Bifurcation for an overdetermined problem in the complement of a ball in $\$ \backslash$ mathbb $\{R\}^{\wedge} N \$$

Guowei Dai ${ }^{1}$ and Fang Liu ${ }^{1}$

${ }^{1}$ Dalian University of Technology
August 19, 2022

Abstract

We investigate the existence of a family nontrivial exterior domain $\$ \backslash$ tilde $\{\backslash$ Omega $\} \backslash$ subset $\backslash \operatorname{mathbb}\{R\}^{\wedge}\{N\} \$ \$ \backslash \operatorname{left}(N \backslash \operatorname{geq} 2$, $\mathrm{N} \backslash$ neq3 \langle right) $\$$, bifurcating from the complement of a ball such that \backslash begin $\{$ equation $\} \backslash$ Delta $u=0 \backslash, \backslash, \backslash$ text $\{$ in $\} \backslash, \backslash, \backslash$ tilde $\{\backslash$ Omega $\}$, \backslash, \backslash, u=u_0, $\backslash, \backslash, \backslash$ partial_ \backslash nu u $=\backslash$ gamma H+C_0 $\backslash, \backslash, \backslash \operatorname{text}\{$ on $\} \backslash, \backslash, \backslash$ partial \backslash tilde $\{\backslash$ Omega $\}, \backslash, \backslash, \backslash, \backslash \lim _\{r \backslash \text { rightarrow }+\backslash i n f t y\} u=0 \backslash, \backslash$, \backslash text $\{$ or $\} \backslash, \backslash,+\backslash$ infty \backslash nonumber \backslash end $\{$ equation $\}$ has a positive solution, where the Neumann condition is non-constant with $\$ H \$$ is mean curvature and $\$ \backslash$ gamma $\$, \$ \mathrm{C} _0 \$$ are constants. This result gives a negative answer to the Berestycki-Caffarelli-Nirenberg conjecture on overdetermined elliptic problems in the complement of the ball.

Hosted file

Bifurcation for an overdetermined problem.tex available at https://authorea.com/users/502215/ articles/582349-bifurcation-for-an-overdetermined-problem-in-the-complement-of-a-ball-in-mathbb-r-n

Bifurcation for an overdetermined problem in the complement of a ball in $\mathbb{R}^{N *}$

Guowei Dai ${ }^{\dagger}$ Fang Liu
School of Mathematical Sciences, Dalian University of Technology, Dalian, 116024, P.R. China

Abstract

We investigate the existence of a family nontrivial exterior domain $\tilde{\Omega} \subset \mathbb{R}^{N}$ ($N \geq 2, N \neq 3$), bifurcating from the complement of a ball such that $$
\Delta u=0 \text { in } \tilde{\Omega}, u=u_{0}, \partial_{\nu} u=\gamma H+C_{0} \text { on } \partial \tilde{\Omega}, \lim _{r \rightarrow+\infty} u=0 \text { or }+\infty
$$ has a positive solution, where the Neumann condition is non-constant with H is mean curvature and γ, C_{0} are constants. This result gives a negative answer to the Berestycki-Caffarelli-Nirenberg conjecture on overdetermined elliptic problems in the complement of the ball.

Keywords: Overdetermined problem; Bifurcation; Neumann boundary AMS Subjection Classification(2020): 35N10; 37G10; 47J15

1 Introduction

Consider the following overdetermined problem

$$
\begin{cases}\Delta u+f(u)=0 & \text { in } \Omega \tag{1.1}\\ u=0 & \text { on } \partial \Omega, \\ \partial_{\nu} u=\text { const } & \text { on } \partial \Omega,\end{cases}
$$

where ν is the unit outer normal on $\partial \Omega$. In 1971, J. Serrin [11] proved that, if $\Omega \subset \mathbb{R}^{N}$ was a bounded domain of class C^{2} such that problem (1.1) with $f(s) \equiv 1$ admitted a solution, Ω was a ball. Problem (1.1) arises, for example, in fluid dynamics [12] and the linear theory of torsion of a solid straight bar of cross section [13]. Serrin's proof was

[^0]inspired by Aleksandrov's reflection principle [1] for constant mean curvature hypersurfaces. The reflection principle was also used by Gidas, Ni and Nirenberg [6] to derive radial symmetry results for positive solutions of semilinear elliptic equations. After that paper the reflection principle was called the moving plane method.

There are many papers deals with the classifying of domains such that problem (1.1) has a bounded positive solution. In particular, Berestycki, Caffarelli and Nirenberg [2] conjectured that if $f:[0,+\infty) \rightarrow \mathbb{R}$ is a Lipschitz function on a domain Ω in \mathbb{R}^{N} such that $\mathbb{R}^{N} \backslash \bar{\Omega}$ is connected, then the existence of a bounded positive solution to problem (1.1) implies that Ω is a ball, or a half-space, or the complement of a ball, or a generalized cylinder $B^{k} \times \mathbb{R}^{N-k}$, where B^{k} is a round ball in \mathbb{R}^{k}.

Recently, Filippo Morabito [10] obtained nontrivial exterior domains in \mathbb{R}^{3} such that problem (1.1) with $f(s) \equiv 0$ and non-constant Neumann condition has nontrivial solutions. Morabito's work supports the solution of this overdetermined problem, so it is of great significance to the counter example of BCN's conjecture. Concretely, consider the overdetermined problems with non-constant Neumann condition involving the mean curvature on an exterior domain

$$
\begin{cases}\Delta u=0 & \text { in } \mathbb{R}^{N} \backslash \Omega, \tag{1.2}\\ u=u_{0} & \text { on } \partial \Omega, \\ \frac{\partial u}{\partial \nu}=\gamma H+C & \text { on } \partial \Omega, \\ \lim _{|x| \rightarrow+\infty} u=0 \text { or }+\infty, & \end{cases}
$$

where H is the mean curvature and ν is the unit outward normal about $\partial \Omega, u_{0}, C, \gamma$ are constants. Ω is the ball of radius R_{0} centred at the origin in $\mathbb{R}^{N}(N \geq 2, N \neq 3)$. When $N \geq 4, \lim _{|x| \rightarrow+\infty} u=0$. When $N=2, \lim _{|x| \rightarrow+\infty} u=+\infty$. We obtain the existence of a family of bifurcation branches of domain is small perturbations of $\mathbb{R}^{N} \backslash \Omega$ which support solution of problem below

$$
\begin{cases}\Delta u=0 & \text { in } \mathbb{R}^{N} \backslash \tilde{\Omega} \tag{1.3}\\ u=u_{0} & \text { on } \partial \tilde{\Omega} \\ \frac{\partial u}{\partial \nu}-\gamma H=C_{0} & \text { on } \partial \tilde{\Omega}, \\ \lim _{r \rightarrow+\infty} u=\text { or }+\infty . & \end{cases}
$$

This problem relates to electrodynamics [4, 9]. The aim of this paper is to extend the corresponding results of [10] into the general dimensional $N \geq 2, \neq 3$. When $N \geq 4$, under the spherical coordinates, there are $n-1$ angle variable, while the free boundary transformation of [10] relies only on the one angle variable. To overcome this difficulty, we introduce G invariant group into the high dimensional problem. There are also some difficulties with Green's function for $N \geq 4$ when we solve poisson's equation. We use the Fourier expansion about spherical harmonics functions to overcome these. The method we will used is some different for the cases of $N \geq 4$ and $N=2$. So we deal with the two cases separately.

We first give some notations about Laplace operator in the spherical coordinates, orthogonal group and work spaces. If we use the spherical coordinates (r, φ), where $\varphi=\left(\varphi_{1}, \varphi_{2}, \cdots, \varphi_{N-1}\right)$, from Appendix we see that the equation $\Delta u=0$ can be written as

$$
\Delta u=\frac{\partial^{2} u}{\partial r^{2}}+\frac{N-1}{r} \frac{\partial u}{\partial r}+\sum_{k=1}^{N-1} \frac{\partial^{2} u}{\partial \varphi_{k}^{2}} \frac{1}{r^{2} p_{k}^{2}}+\sum_{k=1}^{N-2} \frac{\partial u}{\partial \varphi_{k}} \frac{(N-k-1) \cot \varphi_{k}}{r^{2} p_{k}^{2}}=0
$$

where $p_{k}=\sin \varphi_{1} \sin \varphi_{2} \cdots \sin \varphi_{k-1}$. Let \mathbb{S}^{N-1} be the unit sphere in \mathbb{R}^{N} with the spherical coordinates metric.

Let $O(N-1)$ be the group consisting of $(N-1) \times(N-1)$ orthogonal matrices, and let G be the subgroup of $O(N-1)$ consisting of those elements which fix $e_{N-1}=$ $(1,0, \ldots, 0)$. We say a function v defined on \mathbb{S}^{N-1} is G-invariant if $v(O \varphi)=v(\varphi)$ for $\varphi \in \mathbb{S}^{N-1}$ and $O \in G$. It is clear that a G-invariant function v on \mathbb{S}^{N-1} can be written as $v(\varphi)=\widetilde{v}\left(\varphi_{1}\right)$ for some function \widetilde{v} defined on $[0, \pi]$, where φ_{1} denotes the first coordinate of φ. In the following, given a G-invariant function v on \mathbb{S}^{N-1}, we will always use \widetilde{v} to denote the corresponding function defined on $[0, \pi]$ such that $v(\varphi)=\widetilde{v}\left(\varphi_{1}\right)$.

Let

$$
\begin{aligned}
X^{m+2, \alpha}:= & \left\{f(\varphi) \in C^{m+2, \alpha}\left([0, \pi]^{N-2} \times[0,2 \pi]\right), f \text { is } G-\right.\text { invariant } \\
& \left.\pi-\text { periodic in } \varphi_{1}, \varphi_{2}, \cdots, \varphi_{N-2} \text { and } 2 \pi-\text { periodic in, } \varphi_{N-1}\right\},
\end{aligned}
$$

with $m \geqslant 1 . X_{G, 1}^{m+2, \alpha}=\overline{\left\{h \tilde{Y}_{l}\left(\varphi_{1}\right), l \geqslant 0, \text { all } h \in \mathbb{R}\right\}} \subseteq X_{G}^{m+2, \alpha}$,

$$
\tilde{X}_{G}^{m+2, \alpha}:=\left\{f \in C_{G}^{m+2, \alpha}\left(\mathbb{R}^{N} \backslash \Omega\right), \text { such that } f(r, \varphi) \in X_{G}^{m+2, \alpha}, \forall r \in\left[R_{0},+\infty\right)\right\}
$$

and

$$
\tilde{X}_{G, 1}^{m+2, \alpha}:=\left\{f \in C_{G}^{m+2, \alpha}\left(\mathbb{R}^{N} \backslash \Omega\right), \text { such that } f(r, \varphi) \in X_{G, 1}^{m+2, \alpha}, \forall r \in\left[R_{0},+\infty\right)\right\}
$$

The rest of this paper is arranged as follows. In Section 2, we study the case of $N \geq 4$. In Section 3 is devoted to the case of $N=2$.

