q−∥∥2

L2(Ω)
+ s

(
µ+,1 + µ−,1

))
,

which entails that∥∥∥e−sη0〈xn〉− 1+ε
2 q−

∥∥∥2

L2(Ω)
(3.17)

≤ Cs−
3
2

(∥∥e−sη0A∥∥2

L2(Ω)n
+
∥∥e−sη0p∥∥2

L2(Ω)
+
∥∥e−sη0q+

∥∥2

L2(Ω)
+
∥∥e−sη0q−∥∥2

L2(Ω)
+ s

(
µ+,1 + µ−,1

))
and ∥∥∥e−sη0 (2〈xn〉−

1+ε
2 p− (1 + ε)〈xn〉−

5+ε
2 xnan

)∥∥∥2

L2(Ω)
(3.18)

≤ Cs−
3
2

(∥∥e−sη0A∥∥2

L2(Ω)n
+
∥∥e−sη0p∥∥2

L2(Ω)
+
∥∥e−sη0q+

∥∥2

L2(Ω)
+
∥∥e−sη0q−∥∥2

L2(Ω)
+ s

(
µ+,1 + µ−,1

))
.

Doing the same with u±0 = u±,20 := u∓,10 , we obtain for all s ≥ s1 that∥∥∥e−sη0〈xn〉− 1+ε
2 q+

∥∥∥2

L2(Ω)
(3.19)

≤ Cs−
3
2

(∥∥e−sη0A∥∥2

L2(Ω)n
+
∥∥e−sη0p∥∥2

L2(Ω)
+
∥∥e−sη0q+

∥∥2

L2(Ω)
+
∥∥e−sη0q−∥∥2

L2(Ω)
+ s

(
µ+,2 + µ−,2

))
,
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and ∥∥∥e−sη0 (2〈xn〉−
1+ε
2 p+ (1 + ε)〈xn〉−

5+ε
2 xnan

)∥∥∥2

L2(Ω)
(3.20)

≤ Cs−
3
2

(∥∥e−sη0A∥∥2

L2(Ω)n
+
∥∥e−sη0p∥∥2

L2(Ω)
+
∥∥e−sη0q+

∥∥2

L2(Ω)
+
∥∥e−sη0q−∥∥2

L2(Ω)
+ s

(
µ+,2 + µ−,2

))
.

Since 8
∥∥∥e−sη0〈xn〉− 1+ε

2 p
∥∥∥2

L2(Ω)
is upper-bounded by the sum of

∥∥∥e−sη0 (2〈xn〉−
1+ε
2 p+ (1 + ε)〈xn〉−

5+ε
2 xnan

)∥∥∥2

L2(Ω)

and
∥∥∥e−sη0 (2〈xn〉−

1+ε
2 p− (1 + ε)〈xn〉−

5+ε
2 xnan

)∥∥∥2

L2(Ω)
, it follows from (3.18) and (3.20) that

∥∥∥e−sη0〈xn〉− 1+ε
2 p
∥∥∥2

L2(Ω)
(3.21)

≤ Cs−
3
2

(∥∥e−sη0A∥∥2

L2(Ω)n
+
∥∥e−sη0p∥∥2

L2(Ω)
+
∥∥e−sη0q+

∥∥2

L2(Ω)
+
∥∥e−sη0q−∥∥2

L2(Ω)
+ s

2∑
i=1

(
µ+,i + µ−,i

))
,

whenever s ≥ s1. Similarly, upon estimating
∥∥∥e−sη0 (2〈xn〉−

1+ε
2 p+ (1 + ε)〈xn〉−

5+ε
2 xnan

)∥∥∥2

L2(Ω)
from below by

the difference (1+ε)2

2

∥∥∥e−sη0〈xn〉− 5+ε
2 xnan

∥∥∥2

L2(Ω)
− 4

∥∥∥e−sη0〈xn〉− 1+ε
2 p
∥∥∥2

L2(Ω)
, we get from (3.20)-(3.21) that

∥∥∥e−sη0〈xn〉− 5+ε
2 xnan

∥∥∥2

L2(Ω)
(3.22)

