Extremal values of vertex-degree-based topological indices over fluoranthene-type benzenoid systems with equal number of edges

fengwei Li^{1}, Qingfang Ye^{1}, and Juan Rada ${ }^{2}$
${ }^{1}$ Ningbo University of Finance \& Economics
${ }^{2}$ Universidad de Antioquia

September 5, 2022

Abstract

Let $\$ \mathrm{G} \$$ be a graph with $\$ \mathrm{n} \$$ vertices. A vertex-degree-based topological index is defined from a set of real numbers $\$ \backslash\{\backslash$ psi_$\{\mathrm{ij}\} \backslash\} \$$ as $\$ \$ \mathrm{TI}(\mathrm{G})=\backslash$ sum_ $\{1 \backslash$ leq $i \backslash$ leq $j \backslash$ leq $n-1\} m_{-}\{\mathrm{ij}\} \backslash \mathrm{psi}_{-}\{\mathrm{ij}\}, \$ \$$ where $\$ \mathrm{~m}_{-}\{\mathrm{ij}\} \$$ is the number of edges of $\$ \mathrm{G} \$$ connecting a vertex of degree $\$ \mathrm{i} \$$ with a vertex of degree $\$ \mathrm{j} \$$. Many of the well-known topological indices are particular cases of this expression, including all Randi \backslash ' $\{c\}$-type connectivity indices. In this work we determine extremal values for $\$ \mathrm{TI} \$$ over the set of fluoranthene-type benzenoid systems with a fixed number of edges. The main idea consists in constructing fluoranthene-type benzenoid systems with maximal number of inlets in $\$ \backslash$ Gamma_ $\{\mathrm{m}\} \$$ which have simultaneously minimal number of hexagons, where $\$ \backslash$ Gamma_ $\{\mathrm{m}\} \$$ is the set of fluoranthene-type benzenoid systems with exactly $\$ \mathrm{~m}(\mathrm{~m} \backslash$ geq 19$) \$$ edges.

Hosted file

35.tex available at https://authorea.com/users/505683/articles/584698-extremal-values-of-vertex-degree-based-topological-indices-over-fluoranthene-type-benzenoid-systems-with-equal-number-of-edges
figures/fig1/fig1-eps-converted-to.pdf
figures/fig2/fig2-eps-converted-to.pdf
figures/fig3/fig3-eps-converted-to.pdf
figures/fig4/fig4-eps-converted-to.pdf
figures/fig5/fig5-eps-converted-to.pdf
figures/fig6/fig6-eps-converted-to.pdf
figures/fig7/fig7-eps-converted-to.pdf
figures/fig8/fig8-eps-converted-to.pdf
figures/fig9/fig9-eps-converted-to.pdf
figures/fig10/fig10-eps-converted-to.pdf
figures/fig11/fig11-eps-converted-to.pdf
figures/fig12/fig12-eps-converted-to.pdf
figures/fig13/fig13-eps-converted-to.pdf
figures/fig14/fig14-eps-converted-to.pdf
figures/fig15/fig15-eps-converted-to.pdf
figures/fig16/fig16-eps-converted-to.pdf
figures/fig17/fig17-eps-converted-to.pdf
figures/fig18/fig18-eps-converted-to.pdf
figures/fig19/fig19-eps-converted-to.pdf

Extremal values of vertex-degree-based topological indices over fluoranthene-type benzenoid systems with equal number of edges

Fengwei Li^{1}, Qingfang Ye^{1}, Juan Rada ${ }^{2}$
${ }^{1}$ College of Basic Science
Ningbo University of Finance \& Economics, Ningbo, Zhejiang 315175, P.R. China. fengwei.li@hotmail.com, fqy-y@163.com
${ }^{2}$ Instituto de Matemáticas Universidad de Antioquia
Medellín, Colombia
pablo.rada@udea.edu.co

Abstract

Let G be a graph with n vertices. A vertex-degree-based topological index is defined from a set of real numbers $\left\{\psi_{i j}\right\}$ as $$
T I(G)=\sum_{1 \leq i \leq j \leq n-1} m_{i j} \psi_{i j}
$$ where $m_{i j}$ is the number of edges of G connecting a vertex of degree i with a vertex of degree j. Many of the well-known topological indices are particular cases of this expression, including all Randić-type connectivity indices. In this work we determine extremal values for $T I$ over the set of fluoranthene-type benzenoid systems with a fixed number of edges. The main idea consists in constructing fluoranthene-type benzenoid systems with maximal number of inlets in Γ_{m} which have simultaneously minimal number of hexagons, where Γ_{m} is the set of fluoranthene-type benzenoid systems with exactly $m(m \geq 19)$ edges.

Keywords: vertex-degree-based topological index, connectivity index, inlet, fluoranthene-type benzenoid system.

1 Introduction

In the chemical literature, a great variety of topological indices (molecular structure descriptors) have been and are currently considered in applications to QSPR/QSAR studies(see [14, 59]). Many of them depend only on the degrees of the vertices of the underlying molecular graph (i.e., graphs which represent chemicals) and are now called vertex-degree-based topological indices. More precisely, given nonnegative real numbers $\left\{\psi_{i j}\right\}(1 \leq i \leq j \leq$ $n-1$), a vertex-degree-based topological index (VDB topological index for short) of a (molecular) graph G with n vertices is expressed as

$$
\begin{equation*}
T I(G)=\sum_{1 \leq i \leq j \leq n-1} m_{i j} \psi_{i j} \tag{1}
\end{equation*}
$$

where $m_{i j}$ is the number of edges of G connecting a vertex of degree i with a vertex of degree j. Many of the well-known VDB topological indices are particular cases of this expression, for example, if for every $1 \leq i \leq j \leq n-1$ the numbers are $\psi_{i j}=\frac{1}{\sqrt{i j}}$, then we obtain the Randić index; if $\psi_{i j}=i j$ then the second Zagreb index is obtained [28], in the atom-bond connectivity index $\psi_{i j}=\sqrt{\frac{i+j-2}{i j}}[15]$, in the geometric-arithmetic index $\psi_{i j}=\frac{2 \sqrt{i j}}{i+j}$ [60], in the sum-connectivity index $\psi_{i j}=\frac{1}{\sqrt{i+j}}$ [65], in the augmented Zagreb index $\psi_{i j}=\frac{(i j)^{3}}{(i+j-2)^{3}}$ [16] and in the harmonic index $\psi_{i j}=\frac{2}{i+j}$ [64], just to mention a few. Details of these and other VDB topological indices can be found in the books $[26,27,44]$ and $[7,8,13,17,21,22,37,38]$.

In [39], we derived extremal values for $T I$ over the set of fluoranthenetype benzenoid systems with given order. Our interest in this work is to study the extremal values of a $T I$ of the form (1) over fluoranthene-type benzenoid systems with a fixed number of edges. For the definition of hexagonal systems and details of this theory we refer to [25].

Fluoranthene is a well-known tetracyclic conjugated hydrocarbon, present in large amounts in coal tar [6]. It consists of a benzene and a naphthalene unit, joined through a five-membered ring. Other polycyclic conjugated hydrocarbon, consisting of two benzenoid units joined through a five-membered ring are referred as fluoranthene-type benzenoid system $(f$ benzenoid for short) [20, 24]. A few examples of f-benzenoids are presented in Figure 1.

In what follows we will represent the f-benzenoid by means of their molecular graphs [24]. This, in particular, means that the carbon atoms are represented by vertices, and the carbon-carbon bonds by edges. The molecular graphs of f-benzenoid are then defined in the following manner. Let X be a benzenoid system [24]. Let u and v be two vertices of X whose degree is two, and which both are adjacent to a vertex w of degree 3 . Let Y be another benzenoid system. Let a and b be two adjacent vertices of Y whose degree is two. The f-benzenoid F is obtained by joining (with a new

1

2

3

4

Figure 1: Examples of fluoranthene-type benzenoid systems. 1 and 2 are cata-catacondensed, 3 is peri-catacondensed, 4 is cata-pericondensed, and 5 is peri-pericondensed.
edge) the vertices u and a, and by joining (with a new edge) the vertices v and b (see Figure 2).