2 The case of $N \geq 4$

Clearly, $u_{0}\left(\frac{R_{0}}{r}\right)^{N-2}:=u_{*}$ is a solution of problem (1.2). Calculate the value of the constant C can be seen as follows. Since

$$
\frac{\partial u_{*}}{\partial \nu}\left|\partial \Omega=\frac{\partial u_{*}}{\partial r}\right| r=R_{0}=\frac{\partial}{\partial r}\left[u_{0}\left(\frac{R_{0}}{r}\right)^{N-2}\right]_{\mid r=R_{0}}=-\frac{(N-2) u_{0}}{R_{0}}
$$

and $H=-1 / R_{0}$, one has that

$$
C=\frac{\partial u}{\partial \nu} \left\lvert\, \partial \Omega-\gamma H_{\mid \partial \Omega}=\frac{\gamma-(N-2) u_{0}}{R_{0}}\right.:=C_{0} .
$$

The domain $\tilde{\Omega}$ satisfies the following structure

$$
\Omega_{x}:=\left\{r \leqslant R_{0}+x\left(\varphi_{1}\right)\right\}
$$

with $x\left(\varphi_{1}\right)=\varepsilon \widetilde{Y}_{l}\left(\varphi_{1}\right)+\sum_{k=2}^{m+1} \varepsilon^{k} \Lambda_{l k}\left(\varphi_{1}\right)+O\left(\varepsilon^{m+2}\right)$, where ε is small, $Y_{l}(\varphi)=\widetilde{Y}_{l}\left(\varphi_{1}\right)$ (with $\left\|\widetilde{Y}_{l}\right\|_{L^{2}}=1$) denotes the real-valued spherical harmonic functions. The value of the corresponding parameter γ are

$$
\gamma=\gamma_{l}+\sum_{k=1}^{m} \varepsilon^{k} \gamma_{l k}+O\left(\varepsilon^{m+1}\right)
$$

where $l \in \mathbb{N}, l \neq 1$,

$$
\gamma_{l}:=\frac{2 u_{0}\left[(N-2) l+(N-2)^{2}-(N-1)\right]}{l^{2}+(N-2) l-(N-1)}
$$

and $\gamma_{l k}$ is the coefficient of higher order terms.
The main result is the following theorem:

Theorem 2.1. Suppose $N \geq 4$ and $l \in \mathbb{N}, l \neq 1$. For each value of γ_{l}, there exists a C^{∞} bifurcation branch of solutions to the free boundary problem (1.3) with free boundary $\partial \tilde{\Omega}$ in $C^{m+2, \alpha}$ of the form

$$
\left\{r=R_{0}+\varepsilon \tilde{Y}_{l}\left(\varphi_{1}\right)+\sum_{k=2}^{m+1} \varepsilon^{k} \Lambda_{l k}\left(\varphi_{1}\right)+O\left(\varepsilon^{m+2}\right)\right\}
$$

with

$$
\gamma(\varepsilon)=\gamma_{l}+\sum_{k=1}^{m} \varepsilon^{k} \gamma_{l k}+O\left(\varepsilon^{m+1}\right)
$$

and $m \geqslant 1$.

Solving (1.3) is equal to solving problem

$$
\begin{cases}\Delta u=0 & \text { in } \mathbb{R}^{N} \backslash \Omega_{x} \tag{2.1}\\ u=u_{0} & \text { on } \partial \Omega_{x} \\ \lim _{r \rightarrow+\infty} u=0, & \end{cases}
$$

and

$$
\begin{equation*}
F(x, \gamma):=\frac{\partial u}{\partial \nu} \left\lvert\, \partial \Omega_{x}-\gamma H_{\mid \partial \Omega_{x}}+\frac{(N-2) u_{0}}{R_{0}}-\frac{\gamma}{R_{0}}=0 .\right. \tag{2.2}
\end{equation*}
$$

Since u_{*} satisfies the above equation when $x \equiv 0, F(0, \gamma)=0$ for any γ. Therefore, finding nontrivial domains emanating from $B_{R_{0}}^{c}$ such that the problem (1.3) has a bounded positive solution is equivalent to study the the nontrivial solutions of $F(x, \gamma)=0$.

We divide our arguments into two steps. In the next subsection we first study the existence of (2.1). Then, by the Crandall-Rabinowitz Bifurcation Theorem, we prove Theorem 2.1 by studying the operator equation $F(x, \gamma)=0$.

2.1 A Dirichlet problem

In condition $\Omega_{x}=\left\{r \leqslant R_{0}+x(\varphi), x(\varphi)=\varepsilon S(\varphi)\right\}$, applying the transformation

$$
\begin{equation*}
u(r, \varphi)=u_{0}\left(\frac{R_{0}}{r}\right)^{N-2}+\bar{u}(r, \varphi) \tag{2.3}
\end{equation*}
$$

to the problem of (2.1), we can get

$$
\begin{cases}\Delta \bar{u}=0 & \text { in } \mathbb{R}^{N} \backslash \Omega_{x} \tag{2.4}\\ \bar{u}=u_{0} \frac{\left(R_{0}+\varepsilon S(\varphi)\right)^{N-2}-R_{0}^{N-2}}{\left(R_{0}+\varepsilon S(\varphi)\right)^{N-2}} & \text { on } \partial \Omega_{x} \\ \lim _{r \rightarrow+\infty} \bar{u}=0 & \end{cases}
$$

In order to go from Ω_{x} to the fixed domain of the ball of radius R_{0}, we take the Hanzawa transformation W:

$$
\left\{\begin{array}{l}
r=\tilde{r}+\chi\left(R_{0}-\tilde{r}\right) \varepsilon S(\varphi) \tag{2.5}\\
\varphi=\tilde{\varphi}
\end{array}\right.
$$

where χ is a cutoff function identically equal to 1 when $|y| \leq 1 / 4 a$ and identically equal to 0 when $|y| \geq 3 / 4 a$ with $\left|\frac{\mathrm{d}^{k} \gamma}{\mathrm{~d} t^{k}}\right| \leq C a^{-k}, a>0$ small.

To get $\frac{\partial \tilde{r}}{\partial r}$ and $\frac{\partial^{2} \tilde{r}}{\partial r^{2}}$, we take the derivative of (2.5) with respect to r, so we have

$$
\frac{\partial \tilde{r}}{\partial r}-\frac{\mathrm{d} \chi\left(R_{0}-\tilde{r}\right)}{\mathrm{d} \tilde{r}} \frac{\partial \tilde{r}}{\partial r} \varepsilon S(\varphi)=1
$$

It's not difficult to deduce that

$$
\begin{aligned}
\frac{\partial \tilde{r}}{\partial r} & =\frac{1}{1-\varepsilon \frac{\mathrm{d} \chi\left(R_{0}-\tilde{r}\right)}{\mathrm{d} \tilde{r}} S}, \\
\frac{\partial^{2} \tilde{r}}{\partial r^{2}} & =-\frac{\chi^{\prime \prime}\left(R_{0}-\tilde{r}\right) \varepsilon S}{\left(1-\varepsilon \chi^{\prime}\left(R_{0}-\tilde{r}\right) S\right)^{3}},
\end{aligned}
$$

where χ^{\prime} is the first order derivative of χ and $\chi^{\prime \prime}$ is the second order derivative of χ. These two are evaluated at $t=R_{0}-\tilde{r}$. To get $\frac{\partial \tilde{r}}{\partial \varphi_{k}}$ and $\frac{\partial^{2} \tilde{r}}{\partial \varphi_{k}^{2}}$, we take the derivative of (2.5) with respect to $\varphi_{k}=\tilde{\varphi_{k}}(1 \leq k \leq N-1)$, so we have

$$
\frac{\partial \tilde{r}}{\partial \varphi_{k}}-\frac{\mathrm{d} \chi\left(R_{0}-\tilde{r}\right)}{\mathrm{d} \tilde{r}} \frac{\partial \tilde{r}}{\partial \varphi_{k}} \varepsilon S(\varphi)+\varepsilon \chi\left(R_{0}-\tilde{r}\right) \frac{\partial S}{\partial \tilde{\varphi}_{k}}=0
$$

It's not difficult to deduce that

$$
\begin{aligned}
\frac{\partial \tilde{r}}{\partial \varphi_{k}}= & -\frac{\chi\left(R_{0}-\tilde{r}\right) \varepsilon \frac{\partial S}{\partial \tilde{q}_{k}}}{1-\varepsilon \frac{\mathrm{d} \chi\left(R_{0}-\tilde{r}\right)}{\mathrm{d} \tilde{r}} S}, \\
\frac{\partial^{2} \tilde{r}}{\partial \varphi_{k}^{2}}= & -\frac{\chi^{\prime \prime}\left(R_{0}-\tilde{r}\right) \chi^{2}\left(R_{0}-\tilde{r}\right) \varepsilon^{3} S\left(\frac{\partial S}{\partial \tilde{\varphi}_{k}}\right)^{2}}{\left(1-\varepsilon \chi^{\prime}\left(R_{0}-\tilde{r}\right) S\right)^{3}}-\frac{2 \varepsilon^{2} \chi^{\prime}\left(R_{0}-\tilde{r}\right) \chi\left(\frac{\partial S}{\partial \tilde{\varphi}_{k}}\right)^{2}}{\left(1-\varepsilon \chi^{\prime}\left(R_{0}-\tilde{r}\right) S\right)^{2}} \\
& -\frac{\varepsilon \chi\left(R_{0}-\tilde{r}\right) \frac{\partial^{2} S}{\partial \tilde{\varphi}_{k}^{2}}}{\left(1-\varepsilon \chi^{\prime}\left(R_{0}-\tilde{r}\right) S\right)} .
\end{aligned}
$$

Letting

$$
\tilde{u}(\tilde{r}, \tilde{\varphi}):=\bar{u} \circ W,
$$

then one has that

$$
\begin{aligned}
\frac{\partial u}{\partial r} & =\frac{\partial \tilde{u}}{\partial \tilde{r}} \frac{\partial \tilde{r}}{\partial r} \\
\frac{\partial^{2} u}{\partial r^{2}} & =\frac{\partial^{2} \tilde{u}}{\partial \tilde{r}^{2}}\left(\frac{\partial \tilde{r}}{\partial r}\right)^{2}+\frac{\partial \tilde{u}}{\partial \tilde{r}} \frac{\partial^{2} \tilde{r}}{\partial r^{2}} \\
\frac{\partial u}{\partial \varphi_{k}} & =\frac{\partial \tilde{u}}{\partial \tilde{\varphi}_{k}}+\frac{\partial \tilde{u}}{\partial \tilde{r}} \frac{\partial \tilde{r}}{\partial \varphi_{k}} \\
\frac{\partial^{2} u}{\partial \varphi_{k}^{2}} & =\frac{\partial^{2} \tilde{u}}{\partial \tilde{\varphi}_{k}^{2}}+2 \frac{\partial^{2} \tilde{u}}{\partial \tilde{r} \partial \tilde{\varphi}_{k}} \frac{\partial \tilde{r}}{\partial \varphi_{k}}+\frac{\partial \tilde{u}}{\partial \tilde{r}} \frac{\partial^{2} \tilde{r}}{\partial \varphi_{k}^{2}}+\frac{\partial^{2} \tilde{u}}{\partial \tilde{r}^{2}}\left(\frac{\partial \tilde{r}}{\partial \varphi_{k}}\right)^{2}
\end{aligned}
$$

