Extremal values of vertex-degree-based topological indices over fluoranthene-type benzenoid systems with equal number of edges

fengwei Li¹, Qingfang Ye¹, and Juan Rada²

¹Ningbo University of Finance & Economics ²Universidad de Antioquia

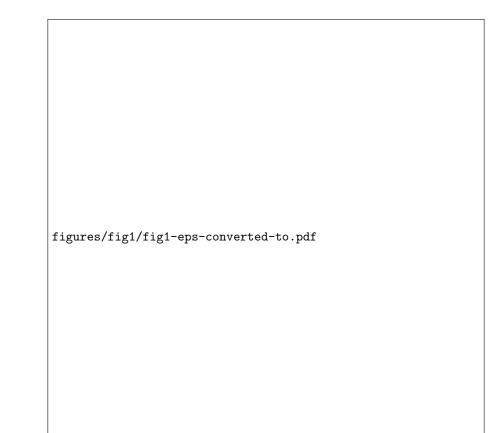
September 5, 2022

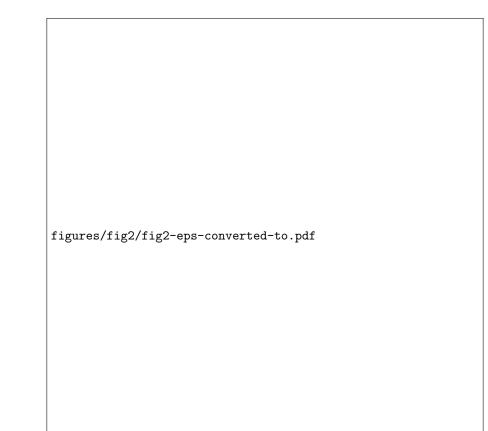
Abstract

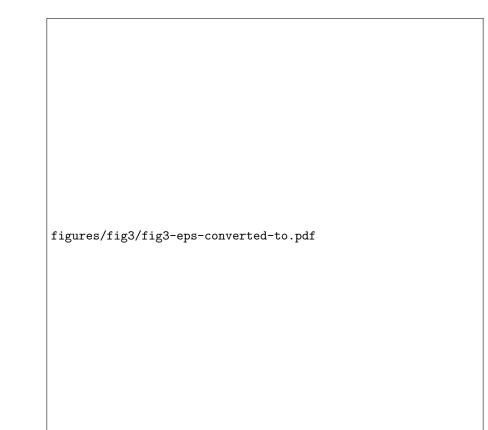
Let G be a graph with n vertices. A vertex-degree-based topological index is defined from a set of real numbers $\{|ps|_{ij}|\$ as $TI(G)=\sum_{i=1}^{i_i} |eq_i|eq_n-1]m_{ij}|psi_{ij},$ where m_{ij} is the number of edges of G connecting a vertex of degree i with a vertex of degree i. Many of the well-known topological indices are particular cases of this expression, including all Randi'{c}-type connectivity indices. In this work we determine extremal values for TI over the set of fluoranthene-type benzenoid systems with a fixed number of edges. The main idea consists in constructing fluoranthene-type benzenoid systems with maximal number of inlets in $Gamma_{m}^{m}$ which have simultaneously minimal number of hexagons, where $Gamma_{m}^{m}$ is the set of fluoranthene-type benzenoid systems with exactly m(m eq19) edges.

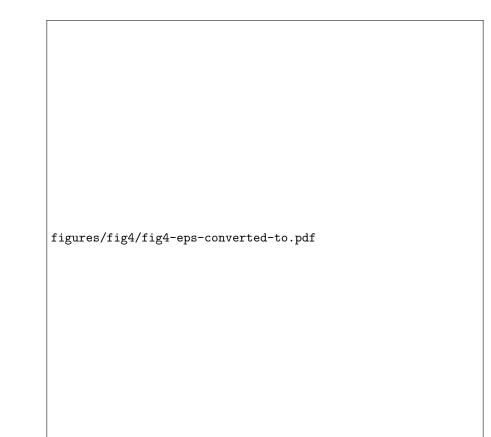
Hosted file

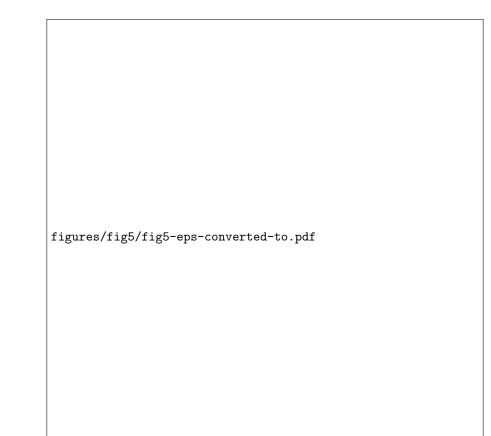
35.tex available at https://authorea.com/users/505683/articles/584698-extremal-values-of-vertex-degree-based-topological-indices-over-fluoranthene-type-benzenoid-systems-with-equal-number-of-edges