What first needs to be noticed is that the vertices a, b, v, w, u of F form a five-membered cycle. Each f-benzenoid possesses (by definition) exactly one five-membered cycle.

The f-benzenoids considered by us must pertain to plane graphs composed of regular hexagonals and a regular pentagon, all having the same edge lengths. Non-adjacent hexagon and hexagon-pentagon pairs must neither touch nor overlap (we exclude the helicenic and other geometrically nonplane species from the class of f-benzenoids). For more about f-benzenoid,

Figure 2: The general form of an f-benzenoid (F) and its construction from two benzenoid systems X and Y

(a) Linear chain

(b) f-linear chain

Figure 3: Linear chain and f-linear chain.
one can see [24].
Throughout this paper, the notation and terminology are mainly taken from $[9,10,19,34,35,41,42]$. A benzenoid system is said to be catacondensed if it has no internal vertices; otherwise it is pericondensed [25]. In view of this, we propose the following classification of f -benzenoid. If the f-benzenoid F has just a single internal vertex, then it is said to be catacatacondensed. This happens when both fragments X and Y (as shown in Figure 2) are catacondensed benzenoid systems.

Let L_{h} denote the linear chain with h hexagons(as shown in Figure 3(a)). A cata-catacondensed f -benzenoid is called an f-linear chain when fragment X is L_{2} and Y is L_{h-2}, and which is denoted as $F L_{h}, h \geq 3$ (as shown in Figure 3(b)).

The following definitions were introduced in [24, 25]. If one goes along the perimeter of an f -benzenoid F, then a fissure (resp. a bay, cove, fjord, or lagoon) corresponds to a sequence of three (resp. four, five, six, or seven) consecutive vertices on the perimeter, of which the first and the last are vertices of degree 2 and the rest are vertices of degree 3. (For examples see Figure 4). The number of fissures, bays, coves, fjords and lagoons are denoted, respectively, by f, B, C, F_{j} and L.

Fissures, bays, coves, fjords and lagoons are called various types of inlets. The total number of inlets on the perimeter of $F, f+B+C+F_{j}+L$, will be denoted by r. There is another parameter $b=B+2 C+3 F_{j}+4 L$, called the number of bay regions, will be useful later. It is easy to see that $b \geq 2$ for all f-benzenoids, and b is just the number of (3,3)-type edges on the perimeter. Evidently, $f+2 B+3 C+4 F_{j}+5 L$ is the number of vertices of degree 3 on the perimeter.

First of all, all vertices in an f-benzenoid have degrees equal to 2 or 3, so, in further text, a i-vertex denotes a vertex of degree i, and a (i, j)-edge stands for an edge connecting a i-vertex with a j-vertex. The number of

Figure 4: Structural features occurring on the boundary of f-benzenoids.
i-vertices and (i, j)-edges in the graph considered will be denoted by n_{i} and $m_{i j}$, respectively.

If F is an f -benzenoid with n vertices, m edges and h hexagons, then F possesses $h+1$ cycles (h hexagons and a pentagon), so, $m=n+h$, and $n_{2}+n_{3}=n, 2 n_{2}+3 n_{3}=2 m$, it can be shown that $n_{2}=n-2 h, n_{3}=2 h$.

Some vertices of F lie on its perimeter. These will be referred to as external vertices, and their numbers are denoted by $n_{e x}$.

The vertices that are not external are said to be internal, and their numbers are denoted by n_{i}. Claearly, $n_{e x}+n_{i}=n$.

An f -benzenoid with h hexagons and n_{i} internal vertices represents a benzenoid hydrocarbon of the formula $C_{4 h+5-n_{i}} H_{2 h+5-n_{i}}$.

Lemma 1.1 [24] Let F be an f-benzenoid with n vertices, m edges h hexagons and n_{i} internal vertices, Then
(a) the number of internal edges $m_{i}=h+n_{i}$;
(b) $n=4 h+5-n_{i}$;
(c) $m=5 h+5-n_{i}$.

Lemma 1.2 [24] Let F be an f-benzenoid with n vertices, h hexagons and r inlets, Then
(a) $m_{22}=n-2 h-r$;
(b) $m_{23}=2 r$;
(c) $m_{33}=3 h-r$.

From a mathematical and chemical point of view, it is of great interest to find the extremal values of some useful VDB topological indices

Figure 5: Some f-benzenoids in Γ_{42}
such as connectivity index, general connectivity index, second Zagreb index, atom-bond connectivity index, sum-connectivity index, geometricarithmetic index, augmented Zagreb index, harmonic index for significant classes of graphs. Many results concerning this topic can be found in $[2,7$, $17,23,30,32,38,39,40,41,42,43,48,49,52,53,54,57,61,62]$.

In this paper, we will determine the extremal values of a VDB topological index $T I$ over the f-benzenoids with equal number of edges m, and we will characterize the corresponding f -benzenoids depending if the number of edges m is congruent to $0,1,2,3$ or 4 modulo 5 . Then we will apply these results to find the extremal values of some well-known VDB topological indices over f -benzenoids with fixed number of edges m.

2 Maximal number of inlets in Γ_{m}

Let Γ_{m} denote the set of f -benzenoids with exactly m edges. We will find in this section the f-benzenoids with maximal number of inlets in Γ_{m} and then, we will apply this result in the study of extremal values of VDB topological indices. Figure 5 shows several f-benzenoids belonging to Γ_{42}.

Note that the number of hexagons in f -benzenoids belonging to Γ_{m} is variable. So, we try to find the lower and upper bounds for the number of hexagons in any $F \in \Gamma_{m}$. Firstly, we recall the concept of the spiral benzenoid system [29].

The spiral benzenoid system T_{h} is an hexagonal system with maximal number of internal vertices which are constructed by the "spiral" method illustrated in Figure 6.

By analogy with an extremal benzenoid system, an extremal f-benzenoid is defined by possessing the maximum number of internal vertices for a given number of hexagons: $n_{i}=\left(n_{i}\right)_{\max }$ [42].

For convenience, we let $S H_{h}(h \geq 3)$ denote the set of all f-benzenoids whose two fragments X and Y are both spiral benzenoids. Especially, an f-benzenoid system $F^{*} \in S H_{h}$ with two fragments $X=T_{h-1}$ and $Y=T_{1}$ is

Figure 6: The spiral benzenoid system T_{h} with maximal number of internal vertices. Hexagons have to be added one-by-one, going along the indicated spiral line.

Figure 7: f-benzenoid $F^{\prime} \in S H_{h}$ whose two fragments X and Y are both spiral benzenoid systems, and f-spiral benzenoid $F^{*} \in S H_{h}$ with two fragments $X=T_{h-1}$ and $Y=T_{1}$.
called an f-spiral benzenoid (as shown in Figure 7). It is obvious that

$$
n_{i}\left(F^{*}\right)=2 h-\lceil\sqrt{12(h-1)-3}\rceil .
$$

Lemma 2.1 [42] For any f-benzenoid F with $h \geq 3$ hexagons, we have

$$
\begin{equation*}
n_{i}(F) \leq n_{i}\left(F^{*}\right)=2 h-\lceil\sqrt{12(h-1)-3}\rceil . \tag{2}
\end{equation*}
$$

The following theorem gives the upper and lower bounds for the number of hexagons in f-benzenoids $F \in \Gamma_{m}$.

Theorem 2.1 For any f-benzenoid $F \in \Gamma_{m}$,

$$
\begin{equation*}
\left\lceil\frac{1}{5}(m-4)\right\rceil \leq h(F) \leq m-1-\left\lceil\frac{1}{3}(2 m+\sqrt{4 m-31})\right\rceil, \tag{3}
\end{equation*}
$$

where $h(F)$ denotes the number of hexagons in $F .\lceil x\rceil$ is the smallest integer not smaller than x.

