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Abstract

This paper contributes to the growing body of work that aims to characterize similarities and differences between synchrophasor

data from real-power systems and those from synthetic power systems with emulated Phasor Measurement Units (PMUs). In

particular, we survey previous works that characterize PMU noise and analyze the impacts on applications of these time-series

data into machine learning algorithms in the power systems domain. We benchmark these methodologies with three datasets:

data from an Oregon State University local PMU network, from two PMUs using the same set of sensors, and from multiple-

utility interconnect-wide data. We found that it is important to consider each signal individually when synthesizing PMU data

with noise, and that the noise needs to be adjusted by key statistical metrics.
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Abstract—This paper contributes to the growing
body of work that aims to characterize similarities
and differences between synchrophasor data from
real-power systems and those from synthetic power
systems with emulated Phasor Measurement Units
(PMUs). In particular, we survey previous works
that characterize PMU noise and analyze the im-
pacts on applications of these time-series data into
machine learning algorithms in the power systems
domain. We benchmark these methodologies with
three datasets: data from an Oregon State University
local PMU network, from two PMUs using the same
set of sensors, and from multiple-utility interconnect-
wide data. We found that it is important to consider
each signal individually when synthesizing PMU data
with noise, and that the noise needs to be adjusted by
key statistical metrics.

I. INTRODUCTION

Phasor Measurements Units (PMU) are a signif-
icant advancement in power systems technology.
When combined with precise clocks, PMUs pro-
vide high-resolution insights into current operating
conditions in the form of synchrophasors. However,
the full potential of synchronized PMU data has yet
to be realized. Large datasets exist but have few
noted events with appropriate labels and are usually
provided with no information about the underlying
power system network and device characteristics.
As such, the large datasets do not provide adequate
detail for developing and tuning event detection,

This material is based upon work supported by the US
Department of Energy under Award Number DE-OE0000780.
The data that support the findings of this study are available on
request from the corresponding author. The data are not publicly
available due to privacy or ethical restrictions.

event classification, or other machine learning al-
gorithms. In order to properly develop advanced
detection algorithms that make use of frequency and
phase angle differences, synthetic PMU data with
known quantities is necessary.

Accurate knowledge of the noise covariance ma-
trix of PMU data is essential in many PMU data
correction approaches [1], [2]. This information is
frequently assumed to be known when tests are
conducted with synthetic data. However, this is
not always the case in real-world PMU data, and
discrepancy between the actual and estimated noise
covariance matrices can significantly impact the
performance of such data correction approaches.

PMU noise impacts not only the time domain
analysis, but also the frequency domain. Specif-
ically, PMU noise results in a different variance
in different frequency ranges in frequency domain
measurements such as Short-time Fourier trans-
forms (STFT). Thus, using an adequate range of
noise characteristics in synthetic data when analyz-
ing the frequency domain algorithm is important.

PMU measurements are widely used to estimate
power system oscillation modes. Early work in
the mode estimation algorithms assumed that the
PMU measurements are noise-free and used a single
PMU measurement stream. Thus different PMU
measurements resulted in different modes due to
the different noise characteristics. Although some
techniques were introduced to effectively use mul-
tiple PMU measurements to estimate the mode [3],
still the results can contain some additional modes
estimates due to the effect of PMU noise. A typical



technique is to fit the measurements to the higher-
order system and remove the mode given by noise
[4].

Work on synthetic PMU data generation has
remained limited, with only a few research groups
releasing published works on the subject. Further-
more, the papers do not generally agree on key
pieces of the algorithms for synthetic PMU data
generation or on what type of noise should be
included. This paper compares previous works and
adds new datasets to augment the analysis. The
following sections will discuss sources of noise in
PMU measurements, types and magnitudes of noise
included in synthetic PMU data, and will quantify
the type and magnitude of noise found in real world
datasets.