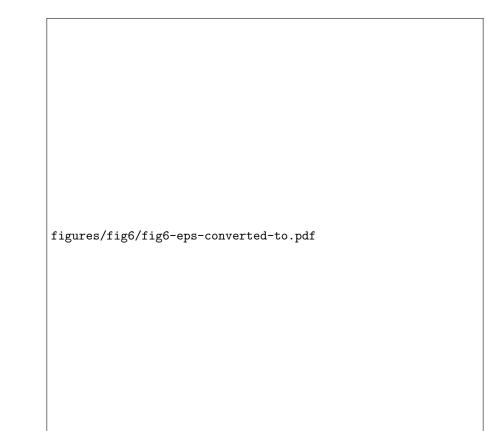


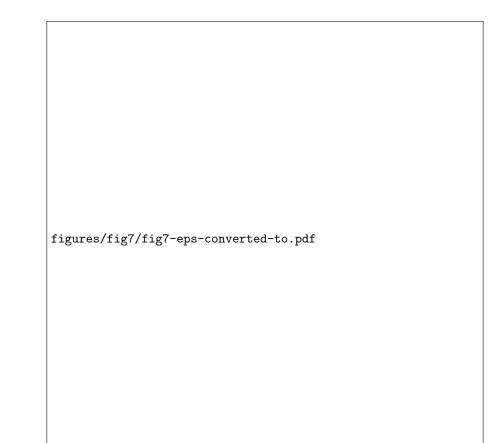


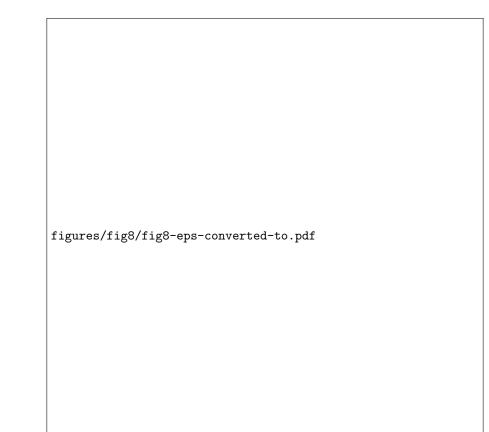


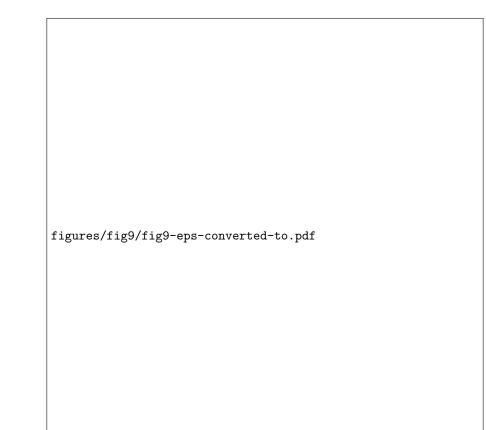


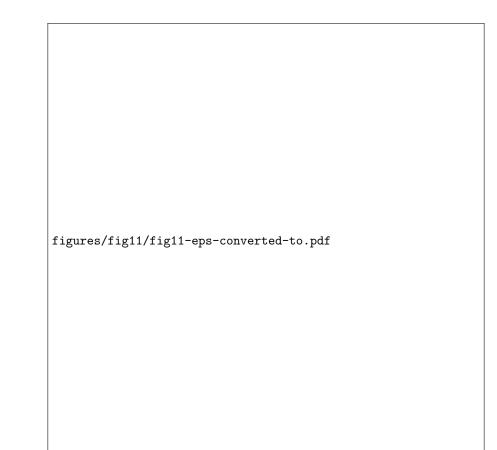




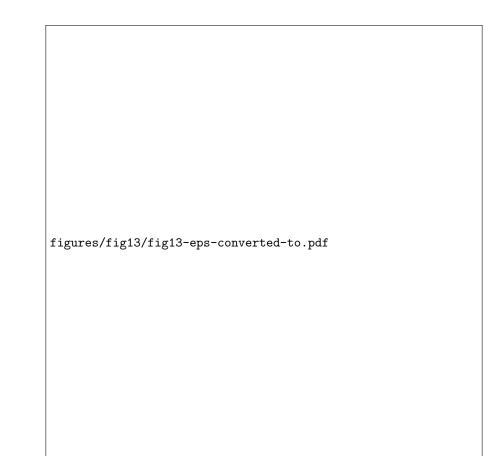




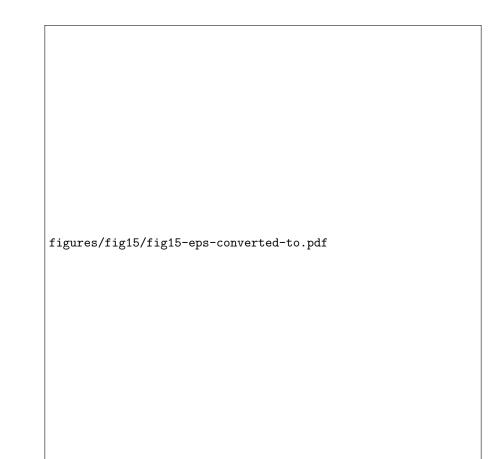


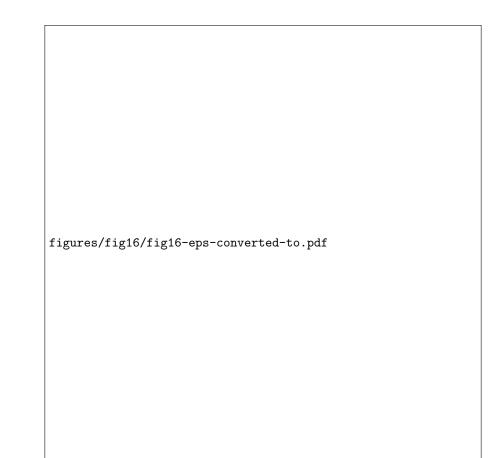


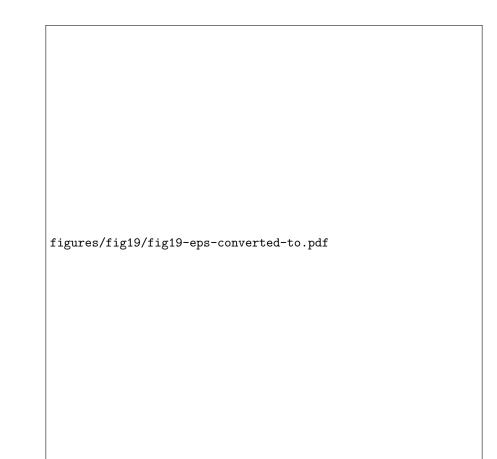












Extremal values of vertex-degree-based topological indices over fluoranthene-type benzenoid systems with equal number of edges

Fengwei Li¹, Qingfang Ye¹, Juan Rada²

¹ College of Basic Science Ningbo University of Finance & Economics, Ningbo, Zhejiang 315175, P.R. China. fengwei.li@hotmail.com, fqy-y@163.com ² Instituto de Matemáticas Universidad de Antioquia Medellín, Colombia pablo.rada@udea.edu.co

Abstract

Let G be a graph with n vertices. A vertex-degree-based topological index is defined from a set of real numbers $\{\psi_{ij}\}$ as

$$TI(G) = \sum_{1 \le i \le j \le n-1} m_{ij} \psi_{ij},$$

where m_{ij} is the number of edges of G connecting a vertex of degree i with a vertex of degree j. Many of the well-known topological indices are particular cases of this expression, including all Randić-type connectivity indices. In this work we determine extremal values for TI over the set of fluoranthene-type benzenoid systems with a fixed number of edges. The main idea consists in constructing fluoranthene-type benzenoid systems with maximal number of inlets in Γ_m which have simultaneously minimal number of hexagons, where Γ_m is the set of fluoranthene-type benzenoid systems with exactly $m(m \geq 19)$ edges.

Keywords: vertex-degree-based topological index, connectivity index, inlet, fluoranthene-type benzenoid system.

1 Introduction

In the chemical literature, a great variety of topological indices (molecular structure descriptors) have been and are currently considered in applications to QSPR/QSAR studies(see [14, 59]). Many of them depend only on the degrees of the vertices of the underlying molecular graph (i.e., graphs which represent chemicals) and are now called vertex-degree-based topological indices. More precisely, given nonnegative real numbers $\{\psi_{ij}\}\ (1 \leq i \leq j \leq n-1)$, a vertex-degree-based topological index (VDB topological index for short) of a (molecular) graph G with n vertices is expressed as

$$TI(G) = \sum_{1 \le i \le j \le n-1} m_{ij} \psi_{ij}, \tag{1}$$

where m_{ij} is the number of edges of G connecting a vertex of degree i with a vertex of degree j. Many of the well-known VDB topological indices are particular cases of this expression, for example, if for every $1 \le i \le j \le n-1$ the numbers are $\psi_{ij} = \frac{1}{\sqrt{ij}}$, then we obtain the Randić index; if $\psi_{ij} = ij$ then the second Zagreb index is obtained [28], in the atom-bond connectivity index $\psi_{ij} = \sqrt{\frac{i+j-2}{ij}}$ [15], in the geometric-arithmetic index $\psi_{ij} = \frac{2\sqrt{ij}}{i+j}$ [60], in the sum-connectivity index $\psi_{ij} = \frac{1}{\sqrt{i+j}}$ [65], in the augmented Zagreb index $\psi_{ij} = \frac{(ij)^3}{(i+j-2)^3}$ [16] and in the harmonic index $\psi_{ij} = \frac{2}{i+j}$ [64], just to mention a few. Details of these and other VDB topological indices can be found in the books [26, 27, 44] and [7, 8, 13, 17, 21, 22, 37, 38].

In [39], we derived extremal values for TI over the set of fluoranthene– type benzenoid systems with given order. Our interest in this work is to study the extremal values of a TI of the form (1) over fluoranthene–type benzenoid systems with a fixed number of edges. For the definition of hexagonal systems and details of this theory we refer to [25].

Fluoranthene is a well-known tetracyclic conjugated hydrocarbon, present in large amounts in coal tar [6]. It consists of a benzene and a naphthalene unit, joined through a five-membered ring. Other polycyclic conjugated hydrocarbon, consisting of two benzenoid units joined through a five-membered ring are referred as *fluoranthene-type benzenoid system* (*fbenzenoid* for short) [20, 24]. A few examples of f-benzenoids are presented in Figure 1.

In what follows we will represent the f-benzenoid by means of their molecular graphs [24]. This, in particular, means that the carbon atoms are represented by vertices, and the carbon-carbon bonds by edges. The molecular graphs of f-benzenoid are then defined in the following manner. Let X be a benzenoid system [24]. Let u and v be two vertices of X whose degree is two, and which both are adjacent to a vertex w of degree 3. Let Y be another benzenoid system. Let a and b be two adjacent vertices of Y whose degree is two. The f-benzenoid F is obtained by joining (with a new

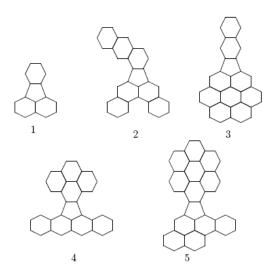


Figure 1: Examples of fluoranthene-type benzenoid systems. 1 and 2 are cata-catacondensed, 3 is peri-catacondensed, 4 is cata-pericondensed, and 5 is peri-pericondensed.

edge) the vertices u and a, and by joining (with a new edge) the vertices v and b (see Figure 2).

What first needs to be noticed is that the vertices a, b, v, w, u of F form a five-membered cycle. Each f-benzenoid possesses (by definition) exactly one five-membered cycle.

The f-benzenoids considered by us must pertain to plane graphs composed of regular hexagonals and a regular pentagon, all having the same edge lengths. Non-adjacent hexagon and hexagon-pentagon pairs must neither touch nor overlap (we exclude the helicenic and other geometrically nonplane species from the class of f-benzenoids). For more about f-benzenoid,

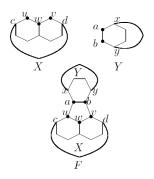


Figure 2: The general form of an f-benzenoid (F) and its construction from two benzenoid systems X and Y

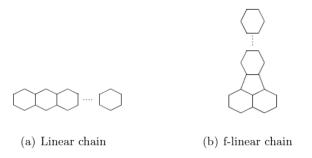


Figure 3: Linear chain and f-linear chain.

one can see [24].

Throughout this paper, the notation and terminology are mainly taken from [9, 10, 19, 34, 35, 41, 42]. A benzenoid system is said to be *catacondensed* if it has no internal vertices; otherwise it is pericondensed [25]. In view of this, we propose the following classification of f-benzenoid. If the f-benzenoid F has just a single internal vertex, then it is said to be *catacatacondensed*. This happens when both fragments X and Y (as shown in Figure 2) are catacondensed benzenoid systems.