Proof. On one hand, from Lemma 1.1 (c) we know that $m=5 h(F)+5-$ $n_{i}(F)$. Combining the fact that for any f -benzenoid $F, n_{i}(F) \geq 1$, we get

$$
h(F) \geq\left\lceil\frac{1}{5}(m-4)\right\rceil .
$$

On the other hand, by Lemma 2.1 we know that

$$
n_{i}(F) \leq n_{i}\left(F^{*}\right)=2 h-\lceil\sqrt{12(h-1)-3}\rceil .
$$

Consequently, from $m=5 h(F)+5-n_{i}(F)$ we have

$$
m-3 h(F)-5 \geq\lceil\sqrt{12(h(F)-1)-3}\rceil \geq \sqrt{12(h(F)-1)-3} .
$$

Hence,

$$
(3 h(F)+(3-m))^{2} \geq 4 m-31 .
$$

By observing the fact that $3 h(F)+(3-m)<0$, we deduce

$$
3 h(F)+(3-m) \leq-\sqrt{4 m-31},
$$

i.e.,

$$
h(F) \leq m-1-\left\lceil\frac{1}{3}(2 m+\sqrt{4 m-31})\right\rceil .
$$

This completes the proof.

Remark 1 From Theorem 2.1 we know that the f-spiral benzenoid F^{*} has the maximal number of hexagons over Γ_{m}.

One crucial problem in the study of extremal values of topological indices is to find among all f -benzenoid in Γ_{m}, the f -benzenoids which have maximal number of inlets. We will show that in $S H_{h}$, the f-benzenoid F with maximal number of inlets has minimal number of hexagons $h(F)=$ $\left\lceil\frac{1}{5}(m-4)\right\rceil$.

In order to prove this result we need some preliminaries lemmas. Recall that the convex benzenoid systems is a special class of benzenoid systems in which there are no bay regions [7]. We denote by $\mathcal{H} \mathcal{S}_{h}$ the set of benzenoid systems with h hexagons.

Lemma 2.2 [2] Let $H \in \mathcal{H} \mathcal{S}_{h}$. In each of the following conditions H is not a convex benzenoid system:
(a) If $h \geq 4$ and $n_{i}=1$;
(b) If $h \geq 5$ and $n_{i}=2$;
(c) If $h \geq 6$ and $n_{i}=3$.

(a)

(d)

(b)

(e)

(c)

(f)

Figure 8: Benzenoid systems with 1, 2, 3 and 4 internal vertices, respectively

Lemma $2.3[54]$ Let $H \in \mathcal{H S}_{h}$ such that $n_{i}(H)=4$. Then H must contain a subbenzenoid system of the form given in Figure 8, where no hexagons are adjacent to the fissures.

Lemma 2.4 Let $H \in \mathcal{H S}_{h}$. If $h \geq 7$ and $n_{i}(H)=4$, then H is not a convex benzenoid system.

Proof. If $h=6$ then H is one of the benzenoid systems $(d),(e)$ and (f) in Figure 8. It is clear that both (d) and (f) are convex benzenoid systems, but (e) is not. If $h \geq 7$, by Lemma $2.3, H$ has a subbenzenoid system as in Figure 8, where no hexagons are adjacent to the fissures. Since $h \geq 7$ there must exist hexagons adjacent to a (2,2)-edge, and these hexagons will transform one of the fissures into a bay, cove or fjord. Consequently, $b(H) \geq 1$.

Lemma 2.5 [38] Let F be a f-benzenoid with h hexagons. Then

$$
r(F) \leq \begin{cases}r\left(F L_{h}\right)=2 h-3(h \geq 3), & \text { if } n_{i}=1 \\ r\left(G_{h}\right)=2 h-4(h \geq 4), & \text { if } n_{i}=2 \\ r\left(R_{h}\right)=2 h-5(h \geq 5), & \text { if } n_{i}=3 \\ r\left(Z_{h}\right)=2 h-6(h \geq 6), & \text { if } n_{i}=4\end{cases}
$$

Next we find the f -benzenoids with maximal number of inlets in Γ_{m} with a fixed number of internal vertices. Recall that M_{h}, N_{h} and Q_{h} (see Figure 9) are benzenoid systems, and G_{h} (see Figure 10), R_{h} (see Figure 11), Z_{h} (see Figure 12) are f-benzenoids.

$M_{h}(h \geq 4)$

$N_{h}(h \geq 5)$

$Q_{h}(h \geq 6)$

Figure 9: Three types of benzenoid systems

Figure 10: f-benzenoids G_{4}, and $G_{h}(h \geq 5)$

R_{5}

Figure 11: f-benzenoids R_{5}, and $R_{h}(h \geq 6)$

Z_{6}

Figure 12: f-benzenoids Z_{6}, and $Z_{h}(h \geq 7)$

Figure 13: f-benzenoids U_{7}, and $U_{h}(h \geq 8)$

Lemma 2.6 [42] For any f-benzenoid F with h hexagons,

$$
r(F) \leq r\left(F L_{h}\right)=2 h-3 .
$$

Lemma 2.7 [24] If a f-benzenoid has h hexagons, n_{i} internal vertices, and b bay regions, then the counts of edges of type $(2,2)$ and $(2,3)$ are $m_{22}=$ $b+5, m_{23}=4 h-2 n_{i}-2 b$.

Combining Lemma 1.2 (b) and Lemma 2.6, we get

$$
\begin{equation*}
r=2 h-n_{i}-b \tag{4}
\end{equation*}
$$

Furthermore, by Lemma 1.1 (c) and equation (4), we deduce

$$
\begin{equation*}
r=m-3 h-5-b \tag{5}
\end{equation*}
$$

Theorem 2.2 Let F be a f-benzenoid with h hexagons. If $n_{i}=5$, then $r(F) \leq r\left(U_{h}\right)=2 h-7(h \geq 7)$.

Proof. Let X and Y be two fragments in F, h_{1} and h_{2} denote the number of hexagons in X and Y, respectively. If $n_{i}=5$, the proof proceeds in five cases.

Case $1 n_{i}(X)=1$, and $n_{i}(Y)=3$, i.e., X has an internal vertex, but Y has three internal vertices.

Subcase 1.1 If $h_{1}=3$, then $X=M_{3}$.
Subcase 1.1.1 If $h_{2}=5$, i.e., $Y=Q_{5}$, then F is the f-benzenoids D_{1}, D_{2} or D_{3} (see Figure 14). It is easy to see that $r(F)=r\left(D_{1}\right)=8$, $r(F)=r\left(D_{2}\right)=7$ or $r(F)=r\left(D_{3}\right)=8$.

Subcase 1.1.2 If $h_{2} \geq 6$, then by Lemma 2.2, Y is not a convex benzenoid system, i.e., $b(Y) \geq 1$. In this case $b(F) \geq 3$, by equation (4) it follows that $r=2 h-n_{i}-b \leq 2 h-8<2 h-7$.

Subcase 1.2 If $h_{1} \geq 4$, then by Lemma $2.2, X$ is not a convex benzenoid system, i.e., $b(X) \geq 1$.

Subcase 1.2.1 If $h_{2}=5$, i.e., $Y=Q_{5}$. It is easy to see that $b(F) \geq 4$, consequently from equation (4) we deduce $r=2 h-n_{i}-b \leq 2 h-9<$ $2 h-7$.

Subcase 1.2.2 If $h_{2} \geq 6$, then by Lemma 2.2, Y is not a convex benzenoid system, i.e., $b(Y) \geq 1$. It is easy to see that $b(F) \geq 5$, consequently from equation (4) we deduce $r=2 h-n_{i}-b \leq 2 h-10<2 h-7$.

Case $2 n_{i}(X)=3$ and $n_{i}(Y)=1$, i.e., X has three internal vertices, but Y has one internal vertex.