We compute the Laplace operator in coordinates $(\widetilde{r}, \widetilde{\varphi})$ as follows:

$$
\begin{aligned}
\Delta u= & \frac{\partial^{2} u}{\partial r^{2}}+\frac{N-1}{r} \frac{\partial u}{\partial r}++\sum_{k=1}^{N-1} \frac{\partial^{2} u}{\partial \varphi_{k}^{2}} \frac{1}{r^{2} p_{k}^{2}}+\sum_{k=1}^{N-2} \frac{\partial u}{\partial \varphi_{k}} \frac{(N-k-1) \cot \varphi_{k}}{r^{2} p_{k}^{2}} \\
= & \frac{\partial^{2} \tilde{u}}{\partial \tilde{r}^{2}}\left(\frac{\partial \tilde{r}}{\partial r}\right)^{2}+\frac{\partial \tilde{u}}{\partial \tilde{r}} \frac{\partial^{2} \tilde{r}}{\partial r^{2}}+\frac{N-1}{r} \frac{\partial \tilde{u}}{\partial \tilde{r}} \frac{\partial \tilde{r}}{\partial r} \\
& +\sum_{k=1}^{N-1}\left[\frac{\partial^{2} \tilde{u}}{\partial \tilde{\varphi}_{k}^{2}}+2 \frac{\partial^{2} \tilde{u}}{\partial \tilde{r} \partial \tilde{\varphi}_{k}} \frac{\partial \tilde{r}}{\partial \varphi_{k}}+\frac{\partial \tilde{u}}{\partial \tilde{r}} \frac{\partial^{2} \tilde{r}}{\partial \varphi_{k}^{2}}+\frac{\partial^{2} \tilde{u}}{\partial \tilde{r}^{2}}\left(\frac{\partial \tilde{r}}{\partial \varphi_{k}}\right)^{2}\right] \frac{1}{r^{2} \tilde{p}_{k}^{2}} \\
& +\sum_{k=1}^{N-2}\left[\frac{\partial \tilde{u}}{\partial \tilde{\varphi}_{k}}+\frac{\partial \tilde{u}}{\partial \tilde{r}} \frac{\partial \tilde{r}}{\partial \varphi_{k}}\right] \frac{(N-k-1) \cot \tilde{\varphi}_{k}}{r^{2} \tilde{p}_{k}^{2}} \\
= & \frac{\partial^{2} \tilde{u}}{\partial \tilde{r}^{2}}\left[\left(\frac{\partial \tilde{r}}{\partial r}\right)^{2}+\sum_{k=1}^{N-1}\left(\frac{\partial \tilde{r}}{\partial \varphi_{k}}\right)^{2} \frac{1}{r^{2} \tilde{p}_{k}^{2}}\right] \\
& +\frac{\partial \tilde{u}}{\partial \tilde{r}}\left[\frac{\partial^{2} \tilde{r}}{\partial r^{2}}+\frac{N-1}{r} \frac{\partial \tilde{r}}{\partial r}+\sum_{k=1}^{N-1} \frac{\partial^{2} \tilde{r}}{\partial \varphi_{k}^{2}} \frac{1}{r^{2} \tilde{p}_{k}^{2}}+\sum_{k=1}^{N-2} \frac{\partial \tilde{r}}{\partial \varphi_{k}} \frac{(N-k-1) \cot \tilde{\varphi}_{k}}{r^{2} \tilde{p}_{k}^{2}}\right] \\
& +\sum_{k=1}^{N-1} \frac{\partial^{2} \tilde{u}}{\partial \tilde{\varphi}_{k}^{2}}\left[\frac{1}{r^{2} \tilde{p}_{k}^{2}}\right]+\sum_{k=1}^{N-1} \frac{\partial^{2} \tilde{u}}{\partial \tilde{r} \partial \tilde{\varphi}_{k}}\left[2 \frac{\partial \tilde{r}}{\partial \varphi_{k}} \frac{1}{r^{2} \tilde{p}_{k}^{2}}\right]+\sum_{k=1}^{N-2} \frac{\partial \tilde{u}}{\partial \tilde{\varphi}_{k}}\left[\frac{(N-k-1) \cot \tilde{\varphi}_{k}}{r^{2} \tilde{p}_{k}^{2}}\right] \\
= & \frac{\partial^{2} \tilde{u}}{\partial \tilde{r}^{2}}\left[1+\varepsilon\left(2 \chi^{\prime} S\right)\right]+\frac{\partial \tilde{u}}{\partial \tilde{r}}\left[\varepsilon\left(-\chi^{\prime \prime} S\right)+(N-1)\left(\frac{1}{\tilde{r}}+\varepsilon \frac{\tilde{r} \chi^{\prime} S-\chi S}{\tilde{r}^{2}}\right)\right. \\
& \left.+\sum_{k=1}^{N-1} \varepsilon\left(-\chi \frac{\partial^{2} S}{\partial \tilde{\varphi}_{k}^{2}} \frac{1}{\tilde{r}^{2} \tilde{p}_{k}^{2}}\right)+\sum_{k=1}^{N-2} \varepsilon\left(-\chi \frac{\partial S}{\partial \tilde{\varphi}_{k}} \frac{(N-k-1) \cot \tilde{\varphi}_{k}}{\tilde{r}^{2} \tilde{p}_{k}^{2}}\right)\right] \\
& +\sum_{k=1}^{N-1} \frac{\partial^{2} \tilde{u}}{\partial \tilde{\varphi}_{k}^{2}}\left[\frac{1}{\tilde{r}^{2} \tilde{p}_{k}^{2}}+\varepsilon \frac{-2 \chi S}{\tilde{r}^{3} \tilde{p}_{k}^{2}}\right]+\sum_{k=1}^{N-1} \frac{\partial^{2} \tilde{u}}{\partial \tilde{r} \partial \tilde{\varphi}_{k}}\left[\varepsilon\left(-2 \chi \frac{\partial S}{\partial \tilde{\varphi}_{k}} \frac{1}{\tilde{r}^{2} \tilde{p}_{k}^{2}}\right)\right] \\
& +\sum_{k=1}^{N-2} \frac{\partial \tilde{u}}{\partial \tilde{\varphi}_{k}}\left[\frac{(N-k-1) \cot \tilde{\varphi}_{k}}{\tilde{r}^{2} \tilde{p}_{k}^{2}}+\varepsilon\left(\frac{-2 \chi S}{\tilde{r}^{3}} \times \frac{(N-k-1) \cot \tilde{\varphi}_{k}}{\tilde{r}^{2} \tilde{p}_{k}^{2}}\right)\right]+O\left(\varepsilon^{2}\right),
\end{aligned}
$$

so we can get

$$
\Delta=\tilde{\Delta}+\varepsilon\left(A_{1}+A_{2}+A_{3}+A_{4}\right)+\varepsilon^{2} B
$$

where

$$
\begin{aligned}
\tilde{\Delta} \tilde{u}(\tilde{r}, \tilde{\varphi}) & =\frac{\partial^{2} \tilde{u}}{\partial \tilde{r}^{2}}+\frac{N-1}{\tilde{r}} \frac{\partial \tilde{u}}{\partial \tilde{r}}+\sum_{k=1}^{N-1} \frac{\partial^{2} \tilde{u}}{\partial \tilde{\varphi}_{k}^{2}} \frac{1}{\tilde{r}^{2} \tilde{p}_{k}^{2}}+\sum_{k=1}^{N-2} \frac{\partial \tilde{u}}{\partial \tilde{\varphi}_{k}} \frac{(N-k-1) \cot \tilde{\varphi}_{k}}{\tilde{r}^{2} \tilde{p}_{k}^{2}}, \\
\tilde{p}_{k} & =\sin \tilde{\varphi}_{1} \sin \tilde{\varphi}_{2} \cdots \sin \tilde{\varphi}_{k-1}
\end{aligned}
$$

and

$$
\begin{aligned}
& A_{1}:=S\left[2 \chi^{\prime} \frac{\partial^{2}}{\partial \tilde{r}^{2}}+\chi^{\prime} \frac{N-1}{\tilde{r}} \frac{\partial}{\partial \tilde{r}}-\chi^{\prime \prime} \frac{\partial}{\partial \tilde{r}}-\chi \frac{N-1}{\tilde{r}^{2}} \frac{\partial}{\partial \tilde{r}}\right] \\
& A_{2}:=-2 \frac{\chi S}{\tilde{r}^{3}}\left[\sum_{k=1}^{N-1} \frac{\partial^{2}}{\partial \tilde{\varphi}_{k}^{2}} \frac{1}{\tilde{p}_{k}^{2}}+\sum_{k=1}^{N-2} \frac{\partial}{\partial \tilde{\varphi}_{k}} \frac{(N-k-1) \cot \tilde{\varphi}_{k}}{\tilde{p}_{k}^{2}}\right], \\
& A_{3}:=-\frac{\chi}{\tilde{r}^{2}}\left[\sum_{k=1}^{N-1} \frac{\partial^{2} S}{\partial \tilde{\varphi}_{k}^{2}} \frac{1}{\tilde{p}_{k}^{2}}+\sum_{k=1}^{N-2} \frac{\partial S}{\partial \tilde{\varphi}_{k}} \frac{\left.(N-k-1) \cot \tilde{\varphi}_{k}\right]}{\tilde{p}_{k}^{2}}\right] \frac{\partial}{\partial \tilde{r}}, \\
& A_{4}:=-\frac{2 \chi}{\tilde{r}^{2}}\left[\sum_{k=1}^{N-1} \frac{\partial S}{\partial \tilde{\varphi}_{k}} \frac{1}{\tilde{p}_{k}^{2}}\right] \frac{\partial^{2}}{\partial \tilde{r} \partial \tilde{\varphi}_{k}} .
\end{aligned}
$$

B changes with the variable ε respectively, which is the series expands higher-order terms of Laplace operator.

