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ASYMPTOTIC PERIODIC SOLUTIONS OF NON-DENSELY
DEFINED NONAUTONOMOUS EVOLUTION EQUATIONS

VU TRONG LUONG, NGUYEN NGOC VIEN, AND LE ANH MINH

Abstract. In this paper, for the bounded solution of the non-densely defined non-
autonomous evolution equation, we present the conditions for asymptotic periodicity
by using the spectral theory of functions on the half line and the extrapolation theory
of nondensely defined evolution equation.

1. Introduction

Studying the periodicity of solutions is one of the great problems for the qualitative
theory of evolution equations. The existence and uniqueness of periodic solutions have
been proved for several important classes of densely defined evolution equations by us-
ing classical approaches such as the fixed point method [10, 19, 22], the use of ultimate
boundedness of solutions and the compactness of Poincaré map over compact embed-
ding [17, 18, 20], the spectral theory of functions [11, 15, 16], ergodic approach [14].
As indicated in [6], we sometimes need to deal with non-densely defined operators. For
example, when we look at a one-dimensional heat equation with Dirichlet conditions
on [0, π] and consider A = ∂2

∂x2 in C([0, π],R), in order to measure the solutions in the
sup-norm, then the domain

D(A) =
{
u ∈ C2([0, π],R) : u(0) = u(π) = 0

}
is not dense in C([0, π],R) with the sup-norm since

D(A) = {u ∈ C([0, π],R) : u(0) = u(π) = 0} ≠ C([0, π],R).

Many results on the existence and uniqueness of periodic solutions of nondensely de-
fined evolution equations are obtained [7, 8, 1, 10]. Especially, in [9] K. Ezzinbi and M.
Jazar gave a new criterion related to Massera’s approach which is more general than
the known exponential dichotomy for the existence of periodic and almost periodic
solutions for some evolution equations in a Banach space of the form{

d

dt
x(t) = (A+B(t))x(t) + f(t), for t ≥ 0

x(0) = x0

(1.1)

where A : D(A) ⊂ X → X is a nondensely defined linear operator on a Banach space
X which satisfies the Hille - Yosida condition:
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(M1): there exist M0 ≥ 1 and ω0 ∈ R such that (ω0,+∞) ⊂ ρ(A) and

|R(ξ, A)n| ≤ M0

(ξ − ω0)
n , for n ∈ N and ξ > ω0,

where ρ(A) is the resolvent set of A and R(ξ, A) = (ξ−A)−1; the function f : R+ → X
is bounded continuous, 1-periodic or almost periodic (f is not identically zero); for
every t ≥ 0, B(t) is a bounded linear operator on X.

Recently, in [4], Luong et al studied the densely defined case of Eq. (1.1) when
A(t) := A + B(t) generates a 1-periodic strongly continuous evolutionary process
(U(t, s))t≥s≥0 defined on the whole space X and f is asymptotic 1-periodic in the
sense that f is bounded, continuous and lim

t→∞
(f(t + 1) − f(t)) = 0. (see e.g. [2] and

its references). We recall that a function x(·) is an asymptotic solution to Eq.(1.1) if
there is a continuous function ϵ(·) such that lim

t→∞
ϵ(t) = 0 and

x′(t) = (A+B(t))x(t) + f(t) + ϵ(t), ∀t ≥ 0.

By using the spectral theory of functions on the half line and the induced evolution
semigroups in various spectral function spaces. Luong et al introduced the new condi-
tion for the unique existence bounded solution to be asymptotic 1-periodic on the half
line. More precisely, they showed that a bounded and continuous function g : R → X
is asymptotic 1-periodic if and only if its circular spectrum σ(g) (see [11] for more
detail of this notion) satisfies σ(g) ⊂ {1}. Therefore, the existence of asymptotic 1-
periodic solutions is reduced to that of solutions x(·) such that σ(x(·)) ⊂ {1}. The
search for asymptotic solutions x(·) with σ(x(·)) ⊂ {1} can be done by using the
evolution semigroup associated with the homogeneous equations x′(t) = A(t)x(t) in
appropriate function spaces. In the case that the operator A is not densely defined,
the linear part A+B(t) does not generates a strongly continuous evolutionary process
on the whole space X, so the results obtained in [4] are not guaranteed. Moreover,
the inhomogeneous part f(·) taking value in the whole space X while the values of

mild solution x(·) is exactly in X0 = D(A). To overcome these difficulties, in this
paper we first use the theory of extrapolation spaces to express the mild solution of
Eq. (1.1) in terms of an evolution process (UB(t, s))t≥s≥0 defined on closed subspace
X0 (see [1] and the references therein for more detail). Then, by using the periodicity
and boundedness of (UB(t, s)) combined with the circular spectrum of functions we
state the conditions for the unique bounded solution of (1.1) to be asymptotic periodic
which fit the case of densely defined of non-autonomous linear part.