Subcase 2.1 If $h_{1}=5$, then $X=Q_{5}$.
Subcase 2.1.1 If $h_{2}=3$, ie., $Y=M_{3}$, then F is the f-benzenoids D_{4}, D_{5}, D_{6} (see Figure 14), or D_{7} (as shown in Figure 15). $r(F)=r\left(D_{4}\right)=8$, $r(F)=r\left(D_{5}\right)=7, r(F)=r\left(D_{6}\right)=8, r(F)=r\left(D_{7}\right)=7$.

Subcase 2.1.2 If $h_{2} \geq 4$, by Lemma 2.2, Y is not a convex benzenoid system, i.e., $b(X) \geq 1$. In this case we have $b(F) \geq 4$, by equation (4) it follows that $r=2 h-n_{i}-b \leq 2 h-9<2 h-7$.

Subcase 2.2 If $h_{1} \geq 6$, by Lemma $2.2, X$ is not a convex benzenoid system, i.e., $b(X) \geq 1$.

Subcase 2.2.1 If $h_{2}=3$, ie., $Y=M_{3}$. In this case we have $b(F) \geq 4$, by equation (4) it follows that $r=2 h-n_{i}-b \leq 2 h-9<2 h-7$.

Subcase 2.2.2 f $h_{2} \geq 4$, by Lemma 2.2, Y is not a convex benzenoid system, i.e., $b(X) \geq 1$. In this case we have $b(F) \geq 5$, by equation (4) it follows that $r=2 h-n_{i}-b \leq 2 h-10<2 h-7$.

Case $3 n_{i}(X)=2$ and $n_{i}(Y)=2$, i.e., X and Y both have two internal vertices.

Subcase 3.1 If $h_{1}=4$, then $X=N_{4}$.
Subcase 3.1.1 If $h_{2}=4, F$ is the f -benzenoids D_{8} or D_{9} (as shown in Figure 15). $r(F)=r\left(D_{8}\right)=8$ or $r(F)=r\left(D_{9}\right)=7$.

Subcase 3.1.2 If $h_{2} \geq 5$, by Lemma 2.2, Y is not a convex benzenoid system, i.e., $b(X) \geq 1$. Then $b(F) \geq 4$, by equation (4) it follows that $r=2 h-n_{i}-b \leq 2 h-9<2 h-7$.

Subcase 3.2 If $h_{2}=4$, i.e., $Y=N_{4}$.
Subcase 3.2.1 If $h_{1}=4$, i.e., $X=N_{4} . F$ is the f-benzenoid D_{8} or D_{9} (as shown in Figure 15). $r(F)=r\left(D_{8}\right)=8$ or $r(F)=r\left(D_{9}\right)=7$.

Subcase 3.2.2 If $h_{1} \geq 5$, by Lemma 2.2, X is not a convex benzenoid system, i.e., $b(X) \geq 1$. In this case, $b(F) \geq 4$, by equation (4) it follows that $r=2 h-n_{i}-b \leq 2 h-9<2 h-7$.

Subcase 3.3 If $h_{1} \geq 5, h_{2} \geq 5$, by Lemma 2.2, neither X nor Y are convex benzenoid systems, i.e., $b(X) \geq 1$ and $b(Y) \geq 1$. In this case $b(F) \geq 5$, by equation (4) it follows that $r=2 h-n_{i}-b \leq 2 h-10<2 h-7$.

Case $4 n_{i}(X)=4$ and $n_{i}(Y)=0$, i.e., X has four internal vertex, Y is a catacondensed benzenoid system.

Subcase 4.1 If $h_{1}=6$, then X is the benzenoid system $(d),(e)$ or (f) in Figure 8.

Subcase 4.1.1 If $h_{2}=1, F$ is the f-benzenoids D_{10}, D_{11}, D_{12} (see Figure 16), D_{13} (see Figure 17) or U_{7} (see Figure 13). $r(F)=r\left(D_{10}\right)=6$, $r(F)=r\left(D_{11}\right)=6, r(F)=r\left(D_{12}\right)=6, r(F)=r\left(D_{13}\right)=6$ or $r(F)=r\left(U_{7}\right)=7$.

Subcase 4.1.2 If $h_{2} \geq 2$, then $b(F) \geq 2$, by equation (4) it follows that $r=2 h-n_{i}-b \leq 2 h-7$.

Subcase 4.2 If $h_{1} \geq 7$, by Lemma 2.4, X is not a convex benzenoid system, i.e., $b(Y) \geq 1$. In this case $b(F) \geq 3$, by equation (4) it follows that $r=2 h-n_{i}-b \leq 2 h-8<2 h-7$.

Case $5 n_{i}(X)=0$ and $n_{i}(Y)=4$, i.e., X is a catacondensed benzenoid system, Y has four internal vertex.

Subcase 5.1 If $h_{2}=6$, then Y is the benzenoid system $(d),(e)$ or (f) in Figure 8.

Subcase 5.1.1 If $h_{1}=2, F$ is the f-benzenoids $D_{14}, D_{15}, D_{16}, D_{17}, D_{18}$, D_{19}, D_{20} or D_{21} (see Figure 17). $r(F)=r\left(D_{14}\right)=7, r(F)=r\left(D_{15}\right)=$ $8, r(F)=r\left(D_{16}\right)=8, r(F)=r\left(D_{17}\right)=7, r(F)=r\left(D_{18}\right)=7$, $r(F)=r\left(D_{19}\right)=8, r(F)=r\left(D_{20}\right)=6$ or $r(F)=r\left(D_{21}\right)=6$ 。

Subcase 5.1.2 If $h_{1} \geq 3$, then $b(F) \geq 4$, by equation (4) it follows that $r=2 h-n_{i}-b \leq 2 h-9<2 h-7$.

Subcase 5.2 If $h_{2} \geq 7$, by Lemma 2.4, Y is not a convex benzenoid system, i.e., $b(Y) \geq 1$.

Subcase 5.2.1 If $h_{1}=2$, i.e., $X=L_{2}$. In this case $b(F) \geq 4$, by equation (4) it follows that $r=2 h-n_{i}-b \leq 2 h-9<2 h-7$.

Subcase 5.2.2 If $h_{1} \geq 3$, then $b(F) \geq 5$, by equation (4) it follows that $r=2 h-n_{i}-b \leq 2 h-10<2 h-7$.

This completes the proof.
Now we can find the f -benzenoids with maximal number of inlets in Γ_{m}, the set of f -benzenoids with m edges. We recall that $F L_{h}$ is the f -linear chain with h hexagons.

Theorem 2.3 Let $F \in \Gamma_{m}$. Then

1. If $m \equiv 0(\bmod 5)$, then $r(F) \leq \frac{2 m-35}{5}=r\left(U_{\frac{m}{5}}\right)$;
2. If $m \equiv 1(\bmod 5)$, then $r(F) \leq \frac{2 m-32}{5}=r\left(Z_{\frac{m-1}{5}}\right)$;
3. If $m \equiv 2(\bmod 4)$, then $r(F) \leq \frac{2 m-29}{5}=r\left(R_{\frac{m-2}{5}}\right)$;
4. If $m \equiv 3(\bmod 5)$, then $r(F) \leq \frac{2 m-26}{5}=r\left(G_{\frac{m-3}{5}}\right)$;

Figure 14: f-benzenoids $D_{1}, D_{2}, D_{3}, D_{4}$ and D_{5}

Figure 15: f-benzenoids D_{7}, D_{8} and D_{9}

Figure 16: f-benzenoids D_{10}, D_{11} and D_{12}

Figure 17: f-benzenoids $D_{13}, D_{14}, D_{15}, D_{16}, D_{17}, D_{18}, D_{19}, D_{20}$ and D_{21}
5. If $m \equiv 4(\bmod 5)$, then $r(F) \leq \frac{2 m-23}{5}=r\left(F L_{\frac{m-4}{5}}\right)$.