A. Phasor Measurement Units

When generating synthetic PMU data it is im-
portant to consider all potential sources of error
and noise. PMUs are analog-to-digital measuring
devices that rely on an external array of equipment
to produce phasor measurements. These external
devices include Current Transformers (CT), Poten-
tial Transformers (PT), and the related wiring that
convert current and potential to safe levels for input
to the PMUs. Each external device may introduce
noise and measurement error in addition to the PMU
itself [5]. CTs and PTs are generally installed at
the same time as the substation equipment, and
can simultaneously be used as inputs to several
measuring, monitoring, and protective devices.

To understand how PMU quantities vary from
synthetic measurements it is necessary to under-
stand how a phasor is constructed. Ideal voltages
and currents are sinusoidal signals fitting the form
x(t) = xm∗cos(ωt+θ) where xm is the peak ampli-
tude, ω is the frequency in radians per second, and
θ is the phase angle in radians [6]. It is convenient
to plot voltage and current as phasors, or vectors,
where the magnitude is the vector length, and phase
angle is the angle referenced from the x axis. PMUs
measure the voltage and current directly, but must
compute frequency and power, generally following
the latest standard specifications available [7].

B. Noise

Sources of noise in PMU measurements lie in-
ternal and external to the PMU itself, and thus a
formal noise characterization is not as simple as
examining each type of PMU to determine what
noise may be present. It is therefore necessary to
consider the system as a whole instead of each
component individually. There is little agreement
in the literature about how much noise should be
added to synthetic data to be able to benchmark
and validate real-time and engineering applications.
In most papers surveyed there was no detailed
reasoning for choosing type and amplitude of noise.

A few trends are noticeable when surveying
research papers using synthetic PMU data. First,
the type of assumed noise is generally Gaussian
white noise. Second, the variance used is usually
less than 0.05 per unit (pu). In [8], additive Gaussian
white noise is used with variance of 0.005 to 0.01
pu for quantifying uncertainty in PMUs for voltage
stability assessment. Huang et al. similarly used
Gaussian white noise but with a slightly higher
variance of 0.15 pu [9]. Zhou discusses PMU noise
while testing systems for detecting oscillations [10].
Zhou uses Gaussian white noise but with a fixed
variance of 0.03 pu. Li et al. add Gaussian noise
varying between 0 and 0.03 pu [11]. Gaussian white
noise was also used with variance of 1e-6 to 0.01 pu
for a state estimation application in [12]. Tripathy
et al. used Gaussian noise, but with considerably
lower variance of 0.0001 pu [13]. This noise level
was found acceptable for estimating generator ro-
tor angle, with a justification based on the IEEE
standard C37.118 [7], which defines performance
requirements of PMUs.

Random noise with variance ranging from 0.01
to 0.02 pu was used when testing a power system
estimator [14]. Xie et al. assume white noise but
with a Signal-to-Noise Ratio (SNR) of 92 dB when
applying dimensionality reduction to PMU data
[15]. Tate and Overbye state that impulse noise
has been observed in real PMU data while also
implying that Gaussian noise is also present [16].
In Overbye’s other works on synthetic PMU data
generation, noise is considered for the PMU and
the rest of system separately [17]. White noise was



introduced directly to the measurements with 80 dB
SNR.

Shi et al. [18] reiterates that the PMU perfor-
mance requirement is 1% total vector error (TVE)
however many do not conform due to measurement
noise and errors from instruments. This paper stands
out not because it uses white noise with 0.002 pu
variance, but instead due to the focus on adding
bias and treating voltage and current differently. The
focus of the paper was detection and correction of
errors in PMU measurements. The 1% TVE PMU
performance benchmark is tested in [19]. A PMU
was tested and found to comply with most of the
static requirements but passed fewer of the dynamic.
The authors note the changes in amplitude, phase
angle and frequency over an interval as the main
contributor for PMUs not meeting the requirements,
but do not discuss bias or other potential error
sources.

Brown et al. was one of the first papers to ex-
perimentally characterize and quantify noise present
in real PMU data [20]. The authors find that real-
world data fit a Gaussian noise distribution with a
SNR of 45 dB for frequency, voltage, and current.
This was consistent for the three datasets analyzed.
An important consideration in this work is how the
noise was separated from the signal. The authors
applied Tate and Overbye’s method using a median
filter on PMU data [16]. To use this approach, the
data must be relatively free of events.