So by the transformation W, problem (2.4) becomes

$$
\begin{cases}\tilde{\Delta} \tilde{u}(\tilde{r}, \tilde{\varphi})=\varepsilon J(\tilde{r}, \tilde{\varphi}) & \text { in } \mathbb{R}^{N} \backslash \Omega \tag{2.6}\\ \tilde{u}\left(R_{0}, \tilde{\varphi}\right)=g(\tilde{\varphi}) & \text { on } \partial \Omega \\ \lim _{\tilde{r} \rightarrow+\infty} \tilde{u}(\tilde{r}, \tilde{\varphi})=0 & \end{cases}
$$

with

$$
J(\tilde{r}, \tilde{\varphi})=-\sum_{i=1}^{4} A_{i} \tilde{u}(\tilde{r}, \tilde{\varphi})-\varepsilon B \tilde{u}(\tilde{r}, \tilde{\varphi})
$$

and

$$
\begin{align*}
g(\tilde{\varphi}) & =u_{0} \frac{\left(R_{0}+\varepsilon S(\tilde{\varphi})\right)^{N-2}-R_{0}^{N-2}}{\left(R_{0}+\varepsilon S(\tilde{\varphi})\right)^{N-2}} \\
& =u_{0}\left[C_{N-2}^{1} \frac{\varepsilon S}{R_{0}}+C_{N-2}^{2} \frac{\varepsilon^{2} S^{2}}{R_{0}^{2}}+O\left(\varepsilon^{3}\right)\right]\left(1-\varepsilon \frac{S}{R_{0}}+O\left(\varepsilon^{2}\right)\right)^{N-2} \\
& =u_{0}\left[(N-2) \varepsilon \frac{S}{R_{0}}+C_{N-2}^{2} \frac{\varepsilon^{2} S^{2}}{R_{0}^{2}}-(N-2)^{2} \varepsilon^{2} \frac{S^{2}}{R_{0}^{2}}+O\left(\varepsilon^{3}\right)\right] . \tag{2.7}
\end{align*}
$$

The Poisson equation of (2.6) contains the solution \tilde{u} in integral form ([7])

$$
\begin{equation*}
\tilde{u}=-\int_{\partial \Omega} \frac{\partial G}{\partial \nu} g d \sigma^{\prime \prime}-\int_{\mathbb{R}^{N} \backslash \Omega} G \varepsilon J d v o l^{\prime \prime} \tag{2.8}
\end{equation*}
$$

where $G=G\left(\tilde{r}, \tilde{\varphi}, r^{\prime \prime}, \varphi^{\prime \prime}\right)$ is the Green function for (2.6) in $\mathbb{R}^{N} \backslash \Omega$. $\tilde{x}=(\tilde{r}, \tilde{\varphi}), x^{\prime \prime}=$ $\left(r^{\prime \prime}, \varphi^{\prime \prime}\right)$ are points on $\mathbb{R}^{N} \backslash \Omega$. So we can use the simpler notation $G\left(\tilde{x}, x^{\prime \prime}\right) . G$ has the representation:

$$
G\left(\tilde{x}, x^{\prime \prime}\right)=\frac{1}{N(N-2) \omega_{N}} \frac{1}{\left|\tilde{x}-x^{\prime \prime}\right|^{N-2}}-\frac{1}{N(N-2) \omega_{N}}\left(\frac{R_{0}}{|\tilde{x}|}\right)^{N-2} \frac{1}{r_{1}^{N-2}},
$$

where

$$
r_{1}=\sqrt{\left(\frac{R_{0}^{2}}{|\tilde{x}|}\right)^{2}+\left|x^{\prime \prime}\right|^{2}-2 R_{0}^{2} \frac{\left|x^{\prime \prime}\right|}{|\tilde{x}|} \cos \zeta}
$$

with $\cos \zeta=\frac{x^{\prime \prime} \cdot \tilde{x}}{\left\|x^{\prime \prime}\right\|\| \| \tilde{x} \|}$ and ω_{N} is the surface area of an N-dimensional unit sphere. Similar to [10] by Banach's Fixed Point Theorem, the existence and uniqueness of solution to problem (2.8) can be proved.

From (2.7) and (2.8) we immediately get $\tilde{u}=O(\varepsilon)$, and then we get $\sum_{i=1}^{4} A_{i} \tilde{u}(\tilde{r}, \tilde{\varphi})=$ $O(\varepsilon)$, so

$$
\begin{equation*}
\tilde{u}=-\int_{\partial \Omega} \frac{\partial G}{\partial \nu} g d \sigma^{\prime \prime}+O\left(\varepsilon^{2}\right) . \tag{2.9}
\end{equation*}
$$

Since $\tilde{u} \in \tilde{X}_{G}^{m+2, \alpha}$, then $\left.\frac{\partial u}{\partial \nu} \right\rvert\, \partial \Omega_{x} \in \tilde{X}_{G}^{m+1, \alpha}$, so the F of (2.2) satisfies not only $F: X_{G}^{m+2, \alpha} \times$ $\mathbb{R} \rightarrow X_{G}^{m, \alpha}$ but also $F: X_{G, 1}^{m+2, \alpha} \times \mathbb{R} \rightarrow X_{G, 1}^{m, \alpha}$ when $x=x\left(\varphi_{1}\right)=\varepsilon S\left(\varphi_{1}\right)$.

By the [8, Proposition 3.2.11], we have the real-valued spherical harmonics form under the G invariant group

$$
g_{1}(\tilde{\varphi})=\sum_{l=0}^{+\infty} a_{l} \widetilde{Y}_{l}\left(\tilde{\varphi}_{1}\right), \quad \forall g_{1} \in X_{G}^{m+2, \alpha}, a_{l}=\int_{0}^{\pi} \widetilde{g}_{1}\left(\tilde{\varphi}_{1}\right) \widetilde{Y}_{l}\left(\tilde{\varphi}_{1}\right) \mathrm{d} \tilde{\varphi}_{1}
$$

According to [8, Proposition 3.3.13], the first term of (2.9) can be written as the realvalued spherical harmonics expansion

$$
-\int_{\partial \Omega} \frac{\partial G}{\partial \nu} g(\tilde{\varphi}) \mathrm{d} \sigma^{\prime \prime}=\sum_{l=0}^{\infty}\left(\frac{R_{0}}{\tilde{r}}\right)^{l+N-2} b_{l} \widetilde{Y}_{l}\left(\tilde{\varphi}_{1}\right), b_{l}=\int_{0}^{\pi} \widetilde{g}\left(\tilde{\varphi}_{1}\right) \widetilde{Y}_{l}\left(\tilde{\varphi}_{1}\right) \mathrm{d} \tilde{\varphi}_{1}, g \in X_{G, 1}^{m+2, \alpha}
$$

If you compute $\left.\frac{\partial \tilde{u}}{\partial \tilde{r}} \right\rvert\, \tilde{r}=R_{0}$ and substitute (2.7) into

$$
\frac{\partial \tilde{u}}{\partial \tilde{r}} \left\lvert\, \tilde{r}^{\tilde{r}}=R_{0}=-\sum_{l=0}^{\infty} \frac{l+N-2}{R_{0}} b_{l} \tilde{Y}_{l}\left(\tilde{\varphi}_{1}\right)+O\left(\varepsilon^{2}\right)\right.,
$$

and you get

$$
\begin{aligned}
\left.\frac{\partial \tilde{u}}{\partial \tilde{r}} \right\rvert\, \tilde{r}=R_{0} & =-u_{0} \frac{(N-2) \varepsilon}{R_{0}} \sum_{l=0}^{\infty}(l+N-2) a_{l} \tilde{Y}_{l}\left(\tilde{\varphi}_{1}\right)+O\left(\varepsilon^{2}\right) \\
a_{l} & =\int_{0}^{\pi} \widetilde{S}\left(\tilde{\varphi}_{1}\right) \tilde{Y}_{l}\left(\tilde{\varphi}_{1}\right) \mathrm{d} \tilde{\varphi}_{1} .
\end{aligned}
$$

Let $\nu=\left(n_{r}, n_{\varphi_{1}}, n_{\varphi_{2}}, \cdots, n_{\varphi_{N-1}}\right)$ denote the unit outer normal vector on $\partial \Omega_{\varepsilon S}$, so

$$
\begin{aligned}
\nu & =\left(n_{r}, n_{\varphi_{1}}, n_{\varphi_{2}}, \cdots, n_{\varphi_{N-1}}\right), \\
& =\left(n_{\tilde{r}} \frac{\partial \tilde{r}}{\partial r}, n_{\tilde{\varphi}_{1}} \frac{\partial \tilde{\varphi}_{1}}{\partial \varphi_{1}}, n_{\tilde{\varphi}_{2}} \frac{\partial \tilde{\varphi}_{2}}{\partial \varphi_{2}}, \cdots, n_{\tilde{\varphi}_{N-1}} \frac{\partial \tilde{\varphi}_{N-1}}{\partial \varphi_{N-1}}\right), \\
& =\left(n_{\tilde{r}} \frac{1}{1-\varepsilon \chi^{\prime} S}, n_{\tilde{\varphi}_{1}} \frac{\varepsilon \chi S}{1-\varepsilon \chi^{\prime} S}, n_{\tilde{\varphi}_{2}} \frac{\varepsilon \chi S}{1-\varepsilon \chi^{\prime} S}, \cdots, n_{\tilde{\varphi}_{N-1}} \frac{\varepsilon \chi S}{1-\varepsilon \chi^{\prime} S}\right), \\
& =\left(n_{\tilde{r}}, 0,0, \cdots, 0\right)+\varepsilon\left(\chi^{\prime} S, \chi S, \cdots, \chi S\right) .
\end{aligned}
$$

Using the formulas of (2.3) and $\frac{\partial \tilde{r}}{\partial r}, \frac{\partial \tilde{r}}{\partial \varphi_{k}}, \nu$, the values of $\left.\frac{\partial u}{\partial \nu} \right\rvert\, \partial \Omega_{\varepsilon S}$ is computed in follow

$$
\begin{aligned}
\left.\frac{\partial u}{\partial \nu} \right\rvert\, \partial \Omega_{\varepsilon S}= & \left.\frac{\partial}{\partial r}\left[u_{0}\left(\frac{R_{0}}{r}\right)^{N-2}\right]_{\mid r=R_{0}+\varepsilon S}+\frac{\partial \tilde{u}}{\partial \tilde{r}} \right\rvert\, \tilde{r}=R_{0} \\
= & -u_{0} \frac{(N-2) R_{0}^{N-2}}{\left(R_{0}+\varepsilon S\right)^{N-1}}-u_{0} \frac{(N-2) \varepsilon}{R_{0}} \sum_{l=0}^{\infty}(l+N-2) a_{l} \widetilde{Y}_{l}\left(\tilde{\varphi}_{1}\right)+O\left(\varepsilon^{2}\right) \\
= & -\frac{(N-2) u_{0}}{R_{0}}\left[1-(N-1) \frac{\varepsilon S}{R_{0}}+O\left(\varepsilon^{2}\right)\right]- \\
& u_{0} \frac{(N-2) \varepsilon}{R_{0}} \sum_{l=0}^{\infty}(l+N-2) a_{l} \widetilde{Y}_{l}\left(\tilde{\varphi}_{1}\right)+O\left(\varepsilon^{2}\right) .
\end{aligned}
$$