Proof. We know by equation (3) that

$$
\left\lceil\frac{1}{5}(m-4)\right\rceil \leq h(F) \leq m-1-\left\lceil\frac{1}{3}(2 m+\sqrt{4 m-31})\right\rceil .
$$

1. If $m \equiv 0(\bmod 5)$, then $\left\lceil\frac{1}{5}(m-4)\right\rceil=\frac{m}{5}$. If $h=\frac{m}{5}$, then by Lemma 1.1 (c)

$$
m=5 h(F)+5-n_{i}(F)=5\left(\frac{m}{5}\right)+5-n_{i}(F)=m+5-n_{i}(F),
$$

and so $n_{i}(F)=5$. Now we can apply Theorem 2.2, to conclude that $r(F) \leq$ $r\left(U_{\frac{m}{5}}\right)$ and we are done. So assume now that $h(F) \geq \frac{m}{5}+1$, then by equality (5) and the fact that $b(F) \geq 2$

$$
\begin{aligned}
r(F)= & m-5-3 h(F)-b(F) \leq m-5-3\left(\frac{m}{5}+1\right)-b(F) \\
& \leq \frac{2 m}{5}-10=\frac{2 m-50}{5} \leq \frac{2 m-35}{5}=r\left(U_{\frac{m}{5}}\right) .
\end{aligned}
$$

2. If $m \equiv 1(\bmod 5)$, then $\left\lceil\frac{1}{5}(m-4)\right\rceil=\frac{m-1}{5}$. If $h(F)=\frac{m-1}{5}$, then by Lemma 1.1 (c)

$$
m=5 h(F)+5-n_{i}(F)=5\left(\frac{m-1}{5}\right)+5-n_{i}(F)=m+4-n_{i}(F),
$$

and so $n_{i}(F)=4$. Then $r(F) \leq r\left(Z_{\frac{m-1}{5}}\right)$ by part 4 of Lemma 2.5. Otherwise $h(F) \geq \frac{m-1}{5}+1$, then by equality (5) and the fact that $b(F) \geq 2$

$$
\begin{aligned}
r(F) & =m-5-3 h(F)-b(F) \leq m-5-3\left(\frac{m-1}{5}+1\right)-b(F) \\
& \leq \frac{2 m+3}{5}-10=\frac{2 m-47}{5} \leq \frac{2 m-32}{5}=r\left(Z_{\frac{m-1}{5}}\right) .
\end{aligned}
$$

3. If $m \equiv 2(\bmod 5)$, then $\left\lceil\frac{1}{5}(m-4)\right\rceil=\frac{m-2}{5}$. If $h(F)=\frac{m-2}{5}$, then by Lemma 1.1 (c)

$$
m=5 h(F)+5-n_{i}(F)=5\left(\frac{m-2}{5}\right)+5-n_{i}(F)=m+3-n_{i}(F),
$$

and so $n_{i}(F)=3$. It follows from Lemma 2.5 part 3 that $r(F) \leq r\left(R_{\frac{m-2}{5}}\right)$. So assume now that $h(F) \geq \frac{m-2}{5}+1$, then by equation (5) and the fact that $b(F) \geq 2$

$$
r(F)=m-5-3 h(F)-b(F) \leq m-5-3\left(\frac{m-2}{5}+1\right)-b(F)
$$

$$
\leq \frac{2 m+6}{5}-10=\frac{2 m-44}{5} \leq \frac{2 m-29}{5}=r\left(R_{\frac{m-2}{5}}\right) .
$$

4. If $m \equiv 3(\bmod 5)$, then $\left\lceil\frac{1}{5}(m-4)\right\rceil=\frac{m-3}{5}$. If $h(F)=\frac{m-3}{5}$, then by Lemma 1.1 (c)

$$
m=5 h(F)+5-n_{i}(F)=5\left(\frac{m-3}{5}\right)+5-n_{i}(F)=m+2-n_{i}(F),
$$

and so $n_{i}(F)=2$. By Lemma 2.5 part 2, to conclude that $r(F) \leq r\left(G_{\frac{m-3}{5}}\right)$ and we are done. So assume now that $h(F) \geq \frac{m-3}{5}+1$, then by equality (5) and the fact that $b(F) \geq 2$

$$
\begin{aligned}
r(F) & =m-5-3 h(F)-b(F) \leq m-5-3\left(\frac{m-3}{5}+1\right)-b(F) \\
& \leq \frac{2 m+9}{5}-10=\frac{2 m-41}{5} \leq \frac{2 m-26}{5}=r\left(G_{\frac{m-3}{5}}\right) .
\end{aligned}
$$

5. If $m \equiv 4(\bmod 5)$, then $\left\lceil\frac{1}{5}(m-4)\right\rceil=\frac{m-4}{5}$. Since $h \geq \frac{m-4}{5}$, then by equation (5) and the fact that $b(F) \geq 2$

$$
\begin{aligned}
r(F)= & m-5-3 h(F)-b(F) \leq m-5-\frac{3 m-12}{5}-b(F) \\
& \leq \frac{2 m+12}{5}-7=\frac{2 m-23}{5}=r\left(F L_{\frac{m-4}{5}}\right) .
\end{aligned}
$$

This completes the proof.

3 Extremal values of VDB topological indices over Γ_{m}

In this section, we will try to find the extremal values of VDB topological indices over Γ_{m}.

Let $T I$ be a VDB topological index induced by the real nonnegative numbers $\left\{\psi_{i j}\right\}(1 \leq i \leq j \leq n-1)$. In the particular case that F is an f-benzenoid, only vertices of degree 2 and 3 appear and so equation (1) reduces to

$$
\begin{equation*}
T I(F)=m_{22} \psi_{22}+m_{23} \psi_{23}+m_{33} \psi_{33} \tag{6}
\end{equation*}
$$

By Lemmas 1.1 and 1.2, we get

$$
\begin{equation*}
T I(F)=\psi_{22} m+3\left(\psi_{33}-\psi_{22}\right) h+\left(2 \psi_{23}-\psi_{22}-\psi_{33}\right) r, \tag{7}
\end{equation*}
$$

If $U, V \in \Gamma_{m}$ then clearly

$$
\begin{gather*}
T I(U)-T I(V)=3\left(\psi_{33}-\psi_{22}\right)(h(U)-h(V)) \\
+\left(2 \psi_{23}-\psi_{22}-\psi_{33}\right)(r(U)-r(V)) . \tag{8}
\end{gather*}
$$

For convenience, we set $s=\psi_{33}-\psi_{22}, q=2 \psi_{23}-\psi_{22}-\psi_{33}$.

Theorem 3.1 Let TI be a VDB topological index of the form (7) induced by the nonnegative real numbers $\left\{\psi_{22}, \psi_{23}, \psi_{33}\right\}$. Assume that $s \leq 0$ and $q \geq 0$ (resp. $s \geq 0$ and $q \leq 0$). Then the maximal(resp. minimal) TI-value over Γ_{m} is attained in:

1. $U_{\frac{m}{5}}$ if $m \equiv 0(\bmod 5)$;
2. $Z_{\frac{m-1}{5}}$ if $m \equiv 1(\bmod 5)$;
3. $R_{\frac{m-2}{5}}$ if $m \equiv 2(\bmod 4)$;
4. $G_{\frac{m-3}{5}}$ if $m \equiv 3(\bmod 5)$;
5. $F L_{\frac{m-4}{5}}$ if $m \equiv 4(\bmod 5)$.

Proof. Let $F \in \Gamma_{m}$. Note that by equation (3)

$$
h(F) \geq\left\lceil\frac{1}{5}(m-4)\right\rceil= \begin{cases}h\left(U_{\frac{m}{5}}\right), & \text { if } m \equiv 0(\bmod 5) \\ h\left(Z_{\frac{m-1}{5}}^{5},\right. & \text { if } m \equiv 1(\bmod 5) \\ h\left(R_{\frac{m-2}{5}}\right), & \text { if } m \equiv 2(\bmod 5) \\ h\left(G_{\frac{m-3}{5}}^{5}\right), & \text { if } m \equiv 3(\bmod 5) \\ h\left(F L_{\frac{m-4}{5}}\right), & \text { if } m \equiv 4(\bmod 5)\end{cases}
$$

Hence by Theorem 2.3 the f-benzenoids $U_{\frac{m}{5}}, Z_{\frac{m-1}{5}}, R_{\frac{m-2}{5}}, G_{\frac{m-3}{5}}$ and $F L_{\frac{m-4}{5}}$ have simultaneously maximal number of inlets and minimal number of hexagons over the set Γ_{m} of f-benzenoids with m edges. Hence the result follows from equation (8) and the signs of q and s.
This completes the proof.