Let L_h denote the *linear chain* with h hexagons(as shown in Figure 3(a)). A cata-catacondensed f-benzenoid is called an *f-linear chain* when fragment X is L_2 and Y is L_{h-2} , and which is denoted as FL_h , $h \ge 3$ (as shown in Figure 3(b)).

The following definitions were introduced in [24, 25]. If one goes along the perimeter of an f-benzenoid F, then a fissure (resp. a bay, cove, fjord, or lagoon) corresponds to a sequence of three (resp. four, five, six, or seven) consecutive vertices on the perimeter, of which the first and the last are vertices of degree 2 and the rest are vertices of degree 3. (For examples see Figure 4). The number of fissures, bays, coves, fjords and lagoons are denoted, respectively, by f, B, C, F_i and L.

Fissures, bays, coves, fjords and lagoons are called various types of *inlets*. The total number of inlets on the perimeter of F, $f + B + C + F_j + L$, will be denoted by r. There is another parameter $b = B + 2C + 3F_j + 4L$, called the *number of bay regions*, will be useful later. It is easy to see that $b \ge 2$ for all f-benzenoids, and b is just the number of (3,3)-type edges on the perimeter. Evidently, $f + 2B + 3C + 4F_j + 5L$ is the number of vertices of degree 3 on the perimeter.

First of all, all vertices in an f-benzenoid have degrees equal to 2 or 3, so, in further text, a *i*-vertex denotes a vertex of degree *i*, and a (i, j)-edge stands for an edge connecting a *i*-vertex with a *j*-vertex. The number of

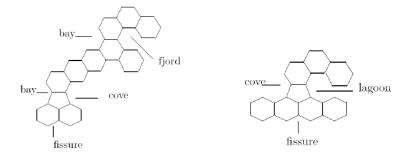


Figure 4: Structural features occurring on the boundary of f-benzenoids.

i-vertices and (i, j)-edges in the graph considered will be denoted by n_i and m_{ij} , respectively.

If F is an f-benzenoid with n vertices, m edges and h hexagons, then F possesses h + 1 cycles (h hexagons and a pentagon), so, m = n + h, and $n_2 + n_3 = n$, $2n_2 + 3n_3 = 2m$, it can be shown that $n_2 = n - 2h$, $n_3 = 2h$.

Some vertices of F lie on its perimeter. These will be referred to as *external vertices*, and their numbers are denoted by n_{ex} .

The vertices that are not external are said to be *internal*, and their numbers are denoted by n_i . Claearly, $n_{ex} + n_i = n$.

An f-benzenoid with h hexagons and n_i internal vertices represents a benzenoid hydrocarbon of the formula $C_{4h+5-n_i}H_{2h+5-n_i}$.

Lemma 1.1 [24] Let F be an f-benzenoid with n vertices, m edges h hexagons and n_i internal vertices, Then

- (a) the number of internal edges $m_i = h + n_i$;
- (b) $n = 4h + 5 n_i;$
- (c) $m = 5h + 5 n_i$.

Lemma 1.2 [24] Let F be an f-benzenoid with n vertices, h hexagons and r inlets, Then

- (a) $m_{22} = n 2h r;$
- (b) $m_{23} = 2r;$
- (c) $m_{33} = 3h r$.

From a mathematical and chemical point of view, it is of great interest to find the extremal values of some useful VDB topological indices

Figure 5: Some f-benzenoids in Γ_{42}

such as connectivity index, general connectivity index, second Zagreb index, atom-bond connectivity index, sum-connectivity index, geometricarithmetic index, augmented Zagreb index, harmonic index for significant classes of graphs. Many results concerning this topic can be found in [2, 7, 17, 23, 30, 32, 38, 39, 40, 41, 42, 43, 48, 49, 52, 53, 54, 57, 61, 62].

In this paper, we will determine the extremal values of a VDB topological index TI over the f-benzenoids with equal number of edges m, and we will characterize the corresponding f-benzenoids depending if the number of edges m is congruent to 0, 1, 2, 3 or 4 modulo 5. Then we will apply these results to find the extremal values of some well-known VDB topological indices over f-benzenoids with fixed number of edges m.

2 Maximal number of inlets in Γ_m

Let Γ_m denote the set of f-benzenoids with exactly *m* edges. We will find in this section the f-benzenoids with maximal number of inlets in Γ_m and then, we will apply this result in the study of extremal values of VDB topological indices. Figure 5 shows several f-benzenoids belonging to Γ_{42} .

Note that the number of hexagons in f-benzenoids belonging to Γ_m is variable. So, we try to find the lower and upper bounds for the number of hexagons in any $F \in \Gamma_m$. Firstly, we recall the concept of the spiral benzenoid system [29].

The spiral benzenoid system T_h is an hexagonal system with maximal number of internal vertices which are constructed by the "spiral" method illustrated in Figure 6.

By analogy with an extremal benzenoid system, an *extremal f-benzenoid* is defined by possessing the maximum number of internal vertices for a given number of hexagons: $n_i = (n_i)_{max}$ [42].

For convenience, we let $SH_h(h \ge 3)$ denote the set of all f-benzenoids whose two fragments X and Y are both spiral benzenoids. Especially, an f-benzenoid system $F^* \in SH_h$ with two fragments $X = T_{h-1}$ and $Y = T_1$ is

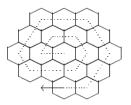


Figure 6: The spiral benzenoid system T_h with maximal number of internal vertices. Hexagons have to be added one-by-one, going along the indicated spiral line.

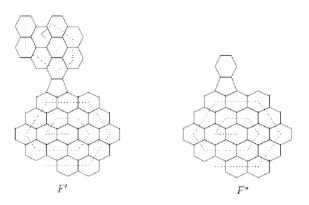


Figure 7: f-benzenoid $F' \in SH_h$ whose two fragments X and Y are both spiral benzenoid systems, and f-spiral benzenoid $F^* \in SH_h$ with two fragments $X = T_{h-1}$ and $Y = T_1$.

called an *f-spiral benzenoid* (as shown in Figure 7). It is obvious that

$$n_i(F^*) = 2h - \lceil \sqrt{12(h-1) - 3} \rceil.$$

Lemma 2.1 [42] For any f-benzenoid F with $h \ge 3$ hexagons, we have

$$n_i(F) \le n_i(F^*) = 2h - \left\lceil \sqrt{12(h-1) - 3} \right\rceil.$$
 (2)

The following theorem gives the upper and lower bounds for the number of hexagons in f-benzenoids $F \in \Gamma_m$.

Theorem 2.1 For any f-benzenoid $F \in \Gamma_m$,

$$\left\lceil \frac{1}{5}(m-4) \right\rceil \le h(F) \le m - 1 - \left\lceil \frac{1}{3} \left(2m + \sqrt{4m - 31} \right) \right\rceil,$$
(3)

where h(F) denotes the number of hexagons in F. $\lceil x \rceil$ is the smallest integer not smaller than x.

Proof. On one hand, from Lemma 1.1 (c) we know that $m = 5h(F) + 5 - n_i(F)$. Combining the fact that for any f-benzenoid F, $n_i(F) \ge 1$, we get

$$h(F) \ge \left\lceil \frac{1}{5}(m-4) \right\rceil.$$

On the other hand, by Lemma 2.1 we know that

$$n_i(F) \le n_i(F^*) = 2h - \left\lceil \sqrt{12(h-1) - 3} \right\rceil.$$

Consequently, from $m = 5h(F) + 5 - n_i(F)$ we have

$$m - 3h(F) - 5 \ge \left\lceil \sqrt{12(h(F) - 1) - 3} \right\rceil \ge \sqrt{12(h(F) - 1) - 3}$$

Hence,

$$(3h(F) + (3-m))^2 \ge 4m - 31.$$

By observing the fact that 3h(F) + (3 - m) < 0, we deduce

$$3h(F) + (3-m) \le -\sqrt{4m-31},$$

i.e.,

$$h(F) \le m - 1 - \left\lceil \frac{1}{3} \left(2m + \sqrt{4m - 31} \right) \right\rceil.$$

This completes the proof.

Remark 1 From Theorem 2.1 we know that the f-spiral benzenoid F^* has the maximal number of hexagons over Γ_m .

One crucial problem in the study of extremal values of topological indices is to find among all f-benzenoid in Γ_m , the f-benzenoids which have maximal number of inlets. We will show that in SH_h , the f-benzenoid Fwith maximal number of inlets has minimal number of hexagons $h(F) = \left\lfloor \frac{1}{5}(m-4) \right\rfloor$.

In order to prove this result we need some preliminaries lemmas. Recall that the *convex benzenoid systems* is a special class of benzenoid systems in which there are no bay regions [7]. We denote by \mathcal{HS}_h the set of benzenoid systems with h hexagons.

Lemma 2.2 [2] Let $H \in \mathcal{HS}_h$. In each of the following conditions H is not a convex benzenoid system:

- (a) If $h \ge 4$ and $n_i = 1$;
- (b) If $h \ge 5$ and $n_i = 2$;
- (c) If $h \ge 6$ and $n_i = 3$.