By the fact of $\partial \Omega_{x}=\left\{r=R_{0}+x(\varphi)=R_{0}+\varepsilon S(\varphi)\right\}$, we can calculate the value of the Fréchet derivative of $\left.\frac{\partial u}{\partial \nu} \right\rvert\, \partial \Omega_{x}$ with respect to a perturbation $x(\varphi)$ of the domain Ω at $x=0$ below

$$
\left[D_{x}\left(\left.\frac{\partial u}{\partial \nu} \right\rvert\, \partial \Omega_{x}\right)\right] x=x \frac{(N-2)(N-1) u_{0}}{R_{0}^{2}}-\frac{(N-2) u_{0}}{R_{0}^{2}} \sum_{l=0}^{\infty}(l+N-2) a_{l}(x) \widetilde{Y}_{l}\left(\tilde{\varphi}_{1}\right),
$$

with

$$
a_{l}(x)=\int_{0}^{\pi} \widetilde{x}\left(\tilde{\varphi}_{1}\right) \tilde{Y}_{l}\left(\tilde{\varphi}_{1}\right) \mathrm{d} \tilde{\varphi}_{1}
$$

2.2 Proof of Theorem 2.1

We prove of Theorem 2.1 by solve (2.2), that is $F(x, \gamma)=0$, on $\partial \Omega_{x}$, with

$$
F(x, \gamma)=\frac{\partial u}{\partial \nu} \left\lvert\, \partial \Omega_{x}-\gamma H_{\mid \partial \Omega_{x}}+\frac{(N-2) u_{0}}{R_{0}}-\frac{\gamma}{R_{0}} .\right.
$$

From the (8.1) of [5] we have

$$
H_{\mid \partial \Omega_{x}}=-\frac{1}{R_{0}}+\frac{1}{N-1} Q x+O\left(\|x\|_{C^{2}}^{2}\right)
$$

where

$$
Q x=\Delta_{\partial \Omega} x+|I I|^{2} x=\frac{1}{R_{0}^{2}}\left[\sum_{k=1}^{N-1} \frac{\partial^{2} x}{\partial \varphi_{k}^{2}} \frac{1}{p_{k}^{2}}+\sum_{k=1}^{N-2} \frac{\partial x}{\partial \varphi_{k}} \frac{(N-k-1) \cot \varphi_{k}}{p_{k}^{2}}\right]+\frac{N-1}{R_{0}^{2}} x .
$$

Here $\Delta_{\partial \Omega}$ stands for the Laplace-Beltrami operator of the surface $\partial \Omega$ and $|I I|^{2}$ denotes the square of the norm of the second fundamental form which is $\sum_{i=1}^{N-1} k_{i}^{2}$ with k_{i} being the principal curvature. The principal curvatures are all equal to $-R_{0}^{-1}$ about a sphere of radius R_{0} in \mathbb{R}^{N}.

The Fréchet derivative $F_{x}(0, \gamma):=D_{x} F(0, \gamma)$ can be taken in follow:

$$
\begin{aligned}
{\left[F_{x}(0, \gamma)\right] x=} & -\frac{\gamma}{(N-1) R_{0}^{2}}\left[\sum_{k=1}^{N-1} \frac{\partial^{2} x}{\partial \varphi_{k}^{2}} \frac{1}{p_{k}^{2}}+\sum_{k=1}^{N-2} \frac{\partial x}{\partial \varphi_{k}} \frac{(N-k-1) \cot \varphi_{k}}{p_{k}^{2}}\right]-\frac{\gamma}{R_{0}^{2}} x \\
& +\left[D_{x}\left(\frac{\partial u}{\partial \nu \mid \partial \Omega_{x}}\right)\right] x \\
= & -\frac{\gamma}{(N-1) R_{0}^{2}}\left[\sum_{k=1}^{N-1} \frac{\partial^{2} x}{\partial \varphi_{k}^{2}} \frac{1}{p_{k}^{2}}+\sum_{k=1}^{N-2} \frac{\partial x}{\partial \varphi_{k}} \frac{(N-k-1) \cot \varphi_{k}}{p_{k}^{2}}\right]-\frac{\gamma}{R_{0}^{2}} x \\
& +x \frac{(N-1) u_{0}}{R_{0}^{2}}-\frac{(N-2) u_{0}}{R_{0}^{2}} \sum_{l=0}^{\infty}(l+N-2) a_{l}(x) \widetilde{Y}_{l}\left(\varphi_{1}\right) .
\end{aligned}
$$

If $x=\widetilde{Y}_{l}\left(\varphi_{1}\right)$, then

$$
\begin{aligned}
Q Y_{l}=\Delta_{\partial \Omega} \widetilde{Y}_{l}+|I I|^{2} \widetilde{Y}_{l} & =\frac{1}{R_{0}^{2}}\left[-l(l+N-2) \tilde{Y}_{l}+(N-1) \tilde{Y}_{l}\right] \\
& =\frac{\widetilde{Y}_{l}}{R_{0}^{2}}\left[-l^{2}-(N-2) l+N-1\right]
\end{aligned}
$$

Consequently

$$
\left[F_{x}(0, \gamma)\right] \widetilde{Y}_{l}(\varphi)=\left[-\frac{\gamma}{N-1} \frac{-l^{2}-(N-2) l+N-1}{R_{0}^{2}}+\frac{(N-1) u_{0}}{R_{0}^{2}}-\frac{(N-2) u_{0}}{R_{0}^{2}}(l+N-2)\right] \widetilde{Y}_{l}(\varphi) .
$$

The value of γ such that the operator $\left[F_{x}(0, \gamma)\right]$ is degenerate is what we got for γ_{l}. Namely

$$
-\frac{\gamma}{N-1} \frac{-l^{2}-(N-2) l+N-1}{R_{0}^{2}}+\frac{(N-1) u_{0}}{R_{0}^{2}}-\frac{(N-2) u_{0}}{R_{0}^{2}}(l+N-2)=0
$$

then

$$
\begin{equation*}
\gamma_{l}:=\frac{(N-1) u_{0}\left[(N-2) l+(N-2)^{2}-(N-1)\right]}{l^{2}+(N-2) l-(N-1)} . \tag{2.10}
\end{equation*}
$$

The denominator of (2.10) is not 0 , which is $l \neq 1$ and $l \neq-(N-1)$. Because $l \geq 0$, so γ_{l} is meaningful with $l \in \mathbb{N}, l \neq 1$. The Crandall-Rabinowitz Theorem [3] can be use on it.

The real Banach spaces $X=X_{G, 1}^{m+2, \alpha}$ and $Y=X_{1}^{m, \alpha}$ are given. The operator $F(x, \gamma)$: $X \times \mathbb{R} \rightarrow Y$ and $A_{\gamma}:=F_{x}(0, \gamma): X \rightarrow Y$. If we set $\gamma=\gamma_{l}$ then

$$
\operatorname{ker} A_{\gamma_{l}}=\left\{\widetilde{Y}_{l}\right\}, \quad \operatorname{Im} A_{\gamma_{l}}=Y \ominus\left\{\widetilde{Y}_{l}\right\}
$$

so that

$$
\operatorname{dim}\left(\operatorname{ker} A_{\gamma_{l}}\right)=1=\operatorname{codim}\left(\operatorname{Im} A_{\gamma_{l}}\right) .
$$

Observe that

$$
\left[F_{\gamma x}\left(0, \gamma_{l}\right)\right] x=-\frac{1}{(N-1) R_{0}^{2}}\left[\sum_{k=1}^{N-1} \frac{\partial^{2} x}{\partial \varphi_{k}^{2}} \frac{1}{p_{k}^{2}}+\sum_{k=1}^{N-2} \frac{\partial x}{\partial \varphi_{k}} \frac{(N-k-1) \cot \varphi_{k}}{p_{k}^{2}}\right]-\frac{1}{R_{0}^{2}} x .
$$

If $x=\widetilde{Y}_{l}\left(\varphi_{1}\right)$ then

$$
\left[F_{\gamma x}\left(0, \gamma_{l}\right)\right] \widetilde{Y}_{l}\left(\varphi_{1}\right)=-\frac{1}{(N-1) R_{0}^{2}}[-l(l+N-2)+N-1] \widetilde{Y}_{l}\left(\varphi_{1}\right) \notin \operatorname{Im}\left(A_{\gamma_{l}}\right)
$$

The curve $t \rightarrow(x(t), \gamma(t))$ satisfies $(x(0), \gamma(0))=\left(0, \gamma_{l}\right)$ and $x^{\prime}(0)=\widetilde{Y}_{l}\left(\varphi_{1}\right)$, By the Crandall-Rabinowitz Theorem $\left(0, \gamma_{l}\right)$ is a bifurcation point of the equation $F(x, \gamma)=0$. The boundary $\partial \tilde{\Omega}$ has the form

$$
\left\{r=R_{0}+\varepsilon \widetilde{Y}_{l}\left(\varphi_{1}\right)+o(\varepsilon)\right\},
$$

with ε small enough and $\gamma(\varepsilon)=\gamma_{l}+o(1)$.

3 The case of $N=2$

For $N=2$, by polar coordinates, we have that

$$
\Delta u=\frac{\partial^{2} u}{\partial r^{2}}+\frac{1}{r} \frac{\partial u}{\partial r}+\frac{1}{r^{2}} \frac{\partial^{2} u}{\partial \varphi^{2}}
$$

Clearly, $u=u_{0}+\ln \left(\frac{r}{R_{0}}\right):=u^{*}$ is the solution of

$$
\begin{cases}\Delta u=0 & \text { in } \mathbb{R}^{2} \backslash \Omega, \\ u=u_{0} & \text { on } \partial \Omega, \\ \lim _{|x| \rightarrow+\infty} u=+\infty . & \end{cases}
$$

We see that

$$
\left.\frac{\partial u^{*}}{\partial \nu} \right\rvert\, \partial \Omega=\frac{1}{R_{0}}
$$

Taking

$$
C_{0}=\frac{1}{R_{0}}+\frac{\gamma}{2 R_{0}},
$$

then u^{*} is the trivial solution of the following overdetermined problem

$$
\begin{cases}\Delta u=0 & \text { in } \mathbb{R}^{2} \backslash \Omega \\ u=u_{0} & \text { on } \partial \Omega \\ \frac{\partial u}{\partial \nu}-\gamma H=C_{0} & \text { on } \partial \Omega \\ \lim _{r \rightarrow+\infty} u=+\infty & \end{cases}
$$

We study this problem on perturbation domain

$$
\begin{cases}\Delta u=0 & \text { in } \mathbb{R}^{2} \backslash \tilde{\Omega} \tag{3.1}\\ u=u_{0} & \text { on } \partial \tilde{\Omega} \\ \frac{\partial u}{\partial \nu}-\gamma H=C_{0} & \text { on } \partial \tilde{\Omega} \\ \lim _{r \rightarrow+\infty} u=+\infty . & \end{cases}
$$

The domain $\tilde{\Omega}$ satisfies the following structure:

$$
\Omega_{x}:=\left\{r \leqslant R_{0}+x(\varphi)\right\}
$$

with $x(\varphi)=\varepsilon \cos (l \varphi)+\sum_{k=2}^{m+1} \varepsilon^{k} \Lambda_{l k}(\varphi)+O\left(\varepsilon^{m+2}\right)$, where ε is small, $\Lambda_{l k}(\varphi, z)$ denote the coefficients of the power series expansion of $x(\varphi)$ with respect to the variable ε. The value of the corresponding parameter γ are

$$
\gamma=\gamma_{l}+\sum_{k=1}^{m} \varepsilon^{k} \gamma_{l k}+O\left(\varepsilon^{m+1}\right)
$$

with $\gamma_{l}:=-2 /(1+l), l \neq-1$.
The main result in this section is the following theorem.