Frigo et al. followed up with a similar work to
Brown et al. which also sought to determine noise
distribution, but through different methodologies
[21]. The authors used a methodology that did not
require separation of static from dynamic PMU data
before extracting noise from the signal, concluding
that the noise for their dataset fits additive Gaussian
white-noise with SNR close to 45 dB.

In summary, the relatively few published works
that have analyzed real-world PMU data have
agreed that noise is generally distributed as additive
Gaussian white-noise with a SNR close to 45 dB.
However, only a handful of datasets have been
analyzed, of which many use a few hours of data
for only a few PMUs. The following sections will
expand on the current literature by analyzing a more

comprehensive real-world PMU dataset.

II. METHODOLOGY

Two methodologies are used to analyze the noise
in PMU data. The first is described in Brown et
al. [20]. The process consists in taking a PMU sig-
nal, such as voltage magnitude, current magnitude
or frequency, remove any signals with events, then
extract the noise from the remaining signals, and
finally compute noise characteristics. The following
subsections will detail the process and parameters
used to perform the computations.

First, power system events must be removed from
the signal, S, with length n such that baseline noise
is being analyzed and not power system variances.
To identify power system events a variance based
event detector is used. Sample variance of the
input signal is computed over a sliding window
of fixed length. Any variance above the threshold
is considered to be a power system event and is
then removed from the data to be used for noise
analysis. In (1), v(i) depicts computed variance
from the PMU signal S received at time i, and
with 2M being the sliding window size, see Table
II. Several thresholds were tested and it was found
that a wide range of values produced similar results.
Ultimately, the mean variance was implemented as
the threshold which generally resulted in less than
0.01% of the data being considered as event data
and thus being removed.

v(i) =
1

2M

n−M∑
j=i+M

(S(j)− 1

2M

j+M∑
k=j−M

S(k))2

(1)

To separate the noise from the signal, we follow
Tate and Overbye’s median filter [16]. This filter
has been used both for generating PMU data and for
PMU data analysis. The median filter (2) removes
the noise data without removing features by taking
the median value inside of a sliding window with
size 2N , see Table II. Subtracting the filtered data
Sf from the original signal S, leaves one with only
the noise data.



Sf (i) = median[S(i−N), S(i−N + 1), ...,

S(i), ..., S(i+N − 1), S(i+N)] (2)

The second methodology consists of analyzing
redundant PMUs to get the most accurate represen-
tation in practice, since there are some utilities that
install PMUs devices in pairs for redundancy. In
this experiment, two PMUs are connected through
the same set of PT and CTs and thus should report
from exactly the same measurements. However in
practice the recorded measurements will vary by
some amount regardless of whether the same or
similar devices are used.

noise1 = sig1 − (sig1 + sig2)/2 (3)

This methodology to analyze the data is relatively
more straightforward. First, the two signals are
normalized. Then the mean value of the two signals
at the same point are subtracted from each of the
signals, leaving only the noise and any difference in
the PMUs as shown in equation 3. The redundant
PMU data is also tested with the first methodology
described before.

A. Datasets

The datasets represent a wide range of available
PMU data. This includes two datasets from research
devices [22], and three datasets from utility col-
lected sources [23].

1) PMU Data from Research Devices: First,
we use a portion of the Oregon State University
(OSU) Corvallis campus dataset, composed by six
research-grade PMUs [22]. The primary advantage
of the campus data is that all necessary charac-
teristics are known about the PMU location, man-
ufacturer, and use. All the PMUs are Schweitzer
Engineering Laboratories Inc. (SEL) relays. Three
PMUs (SEL-351A, SEL-487E, SEL-751) are in-
stalled on campus, and three PMUs ((2) SEL-751,
SEL-351A) are off campus.

