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Abstract

In this letter, a self-learning method using gradient boosting decision tree (GBDT) is proposed to estimate two parameters of

K-distributed sea clutter. Different from the traditional methods using limited two moments or percentiles, a feature vector

extracted from four moment ratios and nine percentile ratios are fully exploited by a nonlinear GBDT model, as to automatically

estimate shape parameter. It is proved that the feature vector is independent of scale parameter. Then, scale parameter is

determined by a shape-parameter-dependent percentile. Finally, both simulated data and measured data are used to confirm

that the proposed estimator can attain robust and good performance in complicated and various clutter environments.
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In this letter, a self-learning method using gradient boosting decision 

tree (GBDT) is proposed to estimate two parameters of K-distributed 

sea clutter. Different from the traditional methods using limited two 
moments or percentiles, a feature vector extracted from four moment 
ratios and nine percentile ratios are fully exploited by a nonlinear GBDT 
model, as to automatically estimate shape parameter. It is proved that 
the feature vector is independent of scale parameter. Then, scale 
parameter is determined by a shape-parameter-dependent percentile. 
Finally, both simulated data and measured data are used to confirm that 
the proposed estimator can attain robust and good performance in 
complicated and various clutter environments. 

Introduction: It is meaningful and important for marine radars to 

investigate the amplitude statistical model of sea clutter in detection and 

tracking [1-3]. K distribution is a widely-used and effective amplitude 

probability model of sea clutter at low and moderate range resolution [4]. 

Currently, three types of methods have been mainly developed to 

estimate K-distributed parameters. The first type is based on probability 

density function (PDF), such as method of moment (MoM) using two 

higher or fractional moments [5]. Method of maximum likelihood (ML) 

can achieve high accuracy but lack efficient computation [6]. However, 

their performances decrease rapidly in the clutter environments with 

outliers. To solve this problem, the second type is established on the 

cumulative density function (CDF), called method of percentile (MoP). 

The tri-percentile estimator (TPE) [7] uses the ratio of two percentiles to 

estimate shape parameter, but its explicit expression is replaced by look-

up table due to the Bessel function in CDF. Differently, the third type is 

based on the nonlinear models. In [8], histograms are used to estimate 

shape parameter by neural network. It is required that the average power 

of clutter is one and the performance is only verified by simulated data. 

While, it is a potential and effective way to convert parameter estimation 

into a nonlinear optimization problem. 

In this letter, gradient boosting decision tree (GBDT) [9, 10] is used to 

estimate shape parameter by exploiting moments and percentiles and 

scale parameter is obtained by a shape-parameter-dependent percentile. 

Finally, measured data is used to verify the generality and effectiveness 

of the proposed estimator at different clutter environments. 

Review of K-distributed clutter: In the compound Gaussian model (CGM) 

[1-4], sea clutter time series is modelled by the product of a slowing-

varying texture � and a fast-varying speckle �, i. e. � = √��. When the 

texture follows Gamma distribution, the amplitude of sea clutter � = |�| 

follows the famous K distribution and its PDF and CDF are  
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where � is shape parameter, � is scale parameter or the clutter power, 

��(∙) is the second-kind modified Bessel function with the order �, Γ(∙) 

is Gamma function. Then, the �th order moment is calculated by 
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In theory, any two moments can be used in MoM [5] to estimate 

parameters in K distribution. Similarly, any two percentiles can provide 

the parameter estimation in MoP [7, 11]. 

Self-learning parameter estimator: In practical clutter environments, 

outliers from submerged rock and targets exist inevitably, which have 

great influence on the estimation accuracy and detection [7, 11]. For 

large-scale clutter environments from dozens of kilometers to hundreds 

of kilometers, it can be roughly classified into three types of clutter 

environments, without outliers, with outliers, with and without outliers. 

In fact, the commonly-used MoM [5] is optimal for the clutter without 

outliers and the recent MoP [7] is suitable for the clutter with outliers. 

Thus, the two estimation methods will encounter performance loss once 

the environments are not matched. 

In order to obtain robust and efficient performance in different 

environments, a self-learning estimator via GBDT (short for SL-GBDT) 

is proposed, as shown in Fig. 1. Because shape parameter plays the great 

role in clutter statical characteristics, it is first estimated in the upper 

branch, where a feature vector independent of scale parameter is 

extracted from the clutter time series and followed by a nonlinear GBDT 

model. In the lower branch, the scale parameter is determined by a shape-

parameter-dependent percentile. At a given estimated shape parameter, 

the scale parameter is estimated by  

   �� = ���(��)�
�
                                       (4) 

where ��,��√�� = 1 −
���/�

�(�)
���2√�� = �(�).  

In the feature extraction, moments and percentiles are jointly exploited, 

as to inherit the advantages of high accuracy and robustness to outliers 

from MoM and MoP respectively. According to Eq. (3), the moment ratio 

is defined by  
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When � = c + d , Eq. (5) is solely determined by shape parameter, 

independent of scale parameter. In this way, four moment ratios are well-

designed by  

�� = �
��
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In Ref. [5], only the MoM estimator using second- and four-order 

moments has simple and explicit expression to estimate shape parameter. 