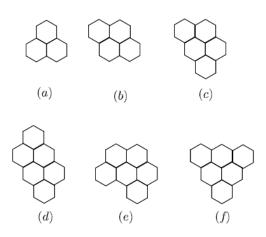


Figure 8: Benzenoid systems with 1, 2, 3 and 4 internal vertices, respectively

Lemma 2.3 [54] Let $H \in \mathcal{HS}_h$ such that $n_i(H) = 4$. Then H must contain a subbenzenoid system of the form given in Figure 8, where no hexagons are adjacent to the fissures.

Lemma 2.4 Let $H \in \mathcal{HS}_h$. If $h \geq 7$ and $n_i(H) = 4$, then H is not a convex benzenoid system.

Proof. If h = 6 then H is one of the benzenoid systems (d), (e) and (f) in Figure 8. It is clear that both (d) and (f) are convex benzenoid systems, but (e) is not. If $h \ge 7$, by Lemma 2.3, H has a subbenzenoid system as in Figure 8, where no hexagons are adjacent to the fissures. Since $h \ge 7$ there must exist hexagons adjacent to a (2, 2)-edge, and these hexagons will transform one of the fissures into a bay, cove or fjord. Consequently, $b(H) \ge 1$.

Lemma 2.5 [38] Let F be a f-benzenoid with h hexagons. Then

$$r(F) \leq \begin{cases} r(FL_h) = 2h - 3 \ (h \ge 3), & if \ n_i = 1\\ r(G_h) = 2h - 4 \ (h \ge 4), & if \ n_i = 2\\ r(R_h) = 2h - 5 \ (h \ge 5), & if \ n_i = 3\\ r(Z_h) = 2h - 6 \ (h \ge 6), & if \ n_i = 4 \end{cases}$$

Next we find the f-benzenoids with maximal number of inlets in Γ_m with a fixed number of internal vertices. Recall that M_h , N_h and Q_h (see Figure 9) are benzenoid systems, and G_h (see Figure 10), R_h (see Figure 11), Z_h (see Figure 12) are f-benzenoids.

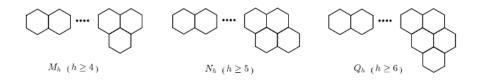


Figure 9: Three types of benzenoid systems

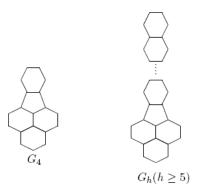


Figure 10: f-benzenoids G_4 , and $G_h(h \ge 5)$

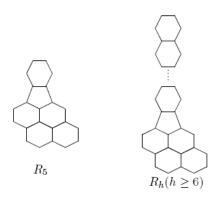


Figure 11: f-benzenoids R_5 , and $R_h(h \ge 6)$

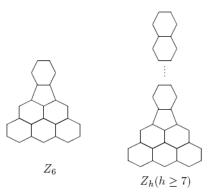


Figure 12: f-benzenoids Z_6 , and $Z_h (h \ge 7)$

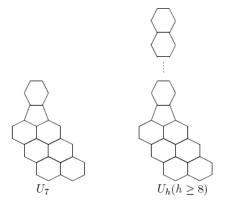


Figure 13: f-benzenoids U_7 , and $U_h (h \ge 8)$

Lemma 2.6 [42] For any f-benzenoid F with h hexagons,

$$r(F) \le r(FL_h) = 2h - 3.$$

Lemma 2.7 [24] If a f-benzenoid has h hexagons, n_i internal vertices, and b bay regions, then the counts of edges of type (2,2) and (2,3) are $m_{22} = b + 5, m_{23} = 4h - 2n_i - 2b$.

Combining Lemma 1.2 (b) and Lemma 2.6, we get

$$r = 2h - n_i - b \tag{4}$$

Furthermore, by Lemma 1.1 (c) and equation (4), we deduce

$$r = m - 3h - 5 - b \tag{5}$$

Theorem 2.2 Let F be a f-benzenoid with h hexagons. If $n_i = 5$, then $r(F) \leq r(U_h) = 2h - 7$ $(h \geq 7)$.

Proof. Let X and Y be two fragments in F, h_1 and h_2 denote the number of hexagons in X and Y, respectively. If $n_i = 5$, the proof proceeds in five cases.

Case 1 $n_i(X) = 1$, and $n_i(Y) = 3$, i.e., X has an internal vertex, but Y has three internal vertices.

Subcase 1.1 If $h_1 = 3$, then $X = M_3$.

- Subcase 1.1.1 If $h_2 = 5$, i.e., $Y = Q_5$, then F is the f-benzenoids D_1 , D_2 or D_3 (see Figure 14). It is easy to see that $r(F) = r(D_1) = 8$, $r(F) = r(D_2) = 7$ or $r(F) = r(D_3) = 8$.
- **Subcase 1.1.2** If $h_2 \ge 6$, then by Lemma 2.2, Y is not a convex benzenoid system, i.e., $b(Y) \ge 1$. In this case $b(F) \ge 3$, by equation (4) it follows that $r = 2h n_i b \le 2h 8 < 2h 7$.
- Subcase 1.2 If $h_1 \ge 4$, then by Lemma 2.2, X is not a convex benzenoid system, i.e., $b(X) \ge 1$.
- Subcase 1.2.1 If $h_2 = 5$, i.e., $Y = Q_5$. It is easy to see that $b(F) \ge 4$, consequently from equation (4) we deduce $r = 2h n_i b \le 2h 9 < 2h 7$.
- **Subcase 1.2.2** If $h_2 \ge 6$, then by Lemma 2.2, Y is not a convex benzenoid system, i.e., $b(Y) \ge 1$. It is easy to see that $b(F) \ge 5$, consequently from equation (4) we deduce $r = 2h n_i b \le 2h 10 < 2h 7$.
- **Case 2** $n_i(X) = 3$ and $n_i(Y) = 1$, i.e., X has three internal vertices, but Y has one internal vertex.

Subcase 2.1 If $h_1 = 5$, then $X = Q_5$.

- **Subcase 2.1.1** If $h_2 = 3$, i.e., $Y = M_3$, then F is the f-benzenoids D_4 , D_5 , D_6 (see Figure 14), or D_7 (as shown in Figure 15). $r(F) = r(D_4) = 8$, $r(F) = r(D_5) = 7$, $r(F) = r(D_6) = 8$, $r(F) = r(D_7) = 7$.
- **Subcase 2.1.2** If $h_2 \ge 4$, by Lemma 2.2, Y is not a convex benzenoid system, i.e., $b(X) \ge 1$. In this case we have $b(F) \ge 4$, by equation (4) it follows that $r = 2h n_i b \le 2h 9 < 2h 7$.
- Subcase 2.2 If $h_1 \ge 6$, by Lemma 2.2, X is not a convex benzenoid system, i.e., $b(X) \ge 1$.
- Subcase 2.2.1 If $h_2 = 3$, i.e., $Y = M_3$. In this case we have $b(F) \ge 4$, by equation (4) it follows that $r = 2h n_i b \le 2h 9 < 2h 7$.
- **Subcase 2.2.2** f $h_2 \ge 4$, by Lemma 2.2, Y is not a convex benzenoid system, i.e., $b(X) \ge 1$. In this case we have $b(F) \ge 5$, by equation (4) it follows that $r = 2h n_i b \le 2h 10 < 2h 7$.
- **Case 3** $n_i(X) = 2$ and $n_i(Y) = 2$, i.e., X and Y both have two internal vertices.
- **Subcase 3.1** If $h_1 = 4$, then $X = N_4$.
- **Subcase 3.1.1** If $h_2 = 4$, *F* is the f-benzenoids D_8 or D_9 (as shown in Figure 15). $r(F) = r(D_8) = 8$ or $r(F) = r(D_9) = 7$.
- Subcase 3.1.2 If $h_2 \ge 5$, by Lemma 2.2, Y is not a convex benzenoid system, i.e., $b(X) \ge 1$. Then $b(F) \ge 4$, by equation (4) it follows that $r = 2h n_i b \le 2h 9 < 2h 7$.
- **Subcase 3.2** If $h_2 = 4$, i.e., $Y = N_4$.
- **Subcase 3.2.1** If $h_1 = 4$, i.e., $X = N_4$. *F* is the f-benzenoid D_8 or D_9 (as shown in Figure 15). $r(F) = r(D_8) = 8$ or $r(F) = r(D_9) = 7$.
- **Subcase 3.2.2** If $h_1 \geq 5$, by Lemma 2.2, X is not a convex benzenoid system, i.e., $b(X) \geq 1$. In this case, $b(F) \geq 4$, by equation (4) it follows that $r = 2h n_i b \leq 2h 9 < 2h 7$.
- **Subcase 3.3** If $h_1 \ge 5$, $h_2 \ge 5$, by Lemma 2.2, neither X nor Y are convex benzenoid systems, i.e., $b(X) \ge 1$ and $b(Y) \ge 1$. In this case $b(F) \ge 5$, by equation (4) it follows that $r = 2h n_i b \le 2h 10 < 2h 7$.
- **Case 4** $n_i(X) = 4$ and $n_i(Y) = 0$, i.e., X has four internal vertex, Y is a catacondensed benzenoid system.
- **Subcase 4.1** If $h_1 = 6$, then X is the benzenoid system (d), (e) or (f) in Figure 8.