The downside to placing PMUs in the University
environment without a utility goal plan is that
they are placed very close to noise sources. When
placing a PMU at a university few options exist

since installing the PMU requires a GPS clock, PT
and four CTs to be a fully functional system. The
wiring must also be de-energized and disconnected
so the CTs can be installed.

The OSU campus system has some optimally
placed and some poorly placed PMUs, but this is
good for a smart grid research testbed. An optimally
placed PMU is installed at a 115 kV utility substa-
tion located about 30 miles from campus. A PMU
is installed near a set of pump, that may contribute
additional noise. The PMUs in the University’s
WESRF (Wallace Energy Systems & Renewables
Facility) lab are connected on the downstream side
of a dedicated lab power transformer, and use only
one set of PTs and CTs for all three of the PMUs.
One of these PMUs a SEL-351A, is contained in
the dataset the OSU Campus dataset. The other two
comprise the redundant PMU dataset.

The second dataset uses redundant PMUs con-
nected to the PTs and CTs in the lab [22]. By using
two PMUs, the average of the two signals will be
a much closer approximation to the true signal. A
better test would be to have two PMUs on the same
power source, only using different PTs and CTs,
but due to practical reasons this is very difficult.
The redundant PMU data uses two SEL-751 relays.
The two relays were chosen such that they were
as similar as possible. One is a newer unit with
a touchscreen display. The other is an older unit
without the touchscreen display. The relays were
configured with identical settings. The data rate was
set to 60 samples per second. 24 hours of data was
used for analysis.

2) PMU Data from Utility Sources: The Real
Interconnect (RIC) dataset was supplied from the
US Department of Energy (DOE), was anonymized
for this project, and spans the United States’ three
interconnections [23]. There are approximately 22
terabytes of data in the compressed form and it
contains nearly 2 years of synchrophasor mea-
surements. The data is collected from numerous
independent system operators and was combined
into three aggregated sets. No other information is
known or given, and was previously anonymized
in terms of utility owners, their locations, con-
figurations, or manufacturers of PMUs. There are



TABLE I

Dataset Signal PMUs Data Rate M N Mean STD SNR Unique (%) SW KS
OSU Campus F 6 60 15 15 -9.77e-08 2.97e-05 45.3 0.232 0.0 0.0

VM 6 60 15 15 -5.64e-06 5.87e-04 32.3 22.5 0.0 1.23e-04
Redundant1 VM 2 60 30 30 -4.14e-06 2.71e-04 35.7 13.6 0.0 0.063
Redundant2 VM 2 60 - - 4.23e-16 9.08e-05 40.4 98.7 2.35e-04 0.743

RIC I F 9 30 15 30 3.24e-05 3.65e-03 24.4 0.22 0.0 0.0
F 38 30, 60 15 30 1.02e-08 9.35e-06 50.3 0.016 0.0 7.72e-11

RIC II VM 38 30, 60 15 30 -1.66e-06 4.54e-04 33.4 0.316 0.0 0.311
IM 13 30 15 30 2.80e-06 6.47e-03 21.9 16.2 0.0 0.205
F 183 30 15 30 -2.88e-08 1.44e-05 48.4 0.19 0.0 0.0

RIC III VM 92 30 15 30 -8.12e-06 3.65e-04 34.4 2.11 0.0 3.02e-03
IM 89 30 15 30 3.25e-04 5.32e-02 12.8 15.3 0.0 4.97e-09

Fig. 1. Frequency graph for one PMU from RIC I dataset

many differences in quality of data, kV, and other
attributes. This dataset provides a nearly complete
spectrum of PMUs in use today. Taking into consid-
eration what would be practical to process at a time
for a real-time or engineering machine-learning-
based application, one day worth of data was chosen
from each dataset to analyze.

III. RESULTS AND ANALYSIS

The noise extracted from all datasets is quantified
through various methods, resulting in the summary
Table II. The mean is computed to find any negative
or positive bias. Standard deviation and Signal-to-
Noise Ratio (SNR) are also used to characterize the
noise data in range and strength. The Kolmogorov-
Smirnov (KS) test and Shapiro-Wilk (SW) test are

Fig. 2. Noise distributions for frequency data

each used to determine if the histogram data fits a
particular probability density function.