≤ Cs−
3
2

(∥∥e−sη0A∥∥2

L2(Ω)n
+
∥∥e−sη0p∥∥2

L2(Ω)
+
∥∥e−sη0q+

∥∥2

L2(Ω)
+
∥∥e−sη0q−∥∥2

L2(Ω)
+ s

2∑
i=1

(
µ+,i + µ−,i

))
,

for all s ≥ s1. Bearing in mind that |xnan| ≥ y∗ |an| in Ω, by virtue of the assumption (1.7), it follows from (3.22)
that ∥∥∥e−sη0〈xn〉− 5+ε

2 an

∥∥∥2

L2(Ω)
(3.23)

≤ Cs−
3
2

(∥∥e−sη0A∥∥2

L2(Ω)n
+
∥∥e−sη0p∥∥2

L2(Ω)
+
∥∥e−sη0q+

∥∥2

L2(Ω)
+
∥∥e−sη0q−∥∥2

L2(Ω)
+ s

2∑
i=1

(
µ+,i + µ−,i

))
,

provided we have s ≥ s1.

Step 2: Estimation of the n − 1 first components aj , j = 1, . . . , n − 1, of A. For all k = 1, · · · , n − 1 and all x =

(x1, . . . , xn) ∈ Ω, we put u±,k+2
0 (x) := xk〈xn〉−

1+ε
2 , substitute u±,k+2

0 for u±0 in (1.1) and then apply Proposition
2.3 to (3.14). We get for all s ≥ s1 that∥∥∥e−sη0 (pu−,k+2

0 +A · ∇u−,k+2
0 + q+u+,k+2

0

)∥∥∥2

L2(Ω)
+
∥∥∥e−sη0 (pu+,k+2

0 −A · ∇u+,k+2
0 + q−u−,k+2

0

)∥∥∥2

L2(Ω)

≤ Cs−3/2
(∥∥e−sη0A∥∥2

L2(Ω)n
+
∥∥e−sη0p∥∥2

L2(Ω)
+
∥∥e−sη0q+

∥∥2

L2(Ω)
+
∥∥e−sη0q−∥∥2

L2(Ω)
+ s

(
µ+,k+2 + µ−,k+2

))
.

Since
∣∣∣pu∓,k+2

0 ±A · ∇u∓,k+2
0 + q±u±,k+2

0

∣∣∣2 ≥ |A·∇u∓,k+2
0 |2
2 −

∣∣∣pu∓,k+2
0 + q±u±,k+2

0

∣∣∣2, this entails that∥∥∥e−sη0A · ∇u+,k+2
0

∥∥∥2

L2(Ω)
+
∥∥∥e−sη0A · ∇u−,k+2

0

∥∥∥2

L2(Ω)
(3.24)

≤ Cs−3/2
(∥∥e−sη0A∥∥2

L2(Ω)n
+
∥∥e−sη0p∥∥2

L2(Ω)
+
∥∥e−sη0q+

∥∥2

L2(Ω)
+
∥∥e−sη0q−∥∥2

L2(Ω)
+ s(µ+,k+2 + µ−,k+2)

)
+
∥∥∥e−sη0 (pu+,k+2

0 + q−u−,k+2
0

)∥∥∥2

L2(Ω)
+
∥∥∥e−sη0 (pu−,k+2

0 + q+u+,k+2
0

)∥∥∥2

L2(Ω)
.
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Moreover,
∥∥∥e−sη0 (pu±,k+2

0 + q∓u∓,k+2
0

)∥∥∥2

L2(Ω)
=
∥∥∥e−sη0xk〈xn〉− 1+ε

2 (p+ q∓)
∥∥∥2

L2(Ω)
being upper-bounded by

2 |ω|2
(∥∥∥e−sη0〈xn〉− 1+ε

2 p
∥∥∥2

L2(Ω)
+
∥∥∥e−sη0〈xn〉− 1+ε

2 q∓
∥∥∥2

L2(Ω)