- **Subcase 4.1.1** If $h_2 = 1$, F is the f-benzenoids D_{10} , D_{11} , D_{12} (see Figure 16), D_{13} (see Figure 17) or U_7 (see Figure 13). $r(F) = r(D_{10}) = 6$, $r(F) = r(D_{11}) = 6$, $r(F) = r(D_{12}) = 6$, $r(F) = r(D_{13}) = 6$ or $r(F) = r(U_7) = 7$.
- Subcase 4.1.2 If $h_2 \ge 2$, then $b(F) \ge 2$, by equation (4) it follows that $r = 2h n_i b \le 2h 7$.
- Subcase 4.2 If $h_1 \ge 7$, by Lemma 2.4, X is not a convex benzenoid system, i.e., $b(Y) \ge 1$. In this case $b(F) \ge 3$, by equation (4) it follows that $r = 2h n_i b \le 2h 8 < 2h 7$.
- **Case 5** $n_i(X) = 0$ and $n_i(Y) = 4$, i.e., X is a catacondensed benzenoid system, Y has four internal vertex.
- **Subcase 5.1** If $h_2 = 6$, then Y is the benzenoid system (d), (e) or (f) in Figure 8.
- Subcase 5.1.1 If $h_1 = 2$, F is the f-benzenoids D_{14} , D_{15} , D_{16} , D_{17} , D_{18} , D_{19} , D_{20} or D_{21} (see Figure 17). $r(F) = r(D_{14}) = 7$, $r(F) = r(D_{15}) = 8$, $r(F) = r(D_{16}) = 8$, $r(F) = r(D_{17}) = 7$, $r(F) = r(D_{18}) = 7$, $r(F) = r(D_{19}) = 8$, $r(F) = r(D_{20}) = 6$ or $r(F) = r(D_{21}) = 6$.
- Subcase 5.1.2 If $h_1 \ge 3$, then $b(F) \ge 4$, by equation (4) it follows that $r = 2h n_i b \le 2h 9 < 2h 7$.
- Subcase 5.2 If $h_2 \ge 7$, by Lemma 2.4, Y is not a convex benzenoid system, i.e., $b(Y) \ge 1$.
- Subcase 5.2.1 If $h_1 = 2$, i.e., $X = L_2$. In this case $b(F) \ge 4$, by equation (4) it follows that $r = 2h n_i b \le 2h 9 < 2h 7$.
- Subcase 5.2.2 If $h_1 \ge 3$, then $b(F) \ge 5$, by equation (4) it follows that $r = 2h n_i b \le 2h 10 < 2h 7$.

This completes the proof.

Now we can find the f-benzenoids with maximal number of inlets in Γ_m , the set of f-benzenoids with m edges. We recall that FL_h is the f-linear chain with h hexagons.

Theorem 2.3 Let $F \in \Gamma_m$. Then

- 1. If $m \equiv 0 \pmod{5}$, then $r(F) \leq \frac{2m-35}{5} = r(U_{\frac{m}{5}});$
- 2. If $m \equiv 1 \pmod{5}$, then $r(F) \leq \frac{2m-32}{5} = r(Z_{\frac{m-1}{5}});$
- 3. If $m \equiv 2 \pmod{4}$, then $r(F) \leq \frac{2m-29}{5} = r(R_{\frac{m-2}{5}});$
- 4. If $m \equiv 3 \pmod{5}$, then $r(F) \leq \frac{2m-26}{5} = r(G_{\frac{m-3}{5}});$

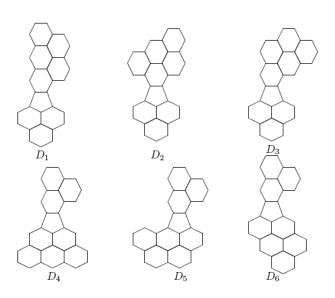


Figure 14: f-benzenoids D_1 , D_2 , D_3 , D_4 and D_5

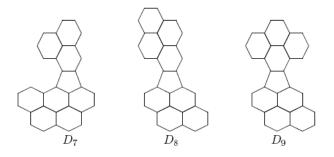


Figure 15: f-benzenoids D_7 , D_8 and D_9

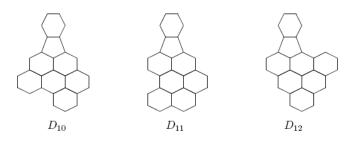


Figure 16: f-benzenoids D_{10} , D_{11} and D_{12}

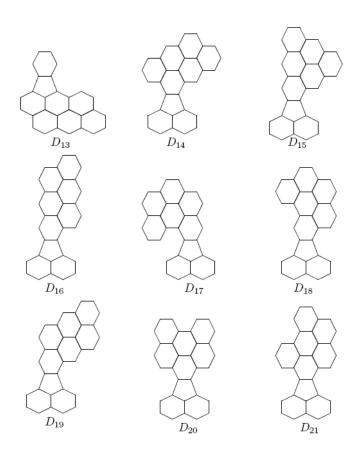


Figure 17: f-benzenoids D_{13} , D_{14} , D_{15} , D_{16} , D_{17} , D_{18} , D_{19} , D_{20} and D_{21}

5. If
$$m \equiv 4 \pmod{5}$$
, then $r(F) \le \frac{2m-23}{5} = r(FL_{\frac{m-4}{5}})$.

Proof. We know by equation (3) that

$$\left\lceil \frac{1}{5}(m-4) \right\rceil \le h(F) \le m-1 - \left\lceil \frac{1}{3} \left(2m + \sqrt{4m-31} \right) \right\rceil.$$

1. If $m \equiv 0 \pmod{5}$, then $\left\lceil \frac{1}{5}(m-4) \right\rceil = \frac{m}{5}$. If $h = \frac{m}{5}$, then by Lemma 1.1 (c)

$$m = 5h(F) + 5 - n_i(F) = 5(\frac{m}{5}) + 5 - n_i(F) = m + 5 - n_i(F),$$

and so $n_i(F) = 5$. Now we can apply Theorem 2.2, to conclude that $r(F) \leq r(U_{\frac{m}{5}})$ and we are done. So assume now that $h(F) \geq \frac{m}{5} + 1$, then by equality (5) and the fact that $b(F) \geq 2$

$$r(F) = m - 5 - 3h(F) - b(F) \le m - 5 - 3(\frac{m}{5} + 1) - b(F)$$
$$\le \frac{2m}{5} - 10 = \frac{2m - 50}{5} \le \frac{2m - 35}{5} = r(U_{\frac{m}{5}}).$$

2. If $m \equiv 1 \pmod{5}$, then $\left\lceil \frac{1}{5}(m-4) \right\rceil = \frac{m-1}{5}$. If $h(F) = \frac{m-1}{5}$, then by Lemma 1.1 (c)

$$m = 5h(F) + 5 - n_i(F) = 5(\frac{m-1}{5}) + 5 - n_i(F) = m + 4 - n_i(F),$$

and so $n_i(F) = 4$. Then $r(F) \le r(Z_{\frac{m-1}{5}})$ by part 4 of Lemma 2.5. Otherwise $h(F) \ge \frac{m-1}{5} + 1$, then by equality (5) and the fact that $b(F) \ge 2$

$$r(F) = m - 5 - 3h(F) - b(F) \le m - 5 - 3(\frac{m - 1}{5} + 1) - b(F)$$
$$\le \frac{2m + 3}{5} - 10 = \frac{2m - 47}{5} \le \frac{2m - 32}{5} = r(Z_{\frac{m - 1}{5}}).$$

3. If $m \equiv 2(mod5)$, then $\left\lceil \frac{1}{5}(m-4) \right\rceil = \frac{m-2}{5}$. If $h(F) = \frac{m-2}{5}$, then by Lemma 1.1 (c)

$$m = 5h(F) + 5 - n_i(F) = 5(\frac{m-2}{5}) + 5 - n_i(F) = m + 3 - n_i(F),$$

and so $n_i(F) = 3$. It follows from Lemma 2.5 part 3 that $r(F) \leq r(R_{\frac{m-2}{5}})$. So assume now that $h(F) \geq \frac{m-2}{5} + 1$, then by equation (5) and the fact that $b(F) \geq 2$

$$r(F) = m - 5 - 3h(F) - b(F) \le m - 5 - 3(\frac{m - 2}{5} + 1) - b(F)$$

$$\leq \frac{2m+6}{5} - 10 = \frac{2m-44}{5} \leq \frac{2m-29}{5} = r(R_{\frac{m-2}{5}}).$$

4. If $m \equiv 3(mod5)$, then $\left\lceil \frac{1}{5}(m-4) \right\rceil = \frac{m-3}{5}$. If $h(F) = \frac{m-3}{5}$, then by Lemma 1.1 (c)

$$m = 5h(F) + 5 - n_i(F) = 5(\frac{m-3}{5}) + 5 - n_i(F) = m + 2 - n_i(F),$$

and so $n_i(F) = 2$. By Lemma 2.5 part 2, to conclude that $r(F) \leq r(G_{\frac{m-3}{5}})$ and we are done. So assume now that $h(F) \geq \frac{m-3}{5} + 1$, then by equality (5) and the fact that $b(F) \geq 2$

$$r(F) = m - 5 - 3h(F) - b(F) \le m - 5 - 3(\frac{m - 3}{5} + 1) - b(F)$$
$$\le \frac{2m + 9}{5} - 10 = \frac{2m - 41}{5} \le \frac{2m - 26}{5} = r(G_{\frac{m - 3}{5}}).$$

5. If $m \equiv 4 \pmod{5}$, then $\left\lceil \frac{1}{5}(m-4) \right\rceil = \frac{m-4}{5}$. Since $h \geq \frac{m-4}{5}$, then by equation (5) and the fact that $b(F) \geq 2$

$$r(F) = m - 5 - 3h(F) - b(F) \le m - 5 - \frac{3m - 12}{5} - b(F)$$
$$\le \frac{2m + 12}{5} - 7 = \frac{2m - 23}{5} = r(FL_{\frac{m-4}{5}}).$$

This completes the proof.