Similarly, it is proved that the ratio of any different two percentiles is 

solely determined by shape parameter, independent of scale parameter 

[7]. Thus, nine percentile ratios are given by 
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It is noted that all combinations of two percentiles in (7) are selected 

under the criterion of minimum root mean square errors. In this way, both 

moments and percentiles are combined to form a feature vector 

� = [��, ��]�                                      (8) 

Obviously, it is solely determined by the shape parameter v. However, it 

fails to represent a functional expression of � and v, due to high order and 

nonlinear expressions in Eq. (2) and Eq. (3). 

With the help of nonlinear model, the relationship between � and v can 

be established in an implicit way. As a powerful learning algorithm, the 

GBDT [9] can integrate M weak learners of classification and regression 

tree (CART) to achieve accurate prediction by iteratively updating the 

residuals. When the input is a feature vector in Eq. (8), the final output of 

GBDT is denoted as 

�� = ��(�)                                       (9) 

where �� is the mathematical expression of the Mth CART learner.  

 
Fig. 1 Flowchart of the SL-GBDT estimator  
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Assumed that the training set is Ω = {(��, ��), (��, ��), … , ���, ���}, 

where Q is the total number of training samples, x is a feature vector of 

thirteen dimension and y is the true value of shape parameter. The loss 

function is defined by  

�(�, �(�)) = �� − �(�)�
�
                         (10) 

where �(�) is the predicted value of �.Then, the specific steps to train 

parameters of GBDT model are as follows.  

Step1: Initialize ��(�) = arg min� �(��, �).  

Step2: For the mth CART learner, calculate the negative gradient  

��� = − �
�����,�(��)�

��(��)
��

������

, � = 1,2, … , �           (11) 

It forms the mth CART using the Eq. (11), where the corresponding leaf 

node regions are ���, � = 1,2, … , �� . Then, the optimal residual fitting 

value of each leaf node is  

��� = argmin
�

∑ �(��, ����(��) + �)��∈���
            (12) 

In this way, the current learner is ��(�) =  ����(�) + � ∑ ��� �(�� ∈
��
���

  ���). � ∈ [0,1] is the learning rate to reduce the risk of over fitting.  

Step3: Iteratively update all the CARTs.  

Finally, the output of GBDT is given by 

��(�) = ��(�) + � ∑ ∑ �
��

�(� ∈ ���)
��

���
�
���             (13) 

Generally, the parameters of each CART in GBDT are adaptively 

updated according to the training set. Thus, it is a changeling and 

meaningful task to design the training set with high estimation accuracy. 

In K distribution, the different shape parameter v has limited influence on 

clutter PDF curves when �>20, since the clutter time series is close to 

Gaussian distribution. However, a slight change of �  has apparent 

difference in PDF curves when � ≤ 1.5 , and it often suffers great 

estimation loss in heavy-tail clutter. In this way, the training set contains 

samples with shape parameter � ranging from 0.1 to 20 with a step of 0.1, 

as shown in Fig. 2, The number of training samples for each � is 8000 to 

learn the refined characteristics for a small � ≤ 1.5 and the remaining is 

150 samples for each �. At a given �, simulated K-distributed time series 

of the length 10�  is generated to extract a feature vector in (8), as a 

training sample. Finally, the training set contains Q=8000×15+ 

150×185=147750 feature vectors of thirteen dimension. Besides, 

considering the diversity of real clutter environments, 60% training 

samples are from clutter with outliers and others are from clutter without 

outliers, where the outliers are linearly added into the pure clutter [7]. 

 

Fig. 2 Design of training set Ω for GBDT model 

Experimental results: To fully estimate parameters of K distribution, two 

indexes are used. The first index is called relative root mean square error 

(RRMSE) of shape parameter � 

RRMSE(�, ��) = ��[(�� − �)�] �⁄                         (14) 

where �� is the estimated shape parameter and �[∙] is expectation operator. 

It can precisely measure the estimation error of shape parameter under the 

assumption that the real shape parameter is already known. The second 

index is the well-known Kolmogorov-Smirnov distance (KSD) [3, 7] 

KSD��, �; ��, ��� = max
�∈(�,��)

���(�; �, �) − ���; ��, �����       (15) 

where ��, ��  are estimated parameters, �, �  are true parameters. In real 

clutter environments, all true parameters of K-distributed clutter are 

unknown. Thus, the true CDF �(�; �, �)  is usually replaced by the 

empirical CDF of clutter time series. KSD reflects the whole difference 

of and CDF with estimated scale parameter and shape parameter. 

