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Abstract

In this letter, an extended virtual array based on sum-difference co-array (SDC) of parallel sparse array (PSA) is derived,

which have more Degrees-of-freedoms (DOFs) than the conventional virtual array only based on difference co-array (DC), for

two-dimensional (2-D) direction of arrival (DOA) estimation of non-circular (NC) signal. Specifically, be placing two subarrays

symmetrically with the coordinate axis, the com-plex joint three-dimensional (3-D) problem of 2-D DOA and one-dimensional

(1-D) NC phase is simplified to two 1-D problems, which greatly reduces the computational complexity and improves the

accuracy of results. At end, the effectiveness and superiority of the proposed algorithm are validated by numerical simulations.
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In this letter, an extended virtual array based on sum-difference co-array 

(SDC) of parallel sparse array (PSA) is derived, which have more 

Degrees-of-freedoms (DOFs) than the conventional virtual array only 

based on difference co-array (DC), for two-dimensional (2-D) direction 

of arrival (DOA) estimation of non-circular (NC) signal. Specifically, be 
placing two subarrays symmetrically with the coordinate axis, the com-

plex joint three-dimensional (3-D) problem of 2-D DOA and one-

dimensional (1-D) NC phase is simplified to two 1-D problems, which 

greatly reduces the computational complexity and improves the accur-

acy of results. At end, the effectiveness and superiority of the proposed 

algorithm are validated by numerical simulations.  

 

Introduction: In the field of arrays signals processing, analyzing the co-

variance matrix (CM) of signals can improve the array DOFs and the 

DOA estimation resolution [1]. In practical application, binary phase 

shift keying (BPSK) and amplitude shift keying (ASK) signals are wid-

ely applied [2]. Different from conventional signals, BPSK and ASK 

signals have noncircularity property, which makes them be considered 

as NC signals, and its pseudo covariance matrix (PCM) is not zero, whi-

ch can be used to extend virtual array as CM. In view of this, research-

ers proposed a series of effective algorithms, such as spatial smoothing 

multiple signal classification (SS-MUSIC) [3] and Lasso [4] for 1-D 

DOA estimation of NC signals, and a good result has been obtained. 

However, if the above 1-D algorithms are directly extended to 2-D 

domain, it will have a large amount of computation and low accuracy. 

Specifically, due to the existence of unknown NC phase, it is actually 

dealing with 3-D problem when carrying out 2-D DOA estimation, 

which contains a great deal of complexity.  

In view of this, this letter proposes a low complexity algorithm, 

which minimizes the impact of unknown NC phase in the whole estima-

tion process. Specifically, by arranging two sparse subarrays symmetri-

cally with the coordinate axis, this letter simplifies the 3-D problem into 

a 2-D problem, which is regarded as two 1-D estimation with the help 

of the rank-reduction (RARE) algorithm [5]. Besides, by processing 

CM and PCM based on two subarrays, the following three superiorities 

are obtained: the DOFs of virtual array are further effectively expanded; 

due to the noise of different subarray is uncorrelated, the effective den-

oising process is realized; the estimated result is contained in it orderly, 

thus realizing the auto pair-matching process of two angles.  

 

Notations: Throughout this paper, we use lower-case (upper-case) bold 

characters to denote vectors (matrices). In particular,
*(.) , 

T(.) , H(.)  

and (.)−  respectively denote the complex conjugation, transpose, conju-

gate transpose and pseudo inverse operation of a matrix or a vector. 

vec(.)  denotes the vectorization operation. diag(.)  denotes a diagonali-

zation of a diagonal matrix or a vector. det(.)  denotes the operator for 

determinant calculation. arg( )  denotes take phase angle. E(.)  is the 

statistical expectation operator.   and  denote the Kronecker prod-

uct and Khatri-rao product. (.)a b:  denotes the a-th to b-th terms of 

intercepting a vector. J R
I  and J R

O  denote the zero matrix and one 

matrix of row J  and column R . d denotes the unit inter-element 

spacing which is set to half wavelength / 2 . 

 
System model: Assuming that K  far-field, mutually independent non-

Gaussian narrowband NC signals 1{ ( )}K

k ks t =  impinging a PSA, which 

consists of two identical sparse linear arrays (SLAs) with a distance to Y-

axis is d , from directions
1{( , )}K

k k k  =
 which denote the angles between 

the incident direction of the k-th signal with Y-axis and X-axis in turn.  