Theorem 3.1. Suppose $N=2$ and $l \in \mathbb{N}, l \neq 1$. For each value of γ_{l}, there exists a C^{∞} bifurcation branch of solutions to the free boundary problem (3.1) with free boundary $\partial \tilde{\Omega}$ in $C^{m+2, \alpha}$ of the form

$$
\left\{r=R_{0}+\varepsilon \cos (l \varphi)+\sum_{k=2}^{m+1} \varepsilon^{k} \Lambda_{l k}(\varphi)+O\left(\varepsilon^{m+2}\right)\right\}
$$

with

$$
\gamma=\gamma_{l}+\sum_{k=1}^{m} \varepsilon^{k} \gamma_{l k}+O\left(\varepsilon^{m+1}\right)
$$

and $m \geqslant 1$.

Solving (3.1) is equal to solving problem

$$
\begin{cases}\Delta u=0 & \text { in } \mathbb{R}^{2} \backslash \Omega_{x}, \tag{3.2}\\ u=u_{0} & \text { on } \partial \Omega_{x}, \\ \lim _{r \rightarrow+\infty} u=+\infty, & \end{cases}
$$

and

$$
F(x, \gamma):=\frac{\partial u}{\partial \nu} \left\lvert\, \partial \Omega_{x}-\gamma H_{\mid \partial \Omega_{x}}-\frac{1}{R_{0}}-\frac{\gamma}{2 R_{0}}=0 .\right.
$$

Since u_{*} satisfies the above equation when $x \equiv 0, F(0, \gamma)=0$ for any γ. Therefore, finding nontrivial domains emanating from $B_{R_{0}}^{c}$ such that the problem (3.1) has a positive solution is equivalent to study the the nontrivial solutions of $F(x, \gamma)=0$.

In condition $\Omega_{x}=\left\{r \leqslant R_{0}+x(\varphi), x(\varphi)=\varepsilon S(\varphi)\right\}$, applying the transformation

$$
u(r, \varphi)=u^{*}+\bar{u}(r, \varphi),
$$

to the problem of (3.2), we can get

$$
\begin{cases}\Delta \bar{u}=0 & \text { in } \mathbb{R}^{2} \backslash \Omega_{x} \tag{3.3}\\ \bar{u}=\ln \frac{R_{0}}{R_{0}+\varepsilon S(\varphi)} & \text { on } \partial \Omega_{x}, \\ \lim _{r \rightarrow+\infty} \bar{u}<+\infty . & \end{cases}
$$

In order to go from Ω_{x} to the fixed domain of the ball of radius R_{0}, we take the Hanzawa transformation W

$$
\left\{\begin{array}{l}
r=\tilde{r}+\chi\left(R_{0}-\tilde{r}\right) \varepsilon S(\varphi) \\
\varphi=\tilde{\varphi}
\end{array}\right.
$$

The value of $\frac{\partial \tilde{r}}{\partial r}, \frac{\partial^{2} \tilde{r}}{\partial r^{2}}, \frac{\partial \tilde{r}}{\partial \varphi}$ and $\frac{\partial^{2} \tilde{r}}{\partial \varphi^{2}}$ as same as the value in section 2. Taking the Hanzawa transformation on the \bar{u}, we get \tilde{u}.

We compute the Laplace operator in coordinates $(\tilde{r}, \tilde{\varphi})$ as follows

$$
\begin{aligned}
\Delta u= & \frac{\partial^{2} u}{\partial r^{2}}+\frac{1}{r} \frac{\partial u}{\partial r}+\frac{1}{r^{2}} \frac{\partial^{2} u}{\partial \varphi^{2}} \\
= & \frac{\partial^{2} \tilde{u}}{\partial \tilde{r}^{2}}\left(\frac{\partial \tilde{r}}{\partial r}\right)^{2}+\frac{\partial \tilde{u}}{\partial \tilde{r}} \frac{\partial^{2} \tilde{r}}{\partial r^{2}}+\frac{1}{r} \frac{\partial \tilde{u}}{\partial \tilde{r}} \frac{\partial \tilde{r}}{\partial r} \\
& +\frac{1}{r^{2}}\left[\frac{\partial^{2} \tilde{u}}{\partial \tilde{\varphi}^{2}}+2 \frac{\partial^{2} \tilde{u}}{\partial \tilde{r} \partial \tilde{\varphi}} \frac{\partial \tilde{r}}{\partial \varphi}+\frac{\partial \tilde{u}}{\partial \tilde{r}} \frac{\partial^{2} \tilde{r}}{\partial \varphi^{2}}+\frac{\partial^{2} \tilde{u}}{\partial \tilde{r}^{2}}\left(\frac{\partial \tilde{r}}{\partial \varphi}\right)^{2}\right] \\
= & \frac{\partial^{2} \tilde{u}}{\partial \tilde{r}^{2}}\left[\left(\frac{\partial \tilde{r}}{\partial r}\right)^{2}+\frac{1}{r^{2}}\left(\frac{\partial \tilde{r}}{\partial \varphi}\right)^{2}\right]+\frac{\partial \tilde{u}}{\partial \tilde{r}}\left[\frac{\partial^{2} \tilde{r}}{\partial r^{2}}+\frac{1}{r} \frac{\partial \tilde{r}}{\partial r}+\frac{1}{r^{2}} \frac{\partial^{2} \tilde{r}}{\partial \varphi^{2}}\right] \\
& +\frac{\partial^{2} \tilde{u}}{\partial \tilde{\varphi}^{2}}\left[\frac{1}{r^{2}}\right]+\frac{\partial^{2} \tilde{u}}{\partial \tilde{r} \partial \tilde{\varphi}}\left[2 \frac{\partial \tilde{r}}{\partial \varphi} \frac{1}{r^{2}}\right] \\
= & \frac{\partial^{2} \tilde{u}}{\partial \tilde{r}^{2}}\left[1+\varepsilon\left(2 \chi^{\prime} S\right)\right]+\frac{\partial \tilde{u}}{\partial \tilde{r}}\left[\varepsilon\left(-\chi^{\prime \prime} S\right)+\left(\frac{1}{\tilde{r}}+\varepsilon \frac{\tilde{r} \chi^{\prime} S-\chi S}{\tilde{r}^{2}}\right)+\varepsilon\left(-\chi \frac{\partial^{2} S}{\partial \tilde{\varphi}^{2}} \frac{1}{\tilde{r}^{2}}\right)\right] \\
& +\frac{\partial^{2} \tilde{u}}{\partial \tilde{\varphi}^{2}}\left[\frac{1}{\tilde{r}^{2}}+\varepsilon \frac{-2 \chi S}{\tilde{r}^{3}}\right]+\frac{\partial^{2} \tilde{u}}{\partial \tilde{r} \partial \tilde{\varphi}}\left[\varepsilon\left(-2 \chi \frac{\partial S}{\partial \tilde{\varphi}} \frac{1}{\tilde{r}^{2}}\right)\right]+O\left(\varepsilon^{2}\right),
\end{aligned}
$$

so we can get

$$
\Delta=\tilde{\Delta}+\varepsilon\left(A_{1}+A_{2}+A_{3}+A_{4}\right)+\varepsilon^{2} B
$$

where

$$
\tilde{\Delta} \tilde{u}(\tilde{r}, \tilde{\varphi})=\frac{\partial^{2} \tilde{u}}{\partial \tilde{r}^{2}}+\frac{1}{\tilde{r}} \frac{\partial \tilde{u}}{\partial \tilde{r}}+\frac{1}{\tilde{r}^{2}} \frac{\partial^{2} \tilde{u}}{\partial \tilde{\varphi}^{2}}
$$

and

$$
\begin{aligned}
& A_{1}:=S\left[2 \chi^{\prime} \frac{\partial^{2}}{\partial \tilde{r}^{2}}+\chi^{\prime} \frac{1}{\tilde{r}} \frac{\partial}{\partial \tilde{r}}-\chi^{\prime \prime} \frac{\partial}{\partial \tilde{r}}-\chi \frac{1}{\tilde{r}^{2}} \frac{\partial}{\partial \tilde{r}}\right] \\
& A_{2}:=-2 \frac{\chi S}{\tilde{r}^{3}} \frac{\partial^{2}}{\partial \tilde{\varphi}^{2}} \\
& A_{3}:=-\frac{\chi}{\tilde{r}^{2}} \frac{\partial^{2} S}{\partial \tilde{\varphi}^{2}} \frac{\partial}{\partial \tilde{r}} \\
& A_{4}:=-\frac{2 \chi}{\tilde{r}^{2}} \frac{\partial S}{\partial \tilde{\varphi}} \frac{\partial^{2}}{\partial \tilde{r} \partial \tilde{\varphi}}
\end{aligned}
$$

By the transformation W, problem (3.3) becomes

$$
\begin{cases}\tilde{\Delta} \tilde{u}(\tilde{r}, \tilde{\varphi})=\varepsilon J(\tilde{r}, \tilde{\varphi}) & \text { in } \mathbb{R}^{2} \backslash \Omega \tag{3.4}\\ \tilde{u}\left(R_{0}, \tilde{\varphi}\right)=g(\tilde{\varphi}) & \text { on } \partial \Omega \\ \lim _{\tilde{r} \rightarrow+\infty} \tilde{u}(\tilde{r}, \tilde{\varphi})<+\infty, & \end{cases}
$$

with

$$
J(\tilde{r}, \tilde{\varphi})=-\sum_{i=1}^{4} A_{i} \tilde{u}(\tilde{r}, \tilde{\varphi})-\varepsilon B \tilde{u}(\tilde{r}, \tilde{\varphi}),
$$

and

$$
g(\tilde{\varphi})=\ln \frac{R_{0}}{R_{0}+\varepsilon S(\tilde{\varphi})}=-\frac{\varepsilon S}{R_{0}}+\frac{1}{2} \frac{\varepsilon^{2} S^{2}}{R_{0}^{2}}+O\left(\varepsilon^{3}\right) .
$$