In fact, the estimation precision of shape parameter is heavily 

dependent on the parameters of GBDT model. There are two types of 

parameters. The first type is learning parameters that can be automatically 

studied from training set, such as leaf node regions, residual fitting values 

in Eq. (11) and (12). The second type is structural parameters, including 

number of decision trees M, maximum depth of each tree D, learning rate 

� . Different from the learning parameters, the structural parameters 

determine the structure of GBDT model and play great role in estimation 

accuracy. In Fig. 3a, the values of RRMSE decreases as the number of 

decision trees is increasing, which results from the good performance of 

the combination of weak learners. However, the values of RRMSE 

become to be constant when M> 400. Similarly, in Fig. 3b, the increasing 

of maximum depth of each tree D has little influence on RRMSE when 

D>6. The large values of M and D can guarantee good performance, but 

it can also bring the computational cost. To balance the accuracy and 

computational cost, it is suggested that M=500, D=7, � = 0.01.  
In Fig. 4a, two MoM estimators attain high precision in small shape 

parameters under the clutter environments without outliers, where the 

low-order estimator using the first- and second-order moments (short for 

MoM 1-2) obvious performs better than the high-order estimator using 

the second- and four-order moments (short for MoM 2-4). At a moderate 

v, the TPE estimator [7] with one percentile of 0.9 has the worst 

estimation accuracy. On the whole, the proposed SL-GBDT estimator is 

comparable with two MoM estimators. Especially, there is a great 

improvement of SL-GBDT when v>10, owing to the multiple moments 

in Eq. (6). In terms of the clutter environments with outliers in Fig. 4b, 

 
(a)                                                  (b)  

        
                             (c)                                     

Fig. 4 Performance comparison in simulated K-distribution clutter. 

(a) RRMSE in the clutter environments without outliers and (b) with 

outliers, (c) KSD under different outlier proportions. 
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(a)                                                          (b)  

Fig. 3 Influence of structural parameters on RRMSE. 

(a) Number of decision trees (b) Maximum depth of each tree 
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both MoM 1-2 and MoM 2-4 estimators suffer from great performance 

loss. Additionally, the precision of TPE estimator also decreases, since its 

robustness to outliers is closely related to the percentile set 0.9. In Fig. 

4c, it is clearly that the TPE estimator [7] can only resist the outlier 

proportion lower than 10%. In fact, the setup of percentile in TPE 

estimator [7] is a tradeoff between precision and robustness to outliers, 

since the percentile close to one gives better estimation without outliers 

and it far from one means better robustness to outliers. However, the 

proposed SL-GBDT estimator can maintain its robustness to outliers of 

high power in a wide range, thanks to the combination of different nine 

percentiles ranging from 0.5 to 0.9. Therefore, when the proportion of 

outlier is randomly taken in [5%, 15%], only the proposed SL-GBDT 

estimator can attain the best estimation performance in Fig. 2b.  

The measured data are collected by a shore-based C-band experimental 

radar at the dwelling mode, where resolution range is 30 m, pulse 

repetition frequency is 1000 Hz at HH polarization. Fig. 5a plots range-

time amplitude map, including clutter, outliers and targets. Three regions 

denoted as A, B and C are used, with the outlier proportion of 5.74%, 

2.41%, 0%. In the environments with outliers, the proposed SL-GBDT 

estimator attains about 15% and 56% better performance than TPE 

estimator [7] in Fig. 5b and Fig. 5c respectively. It results from the well-

designed feature vector of moments and percentiles and the nonlinear 

GBDT model to learn the implied expression between shape parameter 

and feature vector. In terms of the clutter environments without outliers 

in Fig. 5d, the MoM 1-2 estimator has the best fitting results, consistent 

with the results in simulated data. The proposed SL-GBDT estimator can 

attain comparable performance, a slightly worse than MoM 1-2 estimator 

and better than MoM 2-4 estimator. Therefore, it is concluded that SL-

GBDT is a potential choice to attain both estimation accuracy and 

robustness in the complicated and various clutter environments. 

For marine radars, what matters is the online test time to estimate 

parameters, rather than the training time. The test time of the proposed 

SL-GBDT estimator is less than 0.2 milliseconds for each test sample, 

comparable with that in the MoM or MoP estimators. Since training 

process can be accomplished in offline mode, it has no influence on 

online estimation. In fact, training time is closely related to the number 

of samples and computer hardware. For example, it takes about 10 

minutes to train 147750 samples in GBDT model, where the experimental 

computer is equipped with Intel (R) Xeon (R) Silver 4210 CPU, 128G 

memory and Python 3.6. Additionally, the training time is bound to 

further decrease with the improvement of computer hardware. Therefore, 

the proposed SL-GBDT estimator can meet the requirements of real-time 

estimation in the practical application for marine radars. 

Conclusion: This letter deals with the parameter estimation in K-

distributed clutter, where SL-GBDT estimator is proposed to jointly 

exploit moments and percentiles. It is verified by simulated data and 

measure data that the proposed estimator can attain best comprehensive 

performance in different clutter environments. In the future work, it is a 

changeling and effective way to develop nonlinear model to learn implicit 

expression of shape parameter. 
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Fig. 5 Fitting cures of four estimators in measured data. 

(a) Amplitude map in range-time plots. Fitting cures in different regions 

of (b) region A, (c) region B and (d) region C. 
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