Example 1 The following Table 1 contains the values of s and q for several well-known topological indices:

Table 1: Values of s and q for six well-known topological indices

	$i j$	$\frac{1}{\sqrt{i j}}$	$\frac{2 \sqrt{i j}}{i+j}$	$\frac{1}{\sqrt{i+j}}$	$\frac{(i j)^{3}}{(i+j-2)^{3}}$	$\sqrt{\frac{i+j-2}{i j}}$
q	-1	-0.0168	-0.0404	-0.0138	-3.390	0.040
s	5	-0.1667	0	-0.091	3.390	-0.040

Hence, by Theorems 2.3 and 3.1 we can deduce in the case of the second Zagreb index, geometric-arithmetic index and the augmented Zagreb index we can determine the minimal value of $T I$, and for the atom-bond-connectivity index we can determine the maximal value of $T I$.

If F is an f -benzenoid with m edges, then from the equations (4), (7) and Lemma 1.1(c) we deduce

$$
\begin{align*}
T I(F)= & \left(2 \psi_{23}-\psi_{33}\right) m+6\left(\psi_{33}-\psi_{23}\right) h-\left(2 \psi_{23}-\psi_{22}-\psi_{33}\right) b \tag{9}\\
& -5\left(2 \psi_{23}-\psi_{22}-\psi_{33}\right) .
\end{align*}
$$

Consequently, for f-benzenoids $U, V \in \Gamma_{m}$

$$
\begin{align*}
& T I(U)-T I(V)=6\left(\psi_{33}-\psi_{23}\right)(h(U)-h(V)) \tag{10}\\
&+\left(-2 \psi_{23}+\psi_{22}+\psi_{33}\right)(b(U)-b(V)) .
\end{align*}
$$

Set $u=6\left(\psi_{33}-\psi_{23}\right)$ and keep the notation for q introduced earlier. Then

$$
\begin{equation*}
T I(U)-T I(V)=u(h(U)-h(V))-q(b(U)-b(V)) . \tag{11}
\end{equation*}
$$

As we can see this expression only depends on the number of hexagons and the number of bay regions. We know from equation (3) that the maximal value possible of hexagons in a f -benzenoid with m edges is

$$
m-1-\left\lceil\frac{1}{3}(2 m+\sqrt{4 m-31})\right\rceil,
$$

and this occurs precisely in the f-spiral hexagon system F^{*}.
By the structure of the f -spiral benzenoid system F^{*}, we know that $n_{i}\left(F^{*}\right)=2 h-\lceil\sqrt{12(h-1)-3}\rceil$. But, $b\left(F^{*}\right)$ may not always equal to 2 . It is obvious that if fragment X of F^{*} satisfies that $b(X)=0$, i.e., X is a convex benzenoid system, we can get a f -benzenoid F^{*} such that $b\left(F^{*}\right)=2$ or 3 .

But, we know that the fragment X constructed by the "spiral" method are not necessarily convex (and may have a single bay, i.e., $B=1$). So, it is naturally for us to find a method to transform a spiral benzenoid system into a convex benzenoid system with equal number of internal vertices.

The structure of a convex benzenoid system W can be specified as $W=H\left(a_{1}, a_{2}, a_{3}, a_{4}, a_{5}, a_{6}\right)$ for positive integers $a_{1}, a_{2}, a_{3}, a_{4}, a_{5}, a_{6}$. Their general form is depicted in Figure 18. It has been demonstrated [7] that W is completely determined by the parameters $a_{1}, a_{2}, a_{3}, a_{4}$, since it must be

$$
a_{5}=a_{1}+a_{2}-a_{4}, \quad a_{6}=a_{3}+a_{4}-a_{1} .
$$

Fortunately, the authors in [57] precisely determined necessary and sufficient conditions for the existence of convex benzenoid systems with maximal number of internal vertices.

Lemma 3.1 [57] Let h be a positive integer. The following conditions are equivalent:

Figure 18: The general form of a convex benzenoid system (CHS). The parameters $a_{i} \geq 1, i=1,2, \cdots, 6$, count the hexagons on the respective side of CHS.
(a) There exists a convex benzenoid system W with h hexagons satisfying

$$
n_{i}(W)=2 h+1-\lceil\sqrt{12 h-3}\rceil ;
$$

(b) There exist a set of positive integers $a_{1}, a_{2}, a_{3}, a_{4}$ which are solutions of the system of equation

$$
\left.\begin{array}{c}
h=a_{1} a_{3}+a_{1} a_{4}+a_{2} a_{3}+a_{2} a_{4}-a_{2}-a_{3} \tag{12}\\
-\frac{1}{2} a_{1}\left(a_{1}+1\right)-\frac{1}{2} a_{4}\left(a_{4}+1\right)+1 \\
\lceil\sqrt{12 h-3}\rceil=a_{1}+2 a_{2}+2 a_{3}+a_{4}-3
\end{array}\right\}
$$

If the system of equation (12) has a solution for a positive integer h, then there exists a convex benzenoid system W such that $n_{i}(W)=n_{i}\left(T_{h}\right)$. But, Rada et al. [57] show that not for every positive integer h there is a solution for the system of equation (12). As a byproduct, they show that given a positive integer h, the existence of convex benzenoid systems with maximal number of internal vertices imply the existence of a solution to the following Diophantine equation

$$
21 x^{2}+3 y^{2}+z^{2}=28\left(\lceil\sqrt{12 h-3}\rceil^{2}-(12 h-3)\right)
$$

This gives a method to find values of h for which there are no convex benzenoid systems which satisfy $n_{i}(W)=n_{i}\left(T_{h}\right)$.

We now return to the study of $T I$ of f -benzenoids. If the following system

$$
\left.\begin{array}{c}
h-1=a_{1} a_{3}+a_{1} a_{4}+a_{2} a_{3}+a_{2} a_{4}-a_{2}-a_{3} \tag{13}\\
-\frac{1}{2} a_{1}\left(a_{1}+1\right)-\frac{1}{2} a_{4}\left(a_{4}+1\right)+1 \\
\lceil\sqrt{12(h-1)-3}\rceil=a_{1}+2 a_{2}+2 a_{3}+a_{4}-3 \\
\exists a_{i} \in\left\{a_{1}, a_{2}, a_{3}, a_{4}, a_{5}, a_{6}\right\}, a_{i}=2
\end{array}\right\}
$$

Figure 19: An f-spiral benzenoid F_{1}^{*} whose fragment X is a convex spiral benzenoid system W_{h-1}
has a solution $\left\{a_{1}, a_{2}, a_{3}, a_{4}\right\}$ for a positive integer $h-1$, then there exists a convex spiral benzenoid system W_{h-1} such that

$$
n_{i}\left(W_{h-1}\right)=2(h-1)+1-\lceil\sqrt{12(h-1)-3}\rceil .
$$

Note that element a_{i} in the set $\left\{a_{1}, a_{2}, a_{3}, a_{4}, a_{5}, a_{6}\right\}$ equal to 2 , we let W_{h-1} be the X fragment, and it is obvious that W_{h-1} possess only one fissure on the side of a_{i}. Let the three vertices of this fissure be u, w, v in Figure 2, and let Y be a single hexagon, then we get an f -spiral benzenoid F_{1}^{*} with h hexagons such that $n_{i}\left(F_{1}^{*}\right)=2 h-\lceil\sqrt{12(h-1)-3}\rceil$ and $b\left(F_{1}^{*}\right)=2$. (as shown in Figure 19)

Theorem 3.2 Let $h-1$ be a positive integer such that the system of equation (13) has a solution, and $m=3 h+5+\lceil\sqrt{12(h-1)-3}\rceil$. Then

1. If $u \geq 0$ and $q \geq 0$, then TI reaches its maximal value in F_{1}^{*} over Γ_{m};
2. If $u \leq 0$ and $q \leq 0$, then $T I$ reaches its minimal value in F_{1}^{*} over Γ_{m}.