)
, (3.17), (3.19), (3.21) and (3.24) then yield

∥∥∥e−sη0A · ∇u+,k+2
0

∥∥∥2

L2(Ω)
+
∥∥∥e−sη0A · ∇u−,k+2

0

∥∥∥2

L2(Ω)

≤ Cs−3/2
(∥∥e−sη0A∥∥2

L2(Ω)n
+
∥∥e−sη0p∥∥2

L2(Ω)
+
∥∥e−sη0q+

∥∥2

L2(Ω)
+
∥∥e−sη0q−∥∥2

L2(Ω)

+s

(
2∑
i=1

(
µ+,i + µ−,i

)
+ µ+,k+2 + µ−,k+2

))
, s ≥ s1,

From this, (3.22) and the estimates
∣∣∣A.∇u±,k+2

0

∣∣∣2 ≥ 1
2

∣∣∣〈xn〉− 1+ε
2 ak

∣∣∣2 − (1+ε)2

4

∣∣∣〈xn〉− 5+ε
2 xkxnan

∣∣∣2 and∥∥∥e−sη0〈xn〉− 5+ε
2 xkxnan

∥∥∥
L2(Ω)

≤ |ω|
∥∥∥e−sη0〈xn〉− 5+ε

2 xnan

∥∥∥
L2(Ω)

, it then follows that

∥∥∥e−sη0〈xn〉− 1+ε
2 ak

∥∥∥2

L2(Ω)

≤ Cs−3/2
(∥∥e−sη0A∥∥2

L2(Ω)n
+
∥∥e−sη0p∥∥2

L2(Ω)
+
∥∥e−sη0q+

∥∥2

L2(Ω)
+
∥∥e−sη0q−∥∥2

L2(Ω)

+s

(
2∑
i=1

(
µ+,i + µ−,i

)
+ µ+,k+2 + µ−,k+2

))
, s ≥ s1.

Summing up the above inequality over k = 1, . . . , n− 1 and remembering (3.23), we obtain

∥∥∥e−sη0〈xn〉− 5+ε
2 A

∥∥∥2

L2(Ω)n
(3.25)

≤ Cs−3/2
(∥∥e−sη0A∥∥2

L2(Ω)n
+
∥∥e−sη0p∥∥2

L2(Ω)
+
∥∥e−sη0q+

∥∥2

L2(Ω)
+
∥∥e−sη0q−∥∥2

L2(Ω)
+ sξ

)
,

for s ≥ s1, where ξ :=
∑n+1
i=1

(
µ+,i + µ−,i

)
.

3.3. End of the proof. For all y > 0 we have(
〈y〉−(5+ε) − Cs− 3

2

)(∥∥e−sη0A∥∥2

L2(Ω)n
+
∥∥e−sη0p∥∥2

L2(Ωy)
+
∥∥e−sη0q+

∥∥2

L2(Ωy)
+
∥∥e−sη0q−∥∥2

L2(Ωy)

)
(3.26)

≤ Cs−
3
2

(∥∥e−sη0A∥∥2

L2(Ω\Ω)n
+
∥∥e−sη0p∥∥2

L2(Ω\Ωy)
+
∥∥e−sη0q+

∥∥2

L2(Ω\Ωy)
+
∥∥e−sη0q−∥∥2

L2(Ω\Ωy)
+ sξ

)
,

≤ Cs−
3
2

(
‖A‖2L2(Ω\Ω)n + ‖p‖2L2(Ω\Ωy) +

∥∥q+
∥∥2

L2(Ω\Ωy)
+
∥∥q−∥∥2

L2(Ω\Ωy)
+ sξ

)
, s ≥ s1,

by (3.17), (3.19), (3.21) and (3.25), where Ωy := ω × (−y, y). Notice that in the last line of (3.26), we used that

η0 is non-negative in Ω. Moreover, for all y ≥ y1 :=
(

(2C)−
2
3 s1

) 3
2(5+ε)

we have sy := (2C)
2
3 〈y〉

2(5+ε)
3 ≥ s1 and

2Cs
− 3

2
y ≤ 〈y〉−(5+ε). Therefore, applying (3.26) with s = sy and using that η0(x) ≤ e2K

