Ab initio calculation of ground and low excited state spectroscopic data and transition properties of SBr+

guosen Wang¹, XinGuan Tan¹, Chuanyu Zhang¹, and Yulin Wang²

¹Chengdu University of Technology ²Sichuan University of Science and Engineering

September 5, 2022

Abstract

In this paper, the potential energy curves of the Λ -S and Ω states of SBr⁺ are reported for the first time, and the spectrum data of some low excited bound states are obtained. The differences in the spectrum properties of main group molecules and SBr⁺ were compared and analyzed, providing a sufficient theoretical basis for the subsequent study of main group molecules. The phenomenon of avoided crossing that occurs in the Ω state is analyzed, and finally it is concluded that this phenomenon mainly occurs in the energy region between 20000 cm⁻¹ and 40000 cm⁻¹. Potential transitions in the Ω state capable of achieving laser cooling of SBr⁺ are explored. The Franck-Condon factor, radiation lifetime and Einstein coefficient between $X^3\Sigma^-_{0^+}$ and $21\Sigma^+_{0^+}$ are calculated. From the calculation results, we concluded that direct laser cooling of SBr⁺ is not feasible. What we have studied in this paper provides a theoretical basis for subsequent computational exploration of the spectrum properties of SBr⁺.

Hosted file

Manuscript-SBr+.docx available at https://authorea.com/users/505691/articles/584706-abinitio-calculation-of-ground-and-low-excited-state-spectroscopic-data-and-transitionproperties-of-sbr