The number of unique values is computed and
reported as a percentage of the total values in
table. This was added in response to some signals
having just a few hundred different values in five



Fig. 3. Noise distributions for voltage magnitude data

TABLE II

β for Select Datasets
Dataset Signal β

Redundant1 VM 1.12
Redundant2 VM 2.57

RIC II VM 0.83
RIC II IM 0.54

million samples as shown in Figure 5. This figure
was generated with 1000 bins in the histogram for
around five million samples. One-third of the bins
remained empty. Plotting the full set of histograms
presented mixed results, with some showing a well
defined distribution, while other showed additional
features in what would otherwise be a generalized
Gaussian distribution.

The unique column shows the noise of current
magnitude data has the highest range of unique
values, followed by the voltage magnitude and

Fig. 4. Noise distributions for current magnitude data

Fig. 5. RIC II frequency dataset has a finite number space for
some PMUs

finally frequency data. This is expected because
frequency and voltage data is normalized and the
mean value is always expected to be near one,
per unit. This provides an advantage to the filters,
whereas current magnitude data varies greatly over
a day. Additionally, frequency data is computed
as the first derivative of the synchrophasor phase
angle according to the IEEE C37.118 standard for
synchrophasor measurements [7], which reduces the
number of unique values.

Mean noise values were least significant for
frequency data and more significant for voltage
magnitude and current magnitude. This is due to the



frequency being a quantity computed by the PMU
and because the expected value is always close to
the nominal frequency. Following a very similar
pattern as the rest of the data, standard deviation
was least for frequency and greatest for current
magnitude. The outlier in this set is RIC I frequency
standard deviation, which is one to two orders of
magnitude greater, but given that only 9 PMUs of
the 170 total had viable data, there is likely more
issues in this dataset. The SNR for RIC I indicates
this as well.

The data analyzed through the second methodol-
ogy (Redundant2), in which the signals are directly
compared to determine noise instead of by filtering,
shows some substantial differences to the noise
extracted through filtering. First, the mean is less
than half. Second, almost all the values are unique
with 98.7% compared to 22.5% being the highest
for the filtered noise.

A Shapiro-Wilk (SW) test and Kolmogorov-
Smirnov (KS) test were performed in 100 batches
of 5000 random samples. The choice in random
number generator substantially influenced values
computed in subsequent computations [24]. The
mean value is reported in table II. The minimum
and maximum p values were compared to the mean
to look for substantial differences. The SW test
compares the samples to determine if they come
from a Gaussian distribution. The KS test is used
similarly, but to test if the distribution fits a general-
ized normal distribution. The p values are reported
in the table and for both tests, 0.05 is considered the
threshold for if the samples come from the distri-
bution. There was some further variation caused by
the sampling. By using seed values for the random
number generator, the p value increased in all tests.

Redundant2 dataset has very high values for KS
test. The minimum reported value for both PMUs
data was 0.122, whereas the maximum 0.999.
The mean value of 0.743. Comparing this to the
Redundant1 dataset that had a mean value of 0.064,
minimum of 7.01e-10 and maximum value of 0.408
the different methodologies produce significant dif-
ference in distribution fitting. However, in both
cases the test statistic is high enough that it is likely
both come from a generalized normal distribution.

The same cannot be said about the data fitting a
standard Gaussian distribution as demonstrated in
the SW column in Table II. A few of signals had
non-zero p values but were in the range of 10−25

to 10−100 and thus were considered zero.
Considering the rest of the datasets, none of the

frequency distributions had a p value for the SW
and KS that was significant enough for the data
to be from a Gaussian or generalized Gaussian.
The voltage magnitude data only fit the generalized
Gaussian in three of the five signals. The current
magnitude only one of the two.