1

Yd
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Fig.1 PSA model 

 

The position of SLA with L  sensors can be recorded as 

{ |1 }
l

p d l L=   . For convenience, we define 2 cos /k kf j   = , 

where = -1j , and the received signal of two subarrays can be written 

as [6], 

( ) ( ) ( ), 1,2
i i R i

t t t i= + =x ABΦs n                  (1) 

 

where 1
[ ( ), , ( ), , ( )]

k K
  =A a a a  and 1 T( ) [ , , ]k k Lf p d f p d

k e e
 

 =a . 

1cos cos
diag( , , )Kj j

e e
   

=
1

B  and *

2 1B = B . T

1( ) [ ( ), , ( )]R R RKt s t s t=s  

and 1diag( , , )Kj j
e e

 
=Φ  are the real-valued signals and theirs NC 

phase, respectively. 1 2
( ), ( )t tn n  denote two zero-mean, mutually irrele-

vant additive white Gaussian noise vector independent of signal. 

In order to extend original array, the CM of subarray1 is calculated 

and carry on the denoising processing as like [7]  
2 H H

11 2 1 1[ ( ) ( )]D n K KE t t= − = =R R Ι x x AR A            (2) 

 

where 2 2 2

1diag( , , , , )K k K  =R . 2

k  denotes the power of the k-th 

signal. 
2

n  denotes the power of noise. 

By vectorizing (2) and removing the repeated positions in it, we can 

get the received signals of DC [8]. 
*

1 1vec( ) ( ) remove

D = ⎯⎯⎯→ =R A A F y U F                 (3) 

 

where diag( )
K

=F R . 1 1 1 1 1
[ ( ), , ( ), , ( )]

k K
  =U u u u , and 1

( )
k

u  

11 1
1 1 T[ , , , , ]k Uk k u

f p df p d f p d
e e e

 

= . 1

1
{ ) , }u i j i jp d p p d p p = − ( |  de-

notes the position of virtual sensors based on DC. 

Similarly, by calculating the PCM based on two subarrays and const-

ructing the virtual extend matrix based on sum co-array (SC), 
T 2 T

12 1 2E[ ( ) ( )] Kt t= =R x x AΦ R A                      (4) 

H

12 12[ , ]S =R R R                              (5) 

 

Obviously, because of the noise received by the two subarrays is 

uncorrelated, so that (4) will not have noise terms. 

By vectorizing (5) and removing the repeated positions in it, we can 

get the received signals of sum co-array (SC). 

2 2H
( )

( )

remove

Svec
 

= ⎯⎯⎯→ = 
 

A A
R C y U C

A A
       (6) 

 

where 
2diag( )K=C Φ R . 2 2 1 2 2

[ ( ), , ( ), , ( )]
k K

  =U u u u , 2
( )

k
u

22 2
1 2 T[ , , , , ]k Uk k u

f p df p d f p d
e e e

 

= and 2

2
{ ( ) , }u i j i jp d p p d p p =  + |   

denotes the position of virtual sensors based on SC. 
Then, we can construct the virtual extend matrix based on SDC, 

T[ , ]SD D S=R R R                                 (7) 

 

By carrying out processes similar to (3) and (6) for (7), it can be 

noted that since 1  and 2  have the same elements, this letter uses 

the former value here. And in order to carry out the SS-MUSIC 

algorithm, it is necessary to intercept the continuous virtual sensors of 

the received signals based on SDC. 
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DC used part

SC used part SC used part

Fig.2 Set physical array as coprime array with two coprime integers 3, 

4. The used continuous virtual array based on DC, SC and SDC with 

1
(2 1 )13V + = , 2

(2 )24V =  and (2 1 )V + = 37 sensors, respectively. 

 

22 2 2

3 1 1 1 3

2 2 21

vec( ) remove

SD intercept

   
   

⎯⎯⎯⎯→ = =   
     

CU O O

R y O U O F U D

O O U C

        (8) 

 

where diag([ , , ])=D C F C . 1(2 1)V K+ 


1
U  and 2*

22 21( )
V K

= U U   

respectively denotes the used continuous virtual array steering matrix of 

1
U  and 2

U , which is shown in Fig.2. T

3 22 1 21 3 1[ , , ] [ ( ),= =U U U U u

3 3
, ( ), , ( )]

k K
 u u and ( )1:2 1 T

3
( ) [ , ,1, , ]k kf Vd f VdV

k e e
 

 −+ =u . 1
O  

and 2
O  are zero matrices of the same size as 1U  and 22U  in turn.  