Before concluding this introduction section we give an outline of the paper. We
briefly list the main notations in Section 2. This section also contains the definitions
as well as properties of circular spectra of functions on the half line and extrapolation
spaces. Section 3 contains the main result of the paper that deals with the asymptotic
periodicity of solutions to non-densely defined nonautonomous evolution equations of
the form (1.1).

2. Preliminaries

2.1. Notations. In this paper R,R+ and C stand for the real line, its positive half line,
and the complex plane. If X denotes a (complex) Banach space, then L (X) stands for
the space of all bounded linear operators in X. The spectrum of a linear operator T in
a Banach space is denoted by σ(T ), and ρ(T ) := C\σ(T ). We denote by BC (R+, X)
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the space of all bounded continuous functions from R+ to a Banach space X with

supremum norm, and C0(R+, X) is the space
{
g ∈ BC(R+, X) : lim

t→∞
g(t) = 0

}
. Fi-

nally, Γ will stand for the unit circle {z ∈ C : |z| = 1}.

2.2. Circular spectra of functions on the half line. Many of the concepts and
results in this subsection are discussed and proved in [4, 5].

We consider the translation operator S in BC(R+, X0) defined as

[Sx](ξ) := x(1 + ξ), ξ ≥ 0, x ∈ BC(R+, X0).

Furthermore, we also consider the quotient spaces

Y := BC
(
R+, X0

)
/C0

(
R+, X0

)
.

Then, S induces operators in Y that will be denoted by S̄. It is well known that S̄ is
an isometry, so σ(S̄) ⊂ Γ.

For each x ∈ BC (R+, X0) let us consider the complex function [Sx](λ) in λ ∈ C\Γ
defined as

[Sx](λ) := R(λ, S̄)x̄, λ ∈ C\Γ.
Definition 2.2.1 ([5]). The circular spectrum of a function x ∈ BC (R+, X0) is defined
to be the set of all ξ0 ∈ Γ such that [Sx](λ) has no analytic extension into any
neighborhood of ξ0 in the complex plane. This spectrum of x is denoted by σ(x). We
will denote by ρ(x) the set Γ\σ(x).
The following lemma justifies the introduction of these concepts of spectra.

Lemma 2.2.2 ([5]). Let x ∈ BC (R+, X0). Then, for each x ∈ BC (R+, X0),

σ(Qx) ⊂ σ(x)

provided that Q is an operator in BC (R+, X0) that commutes with S and leaves
C0 (R+, X0) invariant.

2.3. Mild solutions and extrapolation spaces. It is well known that (see [1] and
the references therein) the part A0 of A in X0 generates a C0-semigroup (T0(t))t≥0

on X0 satisfying ∥T0(t)∥ ≤ Meωt, ∀t ≥ 0. Moreover, for λ ∈ ρ (A0) the resolvent
R (λ,A0) is the restriction of R(λ,A) to X0. On X0 we introduce the norm ∥x∥−1 =
∥R (λ0, A0)x∥ , where λ0 ∈ ρ(A) is fixed. A different choice of λ0 ∈ ρ(A) leads to
an equivalent norm. The completion X−1 of X0 with respect to ∥ · ∥−1 is called the
extrapolation space of X0 with respect to A. The extrapolated semigroup (T−1(t))t≥0

consists of the unique continuous extensions T−1(t) of the operators T0(t), t ≥ 0,
to X−1. The semigroup (T−1(t))t≥0 is strongly continuous and its generator A−1 is
the unique continuous extension of A0 to L (X0, X−1). Moreover, X is continuously
embedded in X−1 and R (λ,A−1) is the unique continuous extension of R(λ,A) to X−1

for λ ∈ ρ(A). Finally, A0 and A are the parts of A−1 in X0 and X, respectively.
We now give the definition of a mild solution of (1.1) as follows.

Definition 2.3.1. Let x0 ∈ X0. A function x ∈ C(R+, X0) is called a mild solution
to (1.1) if it satisfies the integral equation

x(t) = T0(t− s)x(s) +

∫ t

s

T−1(t− h)(B(h)x(h) + f(h))dh. (2.1)

for all t ≥ s ≥ 0.
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We consider the following homogeneous linear equation{
dx

dt
= (A+B(t))x(t), t ≥ 0

x(0) = x0 ∈ X0

(2.2)

and assume that
(M2): t 7→ B(t)x is strongly measurable for every x ∈ X0,
(M3): The operator B(·) is 1-periodic.