Table II reports the mean β values for the com-
puted generalized Gaussian distribution in which
the data fit the distribution. Note that Redundant2,
has the highest p value for the KS test along with
the highest β value. β being over two indicates the
distribution is wider in the center than a normal
distribution. The rest of datasets have β much less
than two indicating the distribution has a much
sharper peak. This is evident in the figure 3. The
redundant dataset has a much rounder central shape
and heavier tails than the rest of the datasets indicat-
ing the Kurtosis of the distribution to be Platykurtic,
while the rest would be Leptokurtic Kurtosis with
sharper peaks and thinner tails.

The frequency distributions, figure 2, do not fit a
normalized Gaussian. The hyper-geometric patterns
shown in three of the four graphs is one reason
the distribution does not fit well. The shape appears
linear extending out from the peak. No distributions
were found to fit the data well.

IV. CONCLUSION

This paper contributes to the broader analysis of
PMU data in smart grids by quantifying signal and
noise on real-world datasets spanning full power
system interconnects; significantly expanding the
amount of data analyzed than in previous works.
The wide-area nature of the real interconnect data
was used with few modifications and sought to cap-
ture the spectrum of installed devices. The results
suggest that when generating synthetic PMU data
it is necessary to consider each signal individually
and to consider the means by which the PMU is
reporting the values. Values measured directly by



the PMU, (e.g.: current and voltage magnitude), as
opposed to internally calculated have lower SNR,
higher standard deviation, and higher noise mean.
The extracted noise fit a generalized Gaussian dis-
tribution in about half of the signals sampled.

REFERENCES

[1] Shubhendra Vikram Singh Chauhan and Grace Xingxin
Gao, “Synchrophasor data under gps spoofing: Attack de-
tection and mitigation using residuals,” IEEE Transactions
on Smart Grid, vol. 12, no. 4, pp. 3415–3424, 2021.

[2] L. Vanfretti, J. H. Chow, S. Sarawgi, and B. Fardanesh, “A
phasor-data-based state estimator incorporating phase bias
correction,” IEEE Transactions on Power Systems, vol. 26,
no. 1, pp. 111–119, 2011.

[3] Daniel J Trudnowski, JM Johnson, and John F Hauer,
“Making prony analysis more accurate using multiple
signals,” IEEE Transactions on power systems, vol. 14,
no. 1, pp. 226–231, 1999.

[4] Guoping Liu, Jaime Quintero, and Vaithianathan Mani
Venkatasubramanian, “Oscillation monitoring system
based on wide area synchrophasors in power systems,”
in 2007 iREP symposium-bulk power system dynamics
and control-VII. Revitalizing Operational Reliability. IEEE,
2007, pp. 1–13.

[5] A.P. Sakis Meliopoulos, G.J. Cokkinides, F. Galvan, and
B. Fardanesh, “GPS-Synchronized Data Acquisition: Tech-
nology Assessment and Research Issues,” in Proceedings
of the 39th Annual Hawaii International Conference on
System Sciences (HICSS’06), Kauia, HI, USA, 2006, pp.
244c–244c, IEEE.

[6] Arun G. Phadke and James S. Thorp, Synchronized Phasor
Measurements and Their Applications, Power Electronics
and Power Systems. Springer International Publishing AG,
Springer International Publishing, Cham, 2017.

[7] IEEE, IEEE Std C37.118.1-2011 (Revision of IEEE Std
C37.118-2005), IEEE, 2011.

[8] Chen Chen, Jianhui Wang, Zhengshuo Li, Hongbin Sun,
and Zhaoyu Wang, “PMU Uncertainty Quantification in
Voltage Stability Analysis,” IEEE Transactions on Power
Systems, vol. 30, no. 4, pp. 2196–2197, July 2015.

[9] Qingqing Huang, Leilai Shao, and Na Li, “Dynamic
Detection of Transmission Line Outages Using Hidden
Markov Models,” IEEE Transactions on Power Systems,
vol. 31, no. 3, pp. 2026–2033, May 2016.

[10] Ning Zhou, “A Cross-Coherence Method for Detecting
Oscillations,” IEEE Transactions on Power Systems, vol.
31, no. 1, pp. 623–631, Jan. 2016.