3 Extremal values of VDB topological indices over Γ_m

In this section, we will try to find the extremal values of VDB topological indices over Γ_m .

Let TI be a VDB topological index induced by the real nonnegative numbers $\{\psi_{ij}\}$ $(1 \leq i \leq j \leq n-1)$. In the particular case that F is an f-benzenoid, only vertices of degree 2 and 3 appear and so equation (1) reduces to

$$TI(F) = m_{22}\psi_{22} + m_{23}\psi_{23} + m_{33}\psi_{33}, \tag{6}$$

By Lemmas 1.1 and 1.2, we get

$$TI(F) = \psi_{22}m + 3(\psi_{33} - \psi_{22})h + (2\psi_{23} - \psi_{22} - \psi_{33})r,$$
(7)

If $U, V \in \Gamma_m$ then clearly

$$TI(U) - TI(V) = 3(\psi_{33} - \psi_{22})(h(U) - h(V)) + (2\psi_{23} - \psi_{22} - \psi_{33})(r(U) - r(V)).$$
(8)

For convenience, we set $s = \psi_{33} - \psi_{22}$, $q = 2\psi_{23} - \psi_{22} - \psi_{33}$.

Theorem 3.1 Let TI be a VDB topological index of the form (7) induced by the nonnegative real numbers $\{\psi_{22}, \psi_{23}, \psi_{33}\}$. Assume that $s \leq 0$ and $q \geq 0$ (resp. $s \geq 0$ and $q \leq 0$). Then the maximal(resp. minimal) TI-value over Γ_m is attained in:

- 1. $U_{\frac{m}{\epsilon}}$ if $m \equiv 0 \pmod{5}$;
- 2. $Z_{\frac{m-1}{5}}$ if $m \equiv 1 \pmod{5}$;
- 3. $R_{\frac{m-2}{5}}$ if $m \equiv 2 \pmod{4}$;
- 4. $G_{\frac{m-3}{5}}$ if $m \equiv 3 \pmod{5}$;
- 5. $FL_{\frac{m-4}{5}}$ if $m \equiv 4 \pmod{5}$.

Proof. Let $F \in \Gamma_m$. Note that by equation (3)

$$h(F) \ge \left\lceil \frac{1}{5}(m-4) \right\rceil = \begin{cases} h(U_{\frac{m}{5}}), & \text{if } m \equiv 0(mod5) \\ h(Z_{\frac{m-1}{5}}), & \text{if } m \equiv 1(mod5) \\ h(R_{\frac{m-2}{5}}), & \text{if } m \equiv 2(mod5) \\ h(G_{\frac{m-3}{5}}), & \text{if } m \equiv 3(mod5) \\ h(FL_{\frac{m-4}{5}}), & \text{if } m \equiv 4(mod5) \end{cases}$$

Hence by Theorem 2.3 the f-benzenoids $U_{\frac{m}{5}}$, $Z_{\frac{m-1}{5}}$, $R_{\frac{m-2}{5}}$, $G_{\frac{m-3}{5}}$ and $FL_{\frac{m-4}{5}}$ have simultaneously maximal number of inlets and minimal number of hexagons over the set Γ_m of f-benzenoids with m edges. Hence the result follows from equation (8) and the signs of q and s. This completes the proof.

Example 1 The following Table 1 contains the values of s and q for several well-known topological indices:

Table 1: Values of s and q for six well-known topological indices

	ij	$\frac{1}{\sqrt{ij}}$	$\frac{2\sqrt{ij}}{i+j}$	$\frac{1}{\sqrt{i+j}}$	$\frac{(ij)^3}{(i+j-2)^3}$	$\sqrt{\frac{i+j-2}{ij}}$
\overline{q}	-1	-0.0168	-0.0404	-0.0138	-3.390	0.040
s	5	-0.1667	0	-0.091	3.390	-0.040

Hence, by Theorems 2.3 and 3.1 we can deduce in the case of the second Zagreb index, geometric-arithmetic index and the augmented Zagreb index we can determine the minimal value of TI, and for the atom-bond-connectivity index we can determine the maximal value of TI. If F is an f-benzenoid with m edges, then from the equations (4), (7) and Lemma 1.1(c) we deduce

$$TI(F) = (2\psi_{23} - \psi_{33})m + 6(\psi_{33} - \psi_{23})h - (2\psi_{23} - \psi_{22} - \psi_{33})b - 5(2\psi_{23} - \psi_{22} - \psi_{33}).$$
(9)

Consequently, for f-benzenoids $U, V \in \Gamma_m$

$$TI(U) - TI(V) = 6(\psi_{33} - \psi_{23})(h(U) - h(V)) + (-2\psi_{23} + \psi_{22} + \psi_{33})(b(U) - b(V)).$$
(10)

Set $u = 6(\psi_{33} - \psi_{23})$ and keep the notation for q introduced earlier. Then

$$TI(U) - TI(V) = u(h(U) - h(V)) - q(b(U) - b(V)).$$
(11)

As we can see this expression only depends on the number of hexagons and the number of bay regions. We know from equation (3) that the maximal value possible of hexagons in a f-benzenoid with m edges is

$$m-1-\left\lceil\frac{1}{3}\left(2m+\sqrt{4m-31}\right)\right\rceil,$$

and this occurs precisely in the f-spiral hexagon system F^* .

By the structure of the f-spiral benzenoid system F^* , we know that $n_i(F^*) = 2h - \left[\sqrt{12(h-1)-3}\right]$. But, $b(F^*)$ may not always equal to 2. It is obvious that if fragment X of F^* satisfies that b(X) = 0, i.e., X is a convex benzenoid system, we can get a f-benzenoid F^* such that $b(F^*) = 2$ or 3.

But, we know that the fragment X constructed by the "spiral" method are not necessarily convex (and may have a single bay, i.e., B = 1). So, it is naturally for us to find a method to transform a spiral benzenoid system into a convex benzenoid system with equal number of internal vertices.

The structure of a convex benzenoid system W can be specified as $W = H(a_1, a_2, a_3, a_4, a_5, a_6)$ for positive integers $a_1, a_2, a_3, a_4, a_5, a_6$. Their general form is depicted in Figure 18. It has been demonstrated [7] that W is completely determined by the parameters a_1, a_2, a_3, a_4 , since it must be

$$a_5 = a_1 + a_2 - a_4, \quad a_6 = a_3 + a_4 - a_1.$$

Fortunately, the authors in [57] precisely determined necessary and sufficient conditions for the existence of convex benzenoid systems with maximal number of internal vertices.

Lemma 3.1 [57] Let h be a positive integer. The following conditions are equivalent:

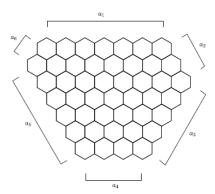


Figure 18: The general form of a convex benzenoid system (CHS). The parameters $a_i \ge 1, i = 1, 2, \dots, 6$, count the hexagons on the respective side of CHS.

(a) There exists a convex benzenoid system W with h hexagons satisfying

$$n_i(W) = 2h + 1 - \left\lceil \sqrt{12h - 3} \right\rceil;$$

(b) There exist a set of positive integers a_1, a_2, a_3, a_4 which are solutions of the system of equation

$$\begin{array}{c} h = a_1 a_3 + a_1 a_4 + a_2 a_3 + a_2 a_4 - a_2 - a_3 \\ -\frac{1}{2} a_1 (a_1 + 1) - \frac{1}{2} a_4 (a_4 + 1) + 1 \\ \lceil \sqrt{12h - 3} \rceil = a_1 + 2a_2 + 2a_3 + a_4 - 3 \end{array}$$
 (12)

If the system of equation (12) has a solution for a positive integer h, then there exists a convex benzenoid system W such that $n_i(W) = n_i(T_h)$. But, Rada et al. [57] show that not for every positive integer h there is a solution for the system of equation (12). As a byproduct, they show that given a positive integer h, the existence of convex benzenoid systems with maximal number of internal vertices imply the existence of a solution to the following Diophantine equation

$$21x^2 + 3y^2 + z^2 = 28(\lceil \sqrt{12h-3} \rceil^2 - (12h-3)).$$

This gives a method to find values of h for which there are no convex benzenoid systems which satisfy $n_i(W) = n_i(T_h)$.