Proposition 2.3.2 ([1]). Let (M1) - (M3) be satisfied. Then, there exists a unique
1-periodic strongly continuous evolutionary process (UB(t, s))t≥s≥0 that satisfies

i) UB(t, s) ∈ L (X0) for all t ≥ s ≥ 0;
ii) UB(t, t) = I, for every t ∈ R;
iii) UB(t, s)UB(s, r) = UB(t, r), for all t ≥ s ≥ r;
iv) UB(t+ 1, s+ 1) = UB(t, s) for all t ≥ s ≥ 0;
v) The function (t, s, x) 7→ UB(t, s)x is continuous in (t, s, x);
vi) There are positive constants K, δ such that

∥UB(t, s)∥ ≤ Keδ(t−s), for all t ≥ s ≥ 0.

vii) Furthermore,

UB(t, s)x = T0(t− s)x+

∫ t

s

T−1(t− h)B(h)UB(h, s)xdh, t ≥ s ≥ 0, x ∈ X0.

i.e., t 7→ UB(t, 0)x0 is the unique solution of (2.2).

Theorem 2.3.3 ([1]). Let f ∈ L1
loc(R+, X) and x0 ∈ X0. Then there is a unique mild

solution x(·) ∈ C (R+, X0) of Eq. (1.1) which satisfies the integral equation

x(t) = UB(t, s)x(s) + lim
ξ→∞

∫ t

s

UB(t, h)ξR(ξ, A)f(h)dh for t ≥ s ≥ 0.

Moreover, lim
ξ→∞

∫ t

s

UB(t, h)ξR(ξ, A)f(h)dh ∈ X0 exists uniformly for t ≥ s in compact

sets in R.

3. Main Results

3.1. Asymptotic periodic functions and their spectral characterization. We
begin this subsection by recalling the concept of asymptotic periodic functions on the
half line. It is noted that our definition of asymptotic periodicity is slightly different
from the concept used in many previous works, and period 1 is not a restriction, but
just for the reader’s convenience. All results can be easily stated for the general case
of period.

Definition 3.1.1 ([4]). A function f ∈ BC (R+, X) is said to be asymptotic 1-periodic
if

lim
t→∞

(f(t+ 1)− f(t)) = 0.

Remark 3.1.2 ([4]). In [12] the authors considered the concept of asymptotic period-
icity of functions in the sense of our Definition 3.1.1. However, there is an error when
it is shown that this concept is equivalent to the following definition of asymptotic
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1-periodicity that is widely used in the literature: f is asymptotic 1-periodic if and
only if

f(t) = p(t) + q(t), (3.1)

where p, q are continuous functions such that p is 1 -periodic and limt→∞ q(t) = 0. A
counter-example and some sufficient conditions for the asymptotic periodicity in the
sense of our Definition 3.1.1 are given in [13]. Below, we present a simpler counter-
example.

Example 3.1.3. Let f ∈ BC (R+,R) defined as f(t) := sin
√
t, t ∈ R+. Since

lim
t→∞

(
√
t+ 1−

√
t) = 0 we have

lim
t→∞

(f(t+ 1)− f(t)) = lim
t→∞

(sin
√
t+ 1− sin

√
t) = 0.

If f(t) = p(t) + q(t), where p is continuous and 1-periodic, lim
t→∞

q(t) = 0, then

f(n) = p(1) + q(n), n ∈ N.

Therefore, the following limit exists:

lim
n→∞

f(n) = lim
n→∞

sin
√
n = p(1) ∈ R.

Substituting n = k2 into the formula gives

lim
k→∞

sin k = p(1) ∈ R

An elementary argument shows that this is impossible. In fact, if that is true, then

lim
k→∞

(sin(k + 2)− sin(k)) = 0.

Consequently,

lim
k→∞

2 sin(1) cos(k + 1) = 0.

It follows that lim
k→∞

cos k = 0. Arguing in the same way we can show that lim
k→∞

sin k = 0.

Therefore,

1 = lim
k→∞

(
cos2 k + sin2 k

)
= 0.

This is a contradiction that shows that lim
k→∞

sin k does not exist, and f cannot be

expressed as (3.1).

Proposition 3.1.4 ([4]). The following assertions are valid:

i) Let x ∈ BC (R+, X0). Then, σ(x) = ∅ if and only if x ∈ C0 (R+, X0);
ii) Let p ∈ R and x ∈ BC (R+, X0). Then, σ(x) ⊂ {eip} if and only if

lim
t→∞

(
x(t+ 1)− eipx(t)

)
= 0.