Proof. Since $n_{i}\left(F_{1}^{*}\right)=2 h-\lceil\sqrt{12(h-1)-3}\rceil$. Then

$$
n\left(F_{1}^{*}\right)=4 h+5-(2 h-\lceil\sqrt{12(h-1)-3}\rceil)=2 h+5+\lceil\sqrt{12(h-1)-3}\rceil
$$

and so F_{1}^{*} has m edges. Also we know by hypothesis that $b\left(F_{1}^{*}\right)=2$. On the other hand, $m=3 h+5+\lceil\sqrt{12(h-1)-3}\rceil$ implies that

$$
h=m-1-\left\lceil\frac{1}{3}(2 m+\sqrt{4 m-31})\right\rceil .
$$

Hence by equations (3) and (11) it follows that for any f -benzenoid $F \in \Gamma_{m}$

$$
T I(F)-T I\left(F_{1}^{*}\right)=u\left(h(F)-h\left(F_{1}^{*}\right)\right)-q\left(b(F)-b\left(F_{1}^{*}\right)\right)
$$

$$
=u\left[h(F)-\left(m-1-\left\lceil\frac{1}{3}(2 m+\sqrt{4 m-31})\right\rceil\right)\right]-q[b(F)-2]
$$

It is easy to see that $b(F) \geq 2$. It is clear now that if $u \geq 0$ and $q \geq 0$ then $T I(F)-T I\left(F_{1}^{*}\right) \leq 0$ which implies that F_{1}^{*} reaches its maximal value over Γ_{m}. Similarly, if $u \leq 0$ and $q \leq 0$ then $T I(F)-T I\left(F_{1}^{*}\right) \geq 0$ which implies that F_{1}^{*} reaches its minimal value over Γ_{m}.
This completes the proof.

Example 2 The following Table 2 contains the values of u and q for several well-known topological indices:

Table 2: Values of u and q for six well-known topological indices

	$i j$	$\frac{1}{\sqrt{i j}}$	$\frac{2 \sqrt{i j}}{i+j}$	$\frac{1}{\sqrt{i+j}}$	$\frac{(i j)^{3}}{(i+j-2)^{3}}$	$\sqrt{\frac{i+j-2}{i j}}$
q	-1	-0.0168	-0.0404	-0.0138	-3.390	0.040
u	18	-0.449	0.121	-0.233	20.344	-0.242

Hence, by Theorem 3.1 we can deduce in the case of the Randć index and the the sum-connectivity index we can determine the minimal value of TI in f-spiral benzenoid F_{1}^{*} for those h such that equation (13) holds.

Example 3 Consider the generalized Randć index determined by the numbers $\psi_{i j}=(i j)^{\alpha}$, where $\alpha \in \mathbb{R}$. Note that

$$
q=2\left(6^{\alpha}\right)-4^{\alpha}-9^{\alpha}=-4^{\alpha}\left(\left(\frac{3}{2}\right)^{\alpha}-1\right)^{2} \leq 0
$$

for all $\alpha \in \mathbb{R}$. Moreover, $s=9^{\alpha}-4^{\alpha} \geq 0$ if and only if $\alpha \geq 0$ if and only if $u=6\left(9^{\alpha}-6^{\alpha}\right) \geq 0$. Hence for all $\alpha \geq 0$ the minimal value of the generalized Randić index is determined by Theorem 3.1 and for all $\alpha \leq 0$, the minimal value is attained by the f-spiral benzenoid F_{1}^{*} for those h such that equation (13) holds.

4 Conclusions

In this work we determine extremal values for VDB topological indices over the set Γ_{m} of f -benzenoids with a equal number of edges. As future work, it would be also interesting to consider the values of other topological indices of f-benzenoids, such as Wiener index [33] and Wiener polarity index [51], the Harary index [1], graph energy [31, 36, 46, 47, 63], Randić energy [11], incidence energy [3], matching energy [50], energy of matrix [18], HOMO-LUMO index [45], entropy measures [4, 5], molecular identification numbers [12].

Funding Information

This work was supported by the Ningbo Natural Science Foundation (No. 2021J234).