For (8), it can be found that by arranging two subarrays reasonably, 

angle k
  can be eliminated in the process of calculating k

 , thus the 

the 3-D problem is simplified to into a 2-D problem. 
Then, the estimated value of covariance matrix is obtained by perfor-

ming spatial smoothing process, 
: : H

3 3( ) , 1, , 1i i V i i V

SS i V+ += = +R y y                      (9) 

1

1

ˆ ( ) ( 1)
V

SS SSv
i V

+

=
 = +
 R R                        (10) 

 

Based on ˆ
SSR , the peak search function can be defined as [3] 

1 2 1 2 1 2

H H

g g g g g g( , ) 1 ( , ) ( , )n nv       =  H E E H        (11) 

 

where
( 1) ( 1 )V V K

n

+  + −E denotes the noise subspace of ˆ
SSR .

1
g 1, ,G= , and 2g 1, ,G=  denotes the search grids for angles   

and NC phases  . With defining, 

1 2 1 2g g 1 g 2 g( , ) ( ) ( )   =H h Th                        (12) 

 

where
1 11 g 4 g( ) diag[ ( )] =h u  and 

1 1

1:2 1

4 g 3 g
( ) ( ) [1, ,V V  + += =u u

g1
cos T 1]

jV Ve
  + , g2

2

2 T

2 g( ) [1, ]
j

e


 =h .  

1 2

1 2

T

1 ( 1) 1

1 ( 1) 1

V V

V V

 + 

 + 

 
=  

  

I O
T

O I
                         (13) 

 

where 1 2
V V V+ = , and can transform (11) into 

1 2 2 1 1 2

2 1 2

H H H H

g g 2 g 1 g 1 g 2 g

H

2 g g 2 g

( , ) 1 ( ) ( ) ( ) ( )

1 ( ) ( ) ( )

n nv      

  

 =  

 =  

h T h E E h Th

h G h
   (14) 

 

where 
1 1 1

H H H

g 1 g 1 g
( ) ( ) ( )n n  =G T h E E h T . According to RARE algorit-

hm, it can be solved as 

1 1g g( ) arg max{1 det[ ( )]}v  = G                 (15) 

 

In order to further simplify the calculation process, bring 
1gz =  

1
cos gj

e
   into (15), and it can be transformed into finding the K  roots 

of the following formula 

1gdet[ ( )] 0z =G                           (16) 

 
Consequently, 

1

1

g
ˆ cos [arg( ) / ], 1,2, ,k z k K −= =            (17) 

 

After that, to realize the estimation of angle  , we need to calculate 

the CM based on two subarrays, and carry out processes similar to (6), 
H 2 H

12 1 2 1E[ ( ) ( )] Kt t= =R x x AB R A                   (18) 

*

12 4 1vec( ) ( ) remove= ⎯⎯⎯→R A A J y U J=              (19) 

 

where 2

1diag( )KJ B R= . 

In order to realize estimation of k
  and complete the automatic 

pairing process, we only need to process with (19) as follows,  

1

1 1 4( ) cos [arg( ) / 2 )]K

k k − −

= = U y                   (20) 

 

where 1

−
U  can be obtained by ˆ

k
  and because angle k

  in it has 

sequential information, so that the automatic pair-matching process is 

completed. 

 

Simulations: This section uses numerical results to verify the superiority 

of the proposed algorithm, and it is mainly divided into the following 

three parts: showing the expansion effect of the continuous DOFs under 

the proposed algorithm; comparing the computational complexity and 

running time between the algorithms; comparing the DOA estimation 

performance between algorithms by Monte Carlo experiments. 

For convenience, we briefly introduce four common SLAs that will 

be used below (the order is coprime array (CA) [9], augmented coprime 

array (ACA) [10], coprime array with compressed inter-element spacing 

(CACIS) [10], two-level nested array (TNA) [11]), 

1
={ | 0 -1} { |0 -1}mNd m M nMd n N             (21) 

2
={ |0 2 -1} { |0 -1}mNd m M nMd n N              (22) 

3 ={ | 0 -1} { |0 -1}mNd m M nMd n N        (23) 

4 1 1 1 2 1 2 2
={ |0 1} {[ ( 1) 1] |1 }m d m M m M d m M  − + −    (24)  

 

where 1 2
, , , , ,m n M N M M are all integers, ( ,2 )M pM p M=    and 

N  are coprime numbers. 