Lemma 3.1.5 ([4]). Assume that Q(t), t ∈ R+ is a family of bounded linear operators
in X0 that satisfies

(1) The function R+ ×X0 ∋ (t, x) 7→ Q(t)x ∈ X0 is continuous,
(2) Q(t+ 1) = Q(t) for all t ∈ R+,
(3) sup0≤t≤1 ∥Q(t)∥ < ∞.
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Then, for each x(·) ∈ BC(R+, X0) we have

σ(Qx(·)) ⊂ σ(x(·)),
where Q denotes the operator in BC(R+, X0) defined as

[Qx(·)](t) := Q(t)x(t), t ∈ R+.

3.2. Asymptotic periodic solution.

Definition 3.2.1. A function x(·) ∈ BC(R+, X0) is said to be an asymptotic mild
solution of Eq.(1.1) if there exists a function ϵ(·) ∈ C0(R+, X) such that

x(t) = UB(t, s)x(s) + lim
ξ→∞

∫ t

s

UB(t, h)ξR(ξ, A)[f(h) + ϵ(h)]dh, (3.2)

for all t ≥ s ≥ 0.

Now, for T is an operator in a Banach space X0, we denote σΓ(T ) := σ(T ) ∩ Γ.
We also recall the following well known result on the spectrum of the ”monodromy”
operators

P (t) := UB(t+ 1, t)

for each t ≥ 0. When t = 1 we denote P := P (1). In particular, P = UB(1, 0) if
(UB(t, s))t≥s≥0 is a 1-periodic process. Let us denote by P the operator of multiplica-
tion u 7→ Pu defined as

Pu(t) = P (t)u(t). (3.3)

Lemma 3.2.2. Let (UB(t, s))t≥s≥0 be a 1-periodic process in X0. Then, for each t ≥ 0

σ(P (t))\{0} = σ(P )\{0}.

Proof. See [3, Lemma 7.2.2, p. 197]. □

The unique existence of asymptotic mild solution of Eq.(1.1) is implied from The-
orem 2.3.3, by in fact that f ∈ BC(R+, X) ⊂ L1

locBC(R+, X). Now we prove the
relation between the spectral of asymptotic mild solution x with spectral of P and f .

Lemma 3.2.3. Let x(·) ∈ BC(R+, X0) be an asymptotic mild solution of Eq. (1.1)
and f ∈ BC(R+, X). Then,

σ(x) ⊂ σΓ(P ) ∪ σ(f). (3.4)

Proof. By the definition of asymptotic mild solutions there is a function ϵ(·) ∈ C0 (R+, X)
such that, for each t ∈ R+

x(t+ 1) = UB(t+ 1, t)x(t) + lim
ξ→∞

∫ t+1

t

UB(t+ 1, h)ξR(ξ, A)(f(h) + ϵ(h))dh. (3.5)

For ξ > ω we set fξ = ξR(ξ, A)f . Note that σ(fξ) ⊂ σ(f) and fξ ∈ BC(R+, X0).
Let us denote

Fξ(t) :=

∫ t+1

t

UB(t+ 1, h)fξ(h)dh.

Observe that the operator taking fξ to Fξ commutes with S, and it is a bounded linear
operator from BC (R+, X0) into itself, so by Lemma 3.1.5,

σ(Fξ) ⊂ σ(fξ).



ASYMPTOTIC PERIODIC SOLUTION 7

Moreover, Fξ ∈ BC(R+, X0) and

Fξ(t) ⇒ F (t) := lim
ξ→∞

∫ t+1

t

UB(t+ 1, h)fξ(h)dh ∈ X0.

which shows that

σ(F ) ⊂ σ(Fξ) ⊂ σ(fξ) ⊂ σ(f).

Also, if we denote

ε(t) = lim
ξ→∞

∫ t+1

t

UB(t+ 1, h)ξR(ξ, A)ϵ(h)dh

then ε(·) ∈ C0(R+, X0). Hence, for the function

w(t) := lim
ξ→∞

∫ t+1

t

UB(t+ 1, h)ξR(ξ, A)(f(h) + ϵ(h))dh = F (t) + ε(t)

we have

σ(w) = σ(F ) ⊂ σ(f).

The periodicity of the evolution process (UB(t, s))t≥s yields that P (t) is 1-periodic, so
it commutes with the translation S. Therefore, (3.5) gives

S̄x̄ = Px̄+ F̄ .