[11] Wen-Tai Li, Chao-Kai Wen, Jung-Chieh Chen, Kai-Kit
Wong, Jen-Hao Teng, and Chau Yuen, “Location Identifi-
cation of Power Line Outages Using PMU Measurements
with Bad Data,” IEEE Transactions on Power Systems, vol.
31, no. 5, pp. 3624–3635, Sept. 2016, arXiv: 1502.05789.

[12] Esmaeil Ghahremani and Innocent Kamwa, “Local and
Wide-Area PMU-Based Decentralized Dynamic State Es-
timation in Multi-Machine Power Systems,” IEEE Trans-
actions on Power Systems, vol. 31, no. 1, pp. 547–562, Jan.
2016.

[13] Praveen Tripathy, S C Srivastava, and S N Singh, “A
Divide-by-Difference-Filter Based Algorithm for Estima-
tion of Generator Rotor Angle Utilizing Synchrophasor
Measurements,” IEEE Transactions on Instrumentation
and Measurement, vol. 59, no. 6, pp. 1562–1570, June
2010.

[14] Jinghe Zhang, Greg Welch, Gary Bishop, and Zhenyu
Huang, “A Two-Stage Kalman Filter Approach for Robust
and Real-Time Power System State Estimation,” IEEE
Transactions on Sustainable Energy, vol. 5, no. 2, pp. 629–
636, Apr. 2014.

[15] Le Xie, Yang Chen, and P. R. Kumar, “Dimensionality
Reduction of Synchrophasor Data for Early Event Detec-
tion: Linearized Analysis,” IEEE Transactions on Power
Systems, vol. 29, no. 6, pp. 2784–2794, Nov. 2014.

[16] Joseph Euzebe Tate and Thomas J. Overbye, “Extracting
steady state values from phasor measurement unit data
using FIR and median filters,” in 2009 IEEE/PES Power
Systems Conference and Exposition, Seattle, WA, USA,
Mar. 2009, pp. 1–8, IEEE.

[17] Ikponmwosa Idehen and Thomas J Overbye, “Large-Scale
Generation and Validation of Synthetic PMU Data,” IEEE
TRANSACTIONS ON SMART GRID, vol. 11, no. 5, pp. 9,
2020.

[18] Di Shi, Daniel J. Tylavsky, and Naim Logic, “An Adaptive
Method for Detection and Correction of Errors in PMU
Measurements,” IEEE Transactions on Smart Grid, vol. 3,
no. 4, pp. 1575–1583, Dec. 2012.

[19] Dinesh Rangana Gurusinghe, Athula D. Rajapakse, and
Krish Narendra, “Evaluation of steady-state and dynamic
performance of a synchronized phasor measurement unit,”
in 2012 IEEE Electrical Power and Energy Conference,
London, ON, Canada, Oct. 2012, pp. 57–62, IEEE.

[20] Michael Brown, Milan Biswal, Sukumar Brahma, Satish J
Ranade, and Huiping Cao, “Characterizing and quantifying
noise in PMU data,” in 2016 IEEE Power and Energy
Society General Meeting (PESGM), Boston, MA, USA,
July 2016, pp. 1–5, IEEE.

[21] G. Frigo, A. Derviskadic, A. Bach, and M. Paolone, “Sta-
tistical Model of Measurement Noise in Real-World PMU-
based Acquisitions,” in 2019 International Conference
on Smart Grid Synchronized Measurements and Analytics
(SGSMA), College Station, TX, USA, May 2019, pp. 1–8,
IEEE.

[22] Oregon State University, “OSU campus PMU dataset,”
2022, Accessed: 2022-08-15.

[23] US Department of Energy, “Big data analysis of syn-
chrophasor data,” 2019, Accessed: 2022-08-10.

[24] Timothy H. Click, Aibing Liu, and George A. Kaminski,
“Quality of random number generators significantly affects
results of Monte Carlo simulations for organic and biolog-
ical systems,” Journal of Computational Chemistry, vol.
32, no. 3, pp. 513–524, Feb. 2011.