By setting different initial values, we verify the increase effect of the 

continuous DOFs under the proposed algorithm, and the result is shown 

in Table 1. From this, we can clearly see the advantage of the proposed 

algorithm in expanding continuous DOFs. 

Table 1: expansion effect of the continuous DOFs 

 

Array Type Initial Value DC SDC 

CA 

3, 4M N= =  13 37 

4, 5M N= =  17 21 

6, 7M N= =  25 29 

ACA 

3, 4M N= =  29 53 

4, 5M N= =  47 87 

6, 7M N= =  95 179 

CACIS 

( 2)p =  

4, 5M N= =  23 43 

6, 5M N= =  35 65 

6, 7M N= =  47 89 

TNA 

1 2
4, 3M M= =  29 37 

1 2
4, 5M M= =  49 57 

1 2
6, 7M M= =  97 109 

 

Then, the computational complexity is analyzed, and compared with 

the algorithm A [7] and algorithm B [11]. The amount of computation 

of the proposed algorithm is mainly composed of the following sections: 

the estimation of 11
R , 12R , SS

R  and 12
R ; the calculation of 

1g( )G  

and 1

−
U , so the computational complexity of the proposed algorithm is 
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obtained 2 2 3

1{3 2( 1) ( 4) }O L Y V V U+ + + + , where Y  denotes the number 

of snapshots. From [7] and [11], it is known that the computational 

complexity of algorithm A and B is 
2 3 3{2 2 (2 2 ) }O L Y + K MN M+ + , 

and 
2 3

1 2 2 1{2( ) (2 ( 1)) }O M M Y + M M+ + , respectively.  

Due to the complexity of parameters, and only one special case under 

a particular SLA is given in [7] and [11], it is not easy to compare 

directly. Therefore, we conduct 500 experiments to intuitively compare 

the running time, and it is assumed that the physical array is CACIS

( 6, 5, 3)M N p= = = , the number of snapshots is 500 and the angles of 

NC signals are (40 ,70 ),(50 ,65 )    , the result is shown in Table 2. 

Table 2: running time under three algorithms 

 

Algorithm A B The proposed 

Operation time(s) 93.450 105.457 96.200 

 

For Table 2, we can find that the operation time under the three 

algorithms is almost the same. The proposed algorithm is slightly better 

than the algorithm B, but worse than the algorithm A.  

 

 
a (the number of snapshots=500) 

 
b (SNR=-5dB) 

Fig.3 RMSEs versus SNR and the number of snapshots 

 

Finally, Monte Carlo experiments are carried out to compare the perf-

ormance of three algorithms under different SNR and the number of sn-

apshots, the RMSE can be expressed as follows, 

2 2

1 1

1 1 ˆˆRMSE= [( ) ( ) ]
mNK

i i

k k k k

k imK N
   

= =

− + −              (25) 

 

where the number of experiments 500
m

N = , ˆ i

k  and ˆ i

k  denotes the 

estimated value of the k
  and k

  in the i-th experiment. In this exper-

iment, the setting of the signal is consistent with running time experime-

nt, and in order to compare fairly, the number of two used SLAs are the 

same, that is CACIS ( 6, 5, 3)M N p= = =  and TNA 1 2
( 7, 3)M M= = .  

For Fig. 3a, we can find that the proposed algorithm performs much 

better than the other two algorithms in the case of low SNR, which pro-

ves that the expand virtual array based on SDC can restrain the influe-

nce of noise to a great extent. For Fig. 3b, it can be seen that the prop-

osed algorithm can still have good performance with less snapshots, 

which means that only a short period of experimental data is needed to 

obtain a more accurate estimation result. 

 

Conclusion: The greatest contribution of this letter is that by symmetric-

ally placing two parallel subarrays, the complex 3-D problem that 2-D 

DOA estimation based on DSC is reduced to 2-D problem, and further 

reduced to two 1-D dimensional problems by RARE algorithm, so that a 

virtual array with more sensors is obtained. Through a series of simulat-

ions experiments, we demonstrate the advantages of the proposed algor-

ithm in array expansion, running time, estimation accuracy and so on. In 

addition, this algorithm has strong generalization value and is suitable 

for almost all cases of 2-D DOA estimation based on DC of SLAs. 

 

Jiawei Wang (corresponding author, the College of Electrical 

Engineering, Sichuan University, Sichuan 610065, China) 
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