Suppose S is even, 2π-periodic. Consequently

$$
S(\tilde{\varphi})=\sum_{l=0}^{+\infty} a_{l} \cos (l \tilde{\varphi})
$$

with

$$
a_{l}:=\frac{1}{c_{l}} \int_{0}^{2 \pi} S(\alpha) \cos (l \tilde{\varphi}) d \tilde{\varphi}
$$

with $c_{i l}=\pi$ if $l>0$, or $c_{l}=2 \pi$ if $l=0$.
Similar to [10] by Banach's fixed point theorem, the existence and uniqueness of solutions of problem (3.4) is proved. Then, as that of [10, Theorem 3.2], we get

$$
\tilde{u}(\tilde{r}, \tilde{\varphi})=-\frac{\varepsilon}{R_{0}} \sum_{l=1}^{+\infty} a_{l}\left(\frac{R_{0}}{\tilde{r}}\right)^{l} \cos (l \tilde{\varphi})+O\left(\varepsilon^{2}\right) .
$$

Clearly

$$
\frac{\partial \tilde{u}}{\partial \tilde{r}} \left\lvert\, \tilde{r}=R_{0}=\frac{\partial \tilde{u}_{1}}{\partial \tilde{r}}+O\left(\varepsilon^{2}\right)=\frac{\varepsilon}{R_{0}} \sum_{l=1}^{+\infty} a_{l} \frac{1}{R_{0}} \cos (l \tilde{\varphi})+O\left(\varepsilon^{2}\right) .\right.
$$

Using the formulas of $\left.\frac{\partial \tilde{u}}{\partial \tilde{r}} \right\rvert\, \tilde{r}=R_{0}$ and $\frac{\partial \tilde{r}}{\partial r}, \frac{\partial \tilde{r}}{\partial \varphi}, \nu$, The values of $\left.\frac{\partial u}{\partial \nu} \right\rvert\, \partial \Omega_{\varepsilon S}$ is computed in follow

$$
\begin{aligned}
\left.\frac{\partial u}{\partial \nu} \right\rvert\, \partial \Omega_{\varepsilon S} & \left.=\frac{\partial}{\partial r}\left(\ln \frac{r}{R_{0}}\right)_{\mid r=R_{0}}+\varepsilon S+\frac{\partial \tilde{u}}{\partial \tilde{r}} \right\rvert\, \tilde{r}=R_{0} \\
& =O\left(\varepsilon^{2}\right) \\
& =\frac{1}{R_{0}}-\varepsilon \frac{S}{R_{0}^{2}}+\frac{\varepsilon}{R_{0}} \sum_{l=1}^{+\infty} a_{l} \frac{1}{R_{0}} l \cos (l \varphi)+O\left(\varepsilon^{2}\right) .
\end{aligned}
$$

By the fact of $\partial \Omega_{x}=\left\{r=R_{0}+x(\varphi)=R_{0}+\varepsilon S(\varphi)\right\}$, we can calculate the value of the Fréchet derivative of $\left.\frac{\partial u}{\partial \nu} \right\rvert\, \partial \Omega_{x}$ with respect to a perturbation $x(\varphi)$ of the domain Ω at $x=0$ below

$$
\left[D_{x}\left(\left.\frac{\partial u}{\partial \nu} \right\rvert\, \partial \Omega_{x}\right)\right] x=-\frac{x}{R_{0}^{2}}+\frac{1}{R_{0}^{2}} \sum_{l=1}^{+\infty} a_{l}(x) l \cos (l \varphi),
$$

with

$$
a_{l}:=\frac{1}{c_{l}} \int_{0}^{2 \pi} x(\alpha) \cos (l \varphi) d \varphi
$$

with $c_{l}=\pi$ if $l>0$, or $c_{l}=2 \pi$ if $l=0$.

Proof of Theorem 3.1. The Fréchet derivative $F_{x}(0, \gamma):=D_{x} F(0, \gamma)$ can be taken in follow:

$$
\begin{aligned}
{\left[F_{x}(0, \gamma)\right] x } & =-\frac{\gamma}{2}\left(\frac{1}{R_{0}^{2}} \frac{\partial^{2} x}{\partial \varphi^{2}}+\frac{1}{R_{0}^{2}} x\right)+\left[D_{x}\left(\left.\frac{\partial u}{\partial \nu} \right\rvert\, \partial \Omega_{x}\right)\right] x \\
& =-\frac{\gamma}{2}\left(\frac{1}{R_{0}^{2}} \frac{\partial^{2} x}{\partial \varphi^{2}}+\frac{1}{R_{0}^{2}} x\right)-\frac{x}{R_{0}^{2}}+\frac{1}{R_{0}^{2}} \sum_{l=1}^{+\infty} l \cos (l \varphi) a_{l}(x) .
\end{aligned}
$$

If $x=\cos (l \varphi)$ then $J x=\left(-\frac{l^{2}}{R_{0}^{2}}+\frac{1}{R_{0}^{2}}\right) \cos (l \varphi)$ and $a_{m}(x)=\delta(l-m)$. Consequently

$$
\left[F_{x}(0, \gamma)\right] \cos (l \varphi)=\left[-\frac{\gamma}{2}\left(-\frac{l^{2}}{R_{0}^{2}}+\frac{1}{R_{0}^{2}}\right)-\frac{1}{R_{0}^{2}}+\frac{l}{R_{0}^{2}}\right] \cos (l \varphi) .
$$

Then as that of [10, Theorem 3.2] we can obtain the desired conclusions.

4 Appendix

The expression of spherical coordinates of the N dimensional Laplace equation may already exist, but we have not found relevant literature, we give our calculation process here for safety.

If we use the Cartesian coordinates $\left(x_{1}, x_{2}, \cdots, x_{N}\right)$, the equation $\Delta u=0$ can be written as

$$
\Delta u=\frac{\partial^{2} u}{\partial x_{1}^{2}}+\frac{\partial^{2} u}{\partial x_{2}^{2}}+\cdots+\frac{\partial^{2} u}{\partial x_{N}^{2}}=0 .
$$

The relationship between the N dimension spherical coordinates $\left(r, \varphi_{1}, \varphi_{2}, \cdots, \varphi_{N-1}\right)$ and the cartesian coordinates $\left(x_{1}, x_{2}, \cdots, x_{N}\right)$ is

$$
\begin{cases}x_{1} & =r \cos \varphi_{1} \\ x_{2} & =r \sin \varphi_{1} \cos \varphi_{2} \\ x_{3} & =r \sin \varphi_{1} \sin \varphi_{2} \cos \varphi_{3} \\ \cdots & \\ x_{N-1} & =r \sin \varphi_{1} \sin \varphi_{2} \cdots \sin \varphi_{N-2} \cos \varphi_{N-1} \\ x_{N} & =r \sin \varphi_{1} \sin \varphi_{2} \cdots \sin \varphi_{N-2} \sin \varphi_{N-1},\end{cases}
$$

So we have

$$
\begin{aligned}
\Delta u= & \sum_{i=1}^{N} \frac{\partial^{2} u}{\partial x_{i}^{2}} \\
= & \sum_{i=1}^{N} \frac{\frac{\partial u}{\partial r} \frac{\partial r}{\partial x_{i}}+\sum_{k=1}^{N-1} \frac{\partial u}{\partial \varphi_{k}} \frac{\partial \varphi_{k}}{\partial x_{i}}}{\partial x_{i}} \\
= & \sum_{i=1}^{N} \frac{\partial\left(\frac{\partial u}{\partial r}\right)}{\partial x_{i}} \frac{\partial r}{\partial x_{i}}+\sum_{i=1}^{N} \frac{\partial u}{\partial r} \frac{\partial\left(\frac{\partial r}{\partial x_{i}}\right)}{\partial x_{i}}+\sum_{i=1}^{N} \sum_{k=1}^{N-1}\left[\frac{\partial\left(\frac{\partial u}{\partial \varphi_{k}}\right)}{\partial x_{i}} \frac{\partial \varphi_{k}}{\partial x_{i}}+\frac{\partial u}{\partial \varphi_{k}} \frac{\partial\left(\frac{\partial \varphi_{k}}{\partial x_{i}}\right)}{\partial x_{i}}\right] \\
= & \sum_{i=1}^{N} \frac{\partial^{2} u}{\partial r^{2}}\left(\frac{\partial r}{\partial x_{i}}\right)^{2}+\sum_{i=1}^{N} \sum_{k=1}^{N-1} \frac{\partial^{2} u}{\partial r \partial \varphi_{k}} \frac{\partial r}{\partial x_{i}} \frac{\partial \varphi_{k}}{\partial x_{i}}+\sum_{i=1}^{N} \frac{\partial u}{\partial r} \frac{\partial^{2} r}{\partial x_{i}^{2}}+ \\
& \sum_{i=1}^{N} \sum_{k, j=1}^{N-1} \frac{\partial^{2} u}{\partial \varphi_{k} \partial \varphi_{j}} \frac{\partial \varphi_{k}}{\partial x_{i}} \frac{\partial \varphi_{j}}{\partial x_{i}}+\sum_{i=1}^{N} \sum_{k=1}^{N-1} \frac{\partial^{2} u}{\partial \varphi_{k} \partial r} \frac{\partial \varphi_{k}}{\partial x_{i}} \frac{\partial \varphi_{k}}{\partial x_{i}}+\sum_{i=1}^{N} \sum_{k=1}^{N-1} \frac{\partial u}{\partial \varphi_{k}} \frac{\partial^{2} \varphi_{k}}{\partial x_{i}^{2}} \\
= & \frac{\partial^{2} u}{\partial r^{2}}\left[\sum_{i=1}^{N}\left(\frac{\partial r}{\partial x_{i}}\right)^{2}\right]+\frac{\partial u}{\partial r}\left[\sum_{i=1}^{N} \frac{\partial^{2} r}{\partial x_{i}^{2}}\right]+\sum_{k=1}^{N-1} \frac{\partial^{2} u}{\partial \varphi_{k}^{2}}\left[\sum_{i=1}^{N}\left(\frac{\partial \varphi_{k}}{\partial x_{i}}\right)^{2}\right]+ \\
& \sum_{k=1}^{N-1} \frac{\partial u}{\partial \varphi_{k}}\left[\sum_{i=1}^{N} \frac{\partial^{2} \varphi_{k}}{\partial x_{i}^{2}}\right]+2 \sum_{k=1}^{N-1} \frac{\partial^{2} u}{\partial r \partial \varphi_{k}}\left[\sum_{i=1}^{N} \frac{\partial r}{\partial x_{i}} \frac{\partial \varphi_{k}}{\partial x_{i}}\right]+ \\
& 2 \sum_{1=k<j=2}^{N-1} \frac{\partial^{2} u}{\partial \varphi_{k} \partial \varphi_{j}}\left[\sum_{i=1}^{N} \frac{\partial \varphi_{k}}{\partial x_{i}} \frac{\partial \varphi_{j}}{\partial x_{i}}\right],
\end{aligned}
$$

and then we need to calculate the coefficients on these six terms. The first step is to compute $\frac{\partial r}{\partial x_{i}}, \frac{\partial^{2} r}{\partial x_{i}^{2}}, \frac{\partial \varphi_{k}}{\partial x_{i}}$ and $\frac{\partial^{2} \varphi_{k}}{\partial x_{i}^{2}}$.