T 2 for all x ∈ Ω, we obtain
that

(3.27) ΘΩy ≤ C
(

ΘΩ\Ωy + 〈y〉
2(5+ε)

3 ξ
)
, y ≥ y1,
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where we set ΘX := ‖A‖20,X + ‖p‖20,X + ‖q+‖20,X + ‖q−‖20,X for any subset X ⊂ Ω. Next, using that pj ∈ Pp(p0)

for j = 1, 2, we infer from (1.5) upon writing ‖p‖L2(Ω\Ωy) ≤
∑
j=1,2 ‖pj − p0‖L2(Ω\Ωy), that

‖p‖2L2(Ω\Ωy) ≤ 4p2

∫
Ω\Ωy

e−2κ〈xn〉%dx′dxn(3.28)

≤ 4p2 |ω|
∫
|xn|>y

e−2κ〈xn〉%dxn

≤ 4p2 |ω|
(∫

R
e−δ〈xn〉

%

dxn

)
e−(2κ−δ)〈y〉% , δ ∈ (0, 2%).

Similarly, since q±j ∈ Pq(q±0 ) and Aj ∈ Aa(A0) for j = 1, 2, we obtain

(3.29) ΘΩ\Ωy ≤ Ce
−(2κ−δ)〈y〉% , δ ∈ (0, 2%),

from (1.6) and (3.28), where C = 4 |ω| (a2 + p2 + 2q2)
∫
R e
−δ〈xn〉%dxn. It follows from this and (3.27) that

(3.30) ΘΩy ≤ C
(
e−(2κ−δ)〈y〉% + 〈y〉

2(5+ε)
3 ξ

)
, y ≥ y1, δ ∈ (0, 2%).

Put ξ1 := e−(2κ−δ)〈y1〉% . We shall examine the two cases ξ ∈ (0, ξ1] and ξ ∈ (ξ1,+∞) separately. Let us start with

ξ ∈ (0, ξ1]. In this case, we pick y ∈ [y1,+∞) so large that e−(2κ−δ)〈y〉% = ξ, i.e., y =

((
− ln ξ

2κ−δ

) 2
% − 1

) 1
2

. Thus,

with reference to (3.29)-(3.30) we get for all ξ ∈ (0, ξ1] that ΘΩ\Ωy ≤ Cξ
1−2θ
1 ξ2θ and that ΘΩy ≤ C

(
ξ1−2θ
1 + C1(θ)

)
ξ2θ,

where C1(θ) := supξ∈(0,ξ1]

(
ξ1−2θ

(
− ln ξ
2κ−δ

) 2(5+ε)
3%

)
<∞ from the assumption % > 0. As a consequence we have

(3.31) ΘΩ ≤ C
(
2ξ1−2θ

1 + C1(θ)
)
ξ2θ, ξ ∈ (0, ξ1],

and the desired result follows. Now, when ξ ∈ (ξ1,+∞), we infer from (1.5) upon majorizing ‖p‖2L2(Ω) by

2
∑
j=1,2 ‖pj − p0‖2L2(Ω), that ‖p‖2L2(Ω) ≤ 4p2 |ω|

(∫
R e
−2κ〈xn〉%dxn

)
ξ−2θ
1 ξ2θ. Doing the same with q± and A,

with the aid of, respectively, (1.5) and (1.6), we find that ΘΩ ≤ C̃1(θ)ξ2θ, where the notation C̃1(θ) stands for the
constant 4

(
a2 + p2 + 2q2

)
|ω|
(∫

R e
−2κ〈xn〉%dxn

)
ξ−2θ
1 . This, (3.31) and the estimates µ±k ≤ C

∥∥∂νv±,k∥∥2

L2(Σ̃∗)
for

all k = 1, . . . , n+ 1, yield (1.9), which completes the proof of Theorem 1.2.
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