We now return to the study of TI of f–benzenoids. If the following system

$$\begin{array}{c} h-1 = a_{1}a_{3} + a_{1}a_{4} + a_{2}a_{3} + a_{2}a_{4} - a_{2} - a_{3} \\ -\frac{1}{2}a_{1}(a_{1}+1) - \frac{1}{2}a_{4}(a_{4}+1) + 1 \\ \lceil \sqrt{12(h-1)-3} \rceil = a_{1} + 2a_{2} + 2a_{3} + a_{4} - 3 \\ \exists a_{i} \in \{a_{1}, a_{2}, a_{3}, a_{4}, a_{5}, a_{6}\}, \ a_{i} = 2 \end{array} \right\}$$

$$(13)$$

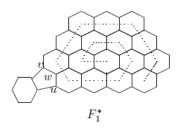


Figure 19: An f-spiral benzenoid F_1^* whose fragment X is a convex spiral benzenoid system W_{h-1}

has a solution $\{a_1, a_2, a_3, a_4\}$ for a positive integer h-1, then there exists a convex spiral benzenoid system W_{h-1} such that

$$n_i(W_{h-1}) = 2(h-1) + 1 - \left\lceil \sqrt{12(h-1) - 3} \right\rceil.$$

Note that element a_i in the set $\{a_1, a_2, a_3, a_4, a_5, a_6\}$ equal to 2, we let W_{h-1} be the X fragment, and it is obvious that W_{h-1} possess only one fissure on the side of a_i . Let the three vertices of this fissure be u, w, v in Figure 2, and let Y be a single hexagon, then we get an f-spiral benzenoid F_1^* with h hexagons such that $n_i(F_1^*) = 2h - \left[\sqrt{12(h-1)-3}\right]$ and $b(F_1^*) = 2$. (as shown in Figure 19)

Theorem 3.2 Let h - 1 be a positive integer such that the system of equation (13) has a solution, and $m = 3h + 5 + \left\lceil \sqrt{12(h-1) - 3} \right\rceil$. Then

If u ≥ 0 and q ≥ 0, then TI reaches its maximal value in F₁^{*} over Γ_m;
 If u ≤ 0 and q ≤ 0, then TI reaches its minimal value in F₁^{*} over Γ_m.

Proof. Since $n_i(F_1^*) = 2h - \left\lceil \sqrt{12(h-1) - 3} \right\rceil$. Then $n(F_1^*) = 4h + 5 - (2h - \left\lceil \sqrt{12(h-1) - 3} \right\rceil) = 2h + 5 + \left\lceil \sqrt{12(h-1) - 3} \right\rceil$

and so F_1^* has *m* edges. Also we know by hypothesis that $b(F_1^*) = 2$. On the other hand, $m = 3h + 5 + \left[\sqrt{12(h-1)-3}\right]$ implies that

$$h = m - 1 - \left[\frac{1}{3}\left(2m + \sqrt{4m - 31}\right)\right].$$

Hence by equations (3) and (11) it follows that for any f-benzenoid $F \in \Gamma_m$

$$TI(F) - TI(F_1^*) = u(h(F) - h(F_1^*)) - q(b(F) - b(F_1^*))$$

$$= u \left[h(F) - \left(m - 1 - \left\lceil \frac{1}{3} \left(2m + \sqrt{4m - 31} \right) \right\rceil \right) \right] - q[b(F) - 2]$$

It is easy to see that $b(F) \ge 2$. It is clear now that if $u \ge 0$ and $q \ge 0$ then $TI(F) - TI(F_1^*) \leq 0$ which implies that F_1^* reaches its maximal value over Γ_m . Similarly, if $u \leq 0$ and $q \leq 0$ then $TI(F) - TI(F_1^*) \geq 0$ which implies that F_1^* reaches its minimal value over Γ_m .

This completes the proof.

Example 2 The following Table 2 contains the values of u and q for several well-known topological indices:

	able 2. Values	or u and q	IOI SIX V	Well KHOWH	topological	mulces
	ij	$\frac{1}{\sqrt{ij}}$	$\frac{2\sqrt{ij}}{i+j}$	$\frac{1}{\sqrt{i+j}}$	$\frac{(ij)^3}{(i+j-2)^3}$	$\sqrt{\frac{i+j-2}{ij}}$
\overline{q}	-1	-0.0168	-0.040	4 -0.0138	-3.390	0.040
u	18	-0.449	0.121	-0.233	20.344	-0.242

Table 2: Values of u and a for six well-known topological indices

Hence, by Theorem 3.1 we can deduce in the case of the Randć index and the the sum-connectivity index we can determine the minimal value of TI in f-spiral benzenoid F_1^* for those h such that equation (13) holds.

Example 3 Consider the generalized Randć index determined by the numbers $\psi_{ij} = (ij)^{\alpha}$, where $\alpha \in \mathbb{R}$. Note that

$$q = 2(6^{\alpha}) - 4^{\alpha} - 9^{\alpha} = -4^{\alpha}((\frac{3}{2})^{\alpha} - 1)^2 \le 0$$

for all $\alpha \in \mathbb{R}$. Moreover, $s = 9^{\alpha} - 4^{\alpha} \ge 0$ if and only if $\alpha \ge 0$ if and only if $u = 6(9^{\alpha} - 6^{\alpha}) \ge 0$. Hence for all $\alpha \ge 0$ the minimal value of the generalized Randić index is determined by Theorem 3.1 and for all $\alpha \leq 0$, the minimal value is attained by the f-spiral benzenoid F_1^* for those h such that equation (13) holds.

4 Conclusions

In this work we determine extremal values for VDB topological indices over the set Γ_m of f-benzenoids with a equal number of edges. As future work, it would be also interesting to consider the values of other topological indices of f-benzenoids, such as Wiener index [33] and Wiener polarity index [51], the Harary index [1], graph energy [31, 36, 46, 47, 63], Randić energy [11], incidence energy [3], matching energy [50], energy of matrix [18], HOMO-LUMO index [45], entropy measures [4, 5], molecular identification numbers [12].

Funding Information

This work was supported by the Ningbo Natural Science Foundation (No. 2021J234).

References

- M. Azari, A. Iranmanesh, Harary index of some nano-structures, MATCH Commun. Math. Comput. Chem. 71 (2014) 373–382.
- [2] L. Berrocal, A. Olivieri, J. Rada, Extremal values of VDB topological indices over hexagonal systems with fixed number of vertices. *Appl. Math. Comput.* 243 (2014) 176–183.
- [3] S. B. Bozkurt, D. Bozkurt, On incidence energy, MATCH Commun. Math. Comput. Chem. 72 (2014) 215–225.
- [4] S. Cao, M. Dehmer, Y. Shi, Extremality of degree-based graph entropies, *Inform. Sciences* 278 (2014) 22–33.
- [5] Z. Chen, M. Dehmer, F. Emmert-Streib, Y. Shi, Entropy Bounds for Dendrimers, Appl. Math. Comput. 242 (2014) 462–472.
- [6] E. Clar The aromatic sextet, Wiley, London, 1972.
- [7] R. Cruz, I. Gutman, J. Rada, Convex hexagonal systems and their topological indices, MATCH Commun. Math. Comput. Chem. 68 (2012) 97–108.
- [8] R. Cruz, H. Giraldo, J. Rada, Extremal values of vertex-degree topological indices over hexagonal systems, *MATCH Commun. Math. Comput. Chem.* 70 (2) (2013) 501–512.
- [9] S.J. Cyvin, Graph-theoretical studies on fluoranthenoids and fluorenoids. Part 1, J. Mol. Struc. (Theochem) 262 (1992) 219–231.
- [10] S.J. Cyvin, I. Gutman. Kekulé Structures in Benzenoid Hydrocarbons. Lec. Notes in Chem. Verlag: Springer Berlin (Deutschland), 1988.
- [11] K. Das, S. Sorgun, On Randić energy of graphs, MATCH Commun. Math. Comput. Chem. 72 (2014) 227–238.
- [12] M. Dehmer, M. Grabner, The discrimination power of molecular identification numbers revisited, MATCH Commun. Math. Comput. Chem. 69 (2013) 785–794.
- [13] H. Deng, J. Yang, F. Xia, A general modeling of some vertex-degree based topological indices in benzenoid systems and phenylenes, *Comput. Math. Appl.* 61 (2011) 3017–3023.
- [14] J. Devillers, A.T. Balaban, Topological Indices and Related Descriptors in QSAR and QSPR, Gordon & Breach, NewYork, 1999.