References

[1] M. Azari, A. Iranmanesh, Harary index of some nano-structures, MATCH Commun. Math. Comput. Chem. 71 (2014) 373-382.
[2] L. Berrocal, A. Olivieri, J. Rada, Extremal values of VDB topological indices over hexagonal systems with fixed number of vertices. Appl. Math. Comput. 243 (2014) 176-183.
[3] S. B. Bozkurt, D. Bozkurt, On incidence energy, MATCH Commun. Math. Comput. Chem. 72 (2014) 215-225.
[4] S. Cao, M. Dehmer, Y. Shi, Extremality of degree-based graph entropies, Inform. Sciences 278 (2014) 22-33.
[5] Z. Chen, M. Dehmer, F. Emmert-Streib, Y. Shi, Entropy Bounds for Dendrimers, Appl. Math. Comput. 242 (2014) 462-472.
[6] E. Clar The aromatic sextet, Wiley, London, 1972.
[7] R. Cruz, I. Gutman, J. Rada, Convex hexagonal systems and their topological indices, MATCH Commun. Math. Comput. Chem. 68 (2012) 97-108.
[8] R. Cruz, H. Giraldo, J. Rada, Extremal values of vertex-degree topological indices over hexagonal systems, MATCH Commun. Math. Comput. Chem. 70 (2) (2013) 501-512.
[9] S.J. Cyvin, Graph-theoretical studies on fluoranthenoids and fluorenoids. Part 1, J. Mol. Struc. (Theochem) 262 (1992) 219-231.
[10] S.J. Cyvin, I. Gutman. Kekulé Structures in Benzenoid Hydrocarbons. Lec. Notes in Chem. Verlag: Springer Berlin (Deutschland), 1988.
[11] K. Das, S. Sorgun, On Randić energy of graphs, MATCH Commun. Math. Comput. Chem. 72 (2014) 227-238.
[12] M. Dehmer, M. Grabner, The discrimination power of molecular identification numbers revisited, MATCH Commun. Math. Comput. Chem. 69 (2013) 785-794.
[13] H. Deng, J. Yang, F. Xia, A general modeling of some vertex-degree based topological indices in benzenoid systems and phenylenes, Comput. Math. Appl. 61 (2011) 3017-3023.
[14] J. Devillers, A.T. Balaban, Topological Indices and Related Descriptors in QSAR and QSPR, Gordon \& Breach, NewYork, 1999.
[15] E. Estrada, L. Torres, L. Rodríguez, I. Gutman, An atom-bond connectivity index: modelling the enthalpy of formation of alkanes, Indian J. Chem. 37A (1998) 849-855.
[16] B. Furtula, A. Graovac, D. Vukičević. Augmented Zagreb index. J. Math. Chem. 48 (2010) 370-380
[17] B. Furtula, I. Gutman, M. Dehmer, On structure-sensitivity of degreebased topological indices, Appl. Math. Comput. 219 (2013) 8973-8978.
[18] M. Ghorbani, M. Faghani, A. Ashrafi, R. Heidari, A. Graovac, An upper bound for energy of matrices associated to an infinite class of fullerenes, MATCH Commun. Math. Comput. Chem. 71 (2014) 341-354.
[19] V. Gineityte, Perturbative analogue for the concept of conjugated circuits in benzenoid hydrocarbons, MATCH Commun. Math. Comput. Chem. 72 (2014) 39-73.
[20] I. Gutman. Kekulé Structures in Fluoranthenes. Z. Naturforsch. A, 65(5) (2010) 473-476.
[21] I. Gutman, On discriminativity of vertex degree based indices, Iranian J. Math. Chem. 3 (2) (2012) 95-101.
[22] I. Gutman, B. Furtula, Vertex-degree-based molecular structure descriptors of benzenoid systems and phenylenes, J. Serb. Chem. Soc. 77 (8) (2012) 1031-1036.
[23] I. Gutman, O. Araujo, D. A. Morales. Bounds for the Randić connectivity index. J. Chem. Inf. Comput. Sci. 40 (2000) 572-579.
[24] I. Gutman, J. Durdević. Fluoranthene and its congeners - A graph theoretical study. MATCH Commun. Math. Comput. Chem. 60 (2008) 659-670.
[25] I. Gutman and S.J. Cyvin. Introduction to the Theory of benzenoid Hydrocarbons. Spriger-Verlag, Berlin, 1990.
[26] I. Gutman, B. Furtula (Eds.), Recent results in the theory of Randić index, University of Kragujevac, Kragujevac, 2008.
[27] I. Gutman, B. Furtula (Eds.), Novel molecular structure descriptorstheory and applications I, University of Kragujevac, Kragujevac, 2010.
[28] I. Gutman, N. Trinajstić , Graph theory and molecular orbitals. Total p-electron energy of alternant hydrocarbons, Chem. Phys. Lett. 17 (1972) 535-538.
[29] F. Harary, H. Harborth, Extremal animals, J. Combin. Inf. Sys. Sci. 1 (1976) 1-8.
[30] S. Hosseini, M. Ahmadi, I. Gutman, Kragujevac trees with minimal atom-bond connectivity index, MATCH Commun. Math. Comput. Chem. 71 (2014) 5-20.
[31] S. Ji, X. Li, Y. Shi, The extremal matching energy of bicyclic graphs, MATCH Commun. Math. Comput. Chem. 70 (2013) 697-706.
[32] V. Kraus, M. Dehmer, M. Schutte, On sphere-regular graphs and the extremality of information-theoretic network measures, MATCH Commun. Math. Comput. Chem. 70 (2013) 885-900.
[33] M. Knor, B. Lužar, R. Skrekovski, I. Gutman, On Wiener index of common neighborhood graphs. MATCH Commun. Math. Comput. Chem. 72 (2014) 321-332.
[34] J. Kovic, How to obtain the number of hexagons in a benzenoid system from its boundary edges code. MATCH Commun. Math. Comput. Chem. 72 (2014) 27-38.
[35] J. Kovic, T. Pisanski, A.T. Balaban, P.W. Fowler, On symmetries of benzenoid systems. MATCH Commun. Math. Comput. Chem. 72 (2014) 3-26.
[36] F. Li, Q. Ye, H. Broersma, Some new bounds for the inverse sum indeg energy of graphs. Axioms 11(5)(2022) 243. https://doi.org/10.3390/axioms11050243
[37] F. Li, X. Li, H. Broersma, Spectral properties of inverse sum indeg index of graphs. J. Math. Chem. 58(2020) 2108-2139.
[38] F. Li, Q. Ye, H. Broersma, R. Ye, Sharp upper bounds for augmented zagreb index of graphs with fixed parameters, MATCH Commun. Math. Comput. Chem. 85 (2021) 257-274.
[39] F. Li, Q. Ye, H. Broersma, R. Ye, X. Zhang, Extremality of VDB topological indices over f-benzenoids with given order, Appl. Math. Comput. 393 (2021) 125757.
[40] F. Li, H. Broserma, J. Rada and Y. Sun, Extremal benzenoid systems for two modified versions of the Randić index. Appl. Math. Comput. 337 (2018) 14-24.
[41] F. Li, Q. Ye, Second order Randić index of fluoranthene-type benzenoid systems. Appl. Math. Comput. 268 (2015) 534-546.
[42] F. Li, Q. Ye, The general connectivity indices of fluoranthene-type benzenoid systems. Appl. Math. Comput. 273 (2016) 897-911.
[43] F. Li, Q. Ye, J. Rada, The augmented Zageb indices of fluoranthenetype benzenoid systems. Bull. Malays. Math. Sci. Soc. 42(3) (2019) 1119-1141.
[44] X. Li, I. Gutman, Mathematical aspects of Randić-type molecular structure descriptors, University of Kragujevac, Kragujevac, 2006.
[45] X. Li, Y. Li, Y. Shi, I. Gutman, Note on the HOMO-LUMO index of graphs, MATCH Commun. Math. Comput. Chem. 70 (2013) 85-96.
[46] X. Li, Y. Shi, I. Gutman, Graph Energy, Springer, 2012, New York.
[47] X. Li, Y. Shi, M. Wei, J. Li, On a conjecture about tricyclic graphs with maximal energy, MATCH Commun. Math. Comput. Chem. 72 (2014) 183-214.
[48] X. Li, Y. Shi, L. Zhong. Minimum general Randić index on chemical trees with given order and number of pendent vertices. MATCH Commun. Math. Comput. Chem. 60 (2008) 539-554.
[49] X. Li, Y. Yang, Sharp bounds for the general Randić index, MATCH Commun. Math. Comput. Chem. 51 (2004) 155-166.
[50] H. Li, Y. Zhou, L. Su, Graphs with extremal matching energies and prescribed parameters, MATCH Commun. Math. Comput. Chem. 72 (2014) 239-248.
[51] J. Ma, Y. Shi, J. Yue, The Wiener polarity index of graph products, Ars Combin. 116 (2014) 235-244.
[52] J. Palacios, A resistive upper bound for the ABC index, MATCH Commun. Math. Comput. Chem. 72 (2014) 709-713.
[53] J. Rada. Bounds for the Randic index of catacondensed systems. Util. Math. 62 (2002) 155-162.
[54] J. Rada, Vertex-degree-based topological indices of hexagonal systems with equal number of edges. Appl. Math. Comput. 296 (2017) 270-276.
[55] J. Rada, O. Araujo and I. Gutman. Randić index of benzenoid systems and phenylenes. Croat. Chem. Acta. 74 (2004) 225-235.
[56] J. Rada, R. Cruz, I. Gutman, Vertex-degree-based topological indices of catacondensed hexagonal systems, Chem. Phys. Lett. 572 (2013) 154157.
[57] J. Rada, R. Cruz, I. Gutman, Benzenoid systems with extremal vertex-degree-based topological indices, MATCH Commun. Math. Comput. Chem. 72 (2014) 125-136.
[58] M. Randić, On characterization of molecular branching, J. Am. Chem. Soc. 97 (1975) 6609-6615.
[59] R. Todeschini, V. Consonni, Molecular Descriptors for Chemoinformatics (2 volumes), Wiley-VCH, Weinheim, Germany, 2009.
[60] D. Vukičević, B. Furtula, Topological index based on the ratios of geometrical and arithmetical means of end-vertex degrees of edges, J. Math. Chem. 46 (2009) 1369-1376.
[61] R. Wu, H. Deng, The General Connectivity Indices of Benzenoid Systems and Phenylenes, MATCH Commun. Math. Comput. Chem. 64(2010) 459-470.
[62] Q. Ye, F. Li, R. Ye, Extremal values of the general Harmonic index and general sum-connectivity index of f-benzenoids, Polycycl. Aroma. Comp. (2020) https://doi.org/10.1080/10406638.2020.1852275.
[63] Q. Ye, F. Li, ISI-equienergetic graphs. Axioms. 11(8)(2022) 372. https://doi.org/10.3390/axioms11080372.
[64] L. Zhong, The harmonic index for graphs, Appl. Math. Lett. 25 (2012) 561-566.
[65] B. Zhou, N. Trinajstić, On a novel connectivity index, J. Math. Chem. 46 (2009) 1252-1270.