Let 0 ̸= λ0 /∈ σΓ(P ) ∪ σ(f) and let V be a fixed small open neighborhood of λ0 such
that

V ∩ (σΓ(P ) ∪ σ(f)) = ∅.
Using the identity

R(λ, S̄)S̄x̄ = λR(λ, S̄)x̄− x̄, for λ ∈ V : |λ| ≠ 1

we have

R(λ, S̄)(Px̄+ F̄ ) = R(λ, S̄)S̄x̄ = λR(λ, S̄)x̄− x̄.

Together with the fact that R(λ, S̄)Px̄ = PR(λ, S̄)x̄ we obtain

x̄+R(λ, S̄)F̄ = λR(λ, S̄)x̄− PR(λ, S̄)x̄

= (λ− P)R(λ, S̄)x̄.

Since λ ∈ V the operator λ−P is invertible and its inverse is determined by R(λ,P).
Therefore, for all λ ∈ V such that |λ| ≠ 1 we have

R(λ, S̄)x̄ = R(λ,P)(x̄+R(λ, S̄)F̄ ).

Since R(λ,P)x̄ is analytic in V and R(λ, S̄)F̄ is analytically extendable in a neighbor-
hood of λ0, the complex function R(λ, S̄)x̄ is analytically extendable to a neighborhood
of λ0. That is λ0 /∈ σ(x). This proves (3.4), completing the proof of the lemma. □

Theorem 3.2.4. Let (M1) - (M3) are satisfied. Let σΓ(P ) ⊂ {1} and x ∈ BC (R+, X0)
be an asymptotic mild solution of Eq. (1.1). Furthermore, let f ∈ BC(R+, X) in Eq.
(1.1) be asymptotic 1-periodic. Then, x(·) is asymptotic 1-periodic, i.e.,

lim
t→∞

(x(t+ 1)− x(t)) = 0.
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Proof. Since f is asymptotic 1-periodic,

σ(f) ⊂ {1}.
By Lemma 3.2.3,

σ(x) ⊂ σΓ(P ) ∪ σ(f) ⊂ {1}.
Then, by Proposition 3.1.4 we conclude that x(·) is asymptotic 1-periodic. □

3.3. Example. To illustrate our results, we consider the following nondensely defined
nonautonomous partial differential equation ∂x

∂t
(t, ζ) =

∂2

∂ζ2
x(t, u)− b(t)x(t, ζ) + g(ζ) · sin

√
t , for t ∈ R+ and ζ ∈ [0, π],

x(t, 0) = x(t, π) = 0, for t ∈ R+,
(3.6)

where b(·) is a 1-periodic function which satisfies 0 < b̄ < b(·) and g is L2 - integrable
on [0, π].

We set X := C([0, π],R), the Banach space of continuous functions on [0, π],
equipped with the uniform norm topology, and we define A : D(A) ⊂ X → X by{

D(A) = {z ∈ C2([0, π],R) : z(0) = z(π) = 0} ,
Az = z′′

We have (0,∞) ⊂ ρ(A),

∥R(λ,A)∥ ≤ 1

λ
, ∀ λ > 0,

and
X0 := D(A) = {y ∈ C([0, π],R) : y(0) = y(π) = 0} ≠ X.

Hence, (M1) is satisfied. We will use the fact that A generates a strongly continuous
exponentially semigroup (T0(t))t≥0 on X0 with

∥T0(t)∥ ≤ e−t, ∀ t ≥ 0.

Moreover, as in [21, p. 414] the eigenvalues of A on iR are determined from the set
of solutions of the equations

λ− 1 = −n2, n = 1, 2, ... .

Obviously, there is only one root λ = 0 that lies on iR, so σ(A)∩ iR = {0}. Since this
semigroup is compact, the spectral mapping theorem yields that σ(T0(1)) = eσ(A) =
{1}.
We now consider the family (B(t))t≥0 defined on X0 by B(t) = −b(t)I, for every

t ≥ 0. Since b(.) ∈ L1
loc (R+) , t 7→ B(t)x is strongly measurable. Hence, (M2) is

satisfied. Clearly that B(·) is 1-periodic so (M3) is fulfilled. We find that A + B(t)
generates a unique 1-periodic strongly continuous evolutionary process (UB(t, s))t≥s≥0

on X0 defined by

UB(t, s) = exp

(
−
∫ t

s

b(τ)dτ

)
T0(t− s).

For the monodromy operator P = UB(1, 0) = exp

(
−
∫ 1

0

b(τ)dτ

)
T0(1) we have

σΓ(P ) = {1}.
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Furthermore, if we assume that g ∈ X, then the function f(t) := sin
√
t · g(·) is an

asymptotic 1-periodic function taking values in X (see Example 3.1.3).
Therefore, by applying Theorem 3.2.4 we conclude that every asymptotic solution

to Eq. (3.6) is asymptotic 1-periodic.
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