- [15] E. Estrada, L. Torres, L. Rodríguez, I. Gutman, An atom-bond connectivity index: modelling the enthalpy of formation of alkanes, *Indian J. Chem.* 37A (1998) 849–855.
- [16] B. Furtula, A. Graovac, D. Vukičević. Augmented Zagreb index. J. Math. Chem. 48 (2010) 370–380
- [17] B. Furtula, I. Gutman, M. Dehmer, On structure-sensitivity of degreebased topological indices, Appl. Math. Comput. 219 (2013) 8973–8978.
- [18] M. Ghorbani, M. Faghani, A. Ashrafi, R. Heidari, A. Graovac, An upper bound for energy of matrices associated to an infinite class of fullerenes, *MATCH Commun. Math. Comput. Chem.* 71 (2014) 341–354.
- [19] V. Gineityte, Perturbative analogue for the concept of conjugated circuits in benzenoid hydrocarbons, MATCH Commun. Math. Comput. Chem. 72 (2014) 39–73.
- [20] I. Gutman. Kekulé Structures in Fluoranthenes. Z. Naturforsch. A, 65(5) (2010) 473–476.
- [21] I. Gutman, On discriminativity of vertex degree based indices, Iranian J. Math. Chem. 3 (2) (2012) 95–101.
- [22] I. Gutman, B. Furtula, Vertex-degree-based molecular structure descriptors of benzenoid systems and phenylenes, J. Serb. Chem. Soc. 77 (8) (2012) 1031–1036.
- [23] I. Gutman, O. Araujo, D. A. Morales. Bounds for the Randić connectivity index. J. Chem. Inf. Comput. Sci. 40 (2000) 572–579.
- [24] I. Gutman, J. Durdević. Fluoranthene and its congeners A graph theoretical study. MATCH Commun. Math. Comput. Chem. 60 (2008) 659–670.
- [25] I. Gutman and S.J. Cyvin. Introduction to the Theory of benzenoid Hydrocarbons. Spriger-Verlag, Berlin, 1990.
- [26] I. Gutman, B. Furtula (Eds.), Recent results in the theory of Randić index, University of Kragujevac, Kragujevac, 2008.
- [27] I. Gutman, B. Furtula (Eds.), Novel molecular structure descriptorstheory and applications I, University of Kragujevac, Kragujevac, 2010.
- [28] I. Gutman, N. Trinajstić, Graph theory and molecular orbitals. Total p-electron energy of alternant hydrocarbons, *Chem. Phys. Lett.* 17 (1972) 535–538.
- [29] F. Harary, H. Harborth, Extremal animals, J. Combin. Inf. Sys. Sci. 1 (1976) 1–8.

- [30] S. Hosseini, M. Ahmadi, I. Gutman, Kragujevac trees with minimal atom-bond connectivity index, MATCH Commun. Math. Comput. Chem. 71 (2014) 5–20.
- [31] S. Ji, X. Li, Y. Shi, The extremal matching energy of bicyclic graphs, MATCH Commun. Math. Comput. Chem. 70 (2013) 697–706.
- [32] V. Kraus, M. Dehmer, M. Schutte, On sphere-regular graphs and the extremality of information-theoretic network measures, *MATCH Commun. Math. Comput. Chem.* 70 (2013) 885–900.
- [33] M. Knor, B. Lužar, R. Škrekovski, I. Gutman, On Wiener index of common neighborhood graphs. MATCH Commun. Math. Comput. Chem. 72 (2014) 321–332.
- [34] J. Kovic, How to obtain the number of hexagons in a benzenoid system from its boundary edges code. MATCH Commun. Math. Comput. Chem. 72 (2014) 27–38.
- [35] J. Kovic, T. Pisanski, A.T. Balaban, P.W. Fowler, On symmetries of benzenoid systems. MATCH Commun. Math. Comput. Chem. 72 (2014) 3–26.
- [36] F. Li, Q. Ye, H. Broersma, Some new bounds for the inverse sum indeg energy of graphs. Axioms 11(5)(2022) 243. https://doi.org/10.3390/axioms11050243
- [37] F. Li, X. Li, H. Broersma, Spectral properties of inverse sum indeg index of graphs. J. Math. Chem. 58(2020) 2108–2139.
- [38] F. Li, Q. Ye, H. Broersma, R. Ye, Sharp upper bounds for augmented zagreb index of graphs with fixed parameters, MATCH Commun. Math. Comput. Chem. 85 (2021) 257–274.
- [39] F. Li, Q. Ye, H. Broersma, R. Ye, X. Zhang, Extremality of VDB topological indices over f-benzenoids with given order, *Appl. Math. Comput.* 393 (2021) 125757.
- [40] F. Li, H. Broserma, J. Rada and Y. Sun, Extremal benzenoid systems for two modified versions of the Randić index. *Appl. Math. Comput.* 337 (2018) 14–24.
- [41] F. Li, Q. Ye, Second order Randić index of fluoranthene-type benzenoid systems. Appl. Math. Comput. 268 (2015) 534–546.
- [42] F. Li, Q. Ye, The general connectivity indices of fluoranthene-type benzenoid systems. Appl. Math. Comput. 273 (2016) 897–911.
- [43] F. Li, Q. Ye, J. Rada, The augmented Zageb indices of fluoranthenetype benzenoid systems. Bull. Malays. Math. Sci. Soc. 42(3) (2019) 1119–1141.

- [44] X. Li, I. Gutman, Mathematical aspects of Randić-type molecular structure descriptors, University of Kragujevac, Kragujevac, 2006.
- [45] X. Li, Y. Li, Y. Shi, I. Gutman, Note on the HOMO–LUMO index of graphs, MATCH Commun. Math. Comput. Chem. 70 (2013) 85–96.
- [46] X. Li, Y. Shi, I. Gutman, *Graph Energy*, Springer, 2012, New York.
- [47] X. Li, Y. Shi, M. Wei, J. Li, On a conjecture about tricyclic graphs with maximal energy, MATCH Commun. Math. Comput. Chem. 72 (2014) 183–214.
- [48] X. Li, Y. Shi, L. Zhong. Minimum general Randić index on chemical trees with given order and number of pendent vertices. MATCH Commun. Math. Comput. Chem. 60 (2008) 539–554.
- [49] X. Li, Y. Yang, Sharp bounds for the general Randić index, MATCH Commun. Math. Comput. Chem. 51 (2004) 155–166.
- [50] H. Li, Y. Zhou, L. Su, Graphs with extremal matching energies and prescribed parameters, MATCH Commun. Math. Comput. Chem. 72 (2014) 239–248.
- [51] J. Ma, Y. Shi, J. Yue, The Wiener polarity index of graph products, Ars Combin. 116 (2014) 235–244.
- [52] J. Palacios, A resistive upper bound for the ABC index, MATCH Commun. Math. Comput. Chem. 72 (2014) 709–713.
- [53] J. Rada. Bounds for the Randic index of catacondensed systems. Util. Math. 62 (2002) 155–162.
- [54] J. Rada, Vertex-degree-based topological indices of hexagonal systems with equal number of edges. *Appl. Math. Comput.* 296 (2017) 270-276.
- [55] J. Rada, O. Araujo and I. Gutman. Randić index of benzenoid systems and phenylenes. *Croat. Chem. Acta.* 74 (2004) 225–235.
- [56] J. Rada, R. Cruz, I. Gutman, Vertex-degree-based topological indices of catacondensed hexagonal systems, *Chem. Phys. Lett.* 572 (2013) 154– 157.
- [57] J. Rada, R. Cruz, I. Gutman, Benzenoid systems with extremal vertexdegree-based topological indices, MATCH Commun. Math. Comput. Chem. 72 (2014) 125–136.
- [58] M. Randić, On characterization of molecular branching, J. Am. Chem. Soc. 97 (1975) 6609–6615.
- [59] R. Todeschini, V. Consonni, Molecular Descriptors for Chemoinformatics (2 volumes), Wiley-VCH, Weinheim, Germany, 2009.

- [60] D. Vukičević, B. Furtula, Topological index based on the ratios of geometrical and arithmetical means of end-vertex degrees of edges, J. Math. Chem. 46 (2009) 1369–1376.
- [61] R. Wu, H. Deng, The General Connectivity Indices of Benzenoid Systems and Phenylenes, MATCH Commun. Math. Comput. Chem. 64(2010) 459–470.
- [62] Q. Ye, F. Li, R. Ye, Extremal values of the general Harmonic index and general sum-connectivity index of f-benzenoids, *Polycycl. Aroma. Comp.* (2020) https://doi.org/10.1080/10406638.2020.1852275.
- [63] Q. Ye, F. Li, ISI-equienergetic graphs. Axioms. 11(8)(2022) 372. https://doi.org/10.3390/axioms11080372.
- [64] L. Zhong, The harmonic index for graphs, Appl. Math. Lett. 25 (2012) 561–566.
- [65] B. Zhou, N. Trinajstić, On a novel connectivity index, J. Math. Chem. 46 (2009) 1252–1270.