According to

$$
r^{2}=x_{1}^{2}+x_{2}^{2}+\cdots+x_{N}^{2}
$$

there is

$$
\begin{aligned}
2 r \frac{\partial r}{\partial x_{i}} & =2 x_{i} \\
\frac{\partial r}{\partial x_{i}} & =\frac{x_{i}}{r} \\
\frac{\partial^{2} r}{\partial x_{i}^{2}} & =\frac{r-x_{i} \frac{x_{i}}{r}}{r^{2}}=\frac{r^{2}-x_{i}^{2}}{r^{3}}
\end{aligned}
$$

so we have that

$$
\begin{aligned}
\sum_{i=1}^{N}\left(\frac{\partial r}{\partial x_{i}}\right)^{2} & =\sum_{i=1}^{N}\left(\frac{x_{i}}{r}\right)^{2}=1 \\
\sum_{i=1}^{N} \frac{\partial^{2} r}{\partial x_{i}^{2}} & =\sum_{i=1}^{N} \frac{r^{2}-x_{i}^{2}}{r^{3}}=\frac{N r^{2}-r^{2}}{r^{3}}=\frac{N-1}{r} .
\end{aligned}
$$

According to

$$
\frac{x_{N}^{2}+x_{N-1}^{2}+\cdots+x_{k+1}^{2}}{x_{k}^{2}}=\tan ^{2} \varphi_{k}
$$

there is

$$
\begin{aligned}
\frac{2 x_{i}}{x_{k}^{2}} & =2 \tan \varphi_{k} \sec ^{2} \varphi_{k} \frac{\partial \varphi_{k}}{\partial x_{i}}(k+1 \leq i \leq N), \\
\frac{\partial \varphi_{k}}{\partial x_{i}} & =\frac{x_{i}}{x_{k}^{2} \tan \varphi_{k} \sec ^{2} \varphi_{k}}(k+1 \leq i \leq N), \\
\frac{-2 x_{k}\left(x_{N}^{2}+x_{N-1}^{2}+\cdots+x_{k+1}^{2}\right)}{x_{k}^{4}} & =2 \tan \varphi_{k} \sec ^{2} \varphi_{k} \frac{\partial \varphi_{k}}{\partial x_{k}}(i=k) \\
\frac{\partial \varphi_{k}}{\partial x_{k}} & =-\frac{x_{N}^{2}+x_{N-1}^{2}+\cdots+x_{k+1}^{2}}{x_{k}^{3} \tan \varphi_{k} \sec ^{2} \varphi_{k}}=-\frac{\tan \varphi_{k}}{x_{k} \sec ^{2} \varphi_{k}}(i=k), \\
\frac{\partial \varphi_{k}}{\partial x_{i}} & =0(1 \leq i \leq k-1) .
\end{aligned}
$$

Hence, we find that

$$
\begin{aligned}
\frac{\partial^{2} \varphi_{k}}{\partial x_{i}^{2}} & =\frac{x_{k}^{2} \tan \varphi_{k} \sec ^{2} \varphi_{k}-x_{i} x_{k}^{2}\left[\sec ^{2} \varphi_{k} \sec ^{2} \varphi_{k}+\tan \varphi_{k} 2 \sec \varphi_{k} \tan \varphi_{k} \sec \varphi_{k}\right] \frac{\partial \varphi_{k}}{\partial x_{i}}}{\left(x_{k}^{2} \tan \varphi_{k} \sec ^{2} \varphi_{k}\right)^{2}} \\
& =\frac{x_{k}^{2} \tan ^{2} \varphi_{k} \sec ^{2} \varphi_{k}-x_{i}^{2}\left[\sec ^{2} \varphi_{k}+2 \tan ^{2} \varphi_{k}\right]}{\left(x_{k}^{2} \tan \varphi_{k} \sec ^{2} \varphi_{k}\right)^{2} \tan \varphi_{k}}(k+1 \leq i \leq N) \\
\frac{\partial^{2} \varphi_{k}}{\partial x_{k}^{2}} & =\frac{-\sec ^{2} \varphi_{k} \frac{\partial \varphi_{k}}{\partial x_{k}} x_{k} \sec ^{2} \varphi_{k}+\tan \varphi_{k}\left[\sec ^{2} \varphi_{k}+x_{k} 2 \sec \varphi_{k} \tan \varphi_{k} \sec \varphi_{k} \frac{\partial \varphi_{k}}{\partial x_{i}}\right]}{\left(x_{k}^{3} \sec ^{2} \varphi_{k}\right)^{2}} \\
& =\frac{\tan \varphi_{k} \sec ^{2} \varphi_{k}+\tan \varphi_{k} \sec ^{2} \varphi_{k}-2 \tan ^{3} \varphi_{k}}{\left(x_{k}^{3} \sec ^{2} \varphi_{k}\right)^{2}} \\
& =\frac{2 \tan \varphi_{k} \sec ^{2} \varphi_{k}-2 \tan ^{3} \varphi_{k}}{\left(x_{k}^{3} \sec ^{2} \varphi_{k}\right)^{2}} \\
& =\frac{2 \tan \varphi_{k}}{\left(x_{k}^{3} \sec ^{2} \varphi_{k}\right)^{2}}
\end{aligned}
$$

and

$$
\frac{\partial^{2} \varphi_{k}}{\partial x_{i}^{2}}=0 \quad(1 \leq i \leq k-1)
$$

The coefficient on the third term is

$$
\begin{aligned}
\sum_{i=1}^{N}\left(\frac{\partial \varphi_{k}}{\partial x_{i}}\right)^{2} & =\sum_{i=k}^{N}\left(\frac{\partial \varphi_{k}}{\partial x_{i}}\right)^{2} \\
& =\frac{x_{N}^{2}+x_{N-1}^{2}+\cdots+x_{k+1}^{2}+x_{k}^{2} \tan ^{4} \varphi_{k}}{\left(x_{k}^{2} \tan \varphi_{k} \sec ^{2} \varphi_{k}\right)^{2}} \\
& =\frac{x_{k}^{2} \tan ^{2} \varphi_{k}+x_{k}^{2} \tan ^{4} \varphi_{k}}{\left(x_{k}^{2} \tan \varphi_{k} \sec ^{2} \varphi_{k}\right)^{2}}=\frac{x_{k}^{2} \tan ^{2} \varphi_{k}\left(1+\tan ^{2} \varphi_{k}\right)}{\left(x_{k}^{2} \tan \varphi_{k} \sec ^{2} \varphi_{k}\right)^{2}} \\
& =\frac{x_{k}^{2} \tan ^{2} \varphi_{k} \sec ^{2} \varphi_{k}}{\left(x_{k}^{2} \tan \varphi_{k} \sec ^{2} \varphi_{k}\right)^{2}}=\frac{1}{x_{k}^{2} \sec ^{2} \varphi_{k}} \\
& =\frac{1}{r^{2} p_{k}^{2}}
\end{aligned}
$$

The coefficient on the fourth term is

$$
\begin{aligned}
\sum_{i=1}^{N} \frac{\partial^{2} \varphi_{k}}{\partial x_{i}^{2}} & =\sum_{i=k}^{N} \frac{\partial^{2} \varphi_{k}}{\partial x_{i}^{2}} \\
& =\frac{(N-k) x_{k}^{2} \tan ^{2} \varphi_{k} \sec ^{2} \varphi_{k}-\left(x_{k+1}^{2}+\cdots+x_{N}^{2}\right)\left[\sec ^{2} \varphi_{k}+2 \tan ^{2} \varphi_{k}\right]+2 x_{k}^{2} \tan ^{4} \varphi_{k}}{x_{k}^{4} \tan ^{3} \varphi_{k} \sec ^{4} \varphi_{k}} \\
& =\frac{(N-k) x_{k}^{2} \tan ^{2} \varphi_{k} \sec ^{2} \varphi_{k}-x_{k}^{2} \tan ^{2} \varphi_{k}\left[\sec ^{2} \varphi_{k}+2 \tan ^{2} \varphi_{k}\right]+2 x_{k}^{2} \tan ^{4} \varphi_{k}}{x_{k}^{4} \tan ^{3} \varphi_{k} \sec ^{4} \varphi_{k}} \\
& =\frac{(N-k-1) x_{k}^{2} \tan ^{2} \varphi_{k} \sec ^{2} \varphi_{k}}{x_{k}^{4} \tan ^{3} \varphi_{k} \sec ^{4} \varphi_{k}}=\frac{N-k-1}{x_{k}^{2} \tan \varphi_{k} \sec ^{2} \varphi_{k}} \\
& =\frac{N-k-1}{r^{2} p_{k}^{2}} \cot \varphi_{k}
\end{aligned}
$$

The coefficient on the fifth term is

$$
\begin{aligned}
\sum_{i=1}^{N} \frac{\partial r}{\partial x_{i}} \frac{\partial \varphi_{k}}{\partial x_{i}} & =\sum_{i=1}^{N} \frac{\partial r}{\partial x_{i}} \frac{\partial \varphi_{k}}{\partial x_{i}} \\
& =\frac{x_{N}^{2}+x_{N-1}^{2}+\cdots+x_{k+1}^{2}-x_{k}^{2} \tan ^{2} \varphi_{k}}{r x_{k}^{2} \tan \varphi_{k} \sec ^{2} \varphi_{k}} \\
& =0
\end{aligned}
$$

The coefficient on the sixth term is

$$
\begin{aligned}
\sum_{i=1}^{N} \frac{\partial \varphi_{k}}{\partial x_{i}} \frac{\partial \varphi_{j}}{\partial x_{i}} & =\frac{\left(x_{N}^{2}+x_{N-1}^{2}+\cdots+x_{j+1}^{2}\right)-x_{j}^{2} \tan ^{2} \varphi_{j}}{x_{k}^{2} \tan \varphi_{k} \sec ^{2} \varphi_{k} \times x_{j}^{2} \tan \varphi_{j} \sec ^{2} \varphi_{j}} \\
& =0
\end{aligned}
$$

And then finally we have the form of Laplace equation in N dimensional spherical coordinates is

$$
\Delta u=\frac{\partial^{2} u}{\partial r^{2}}+\frac{N-1}{r} \frac{\partial u}{\partial r}+\sum_{k=1}^{N-1} \frac{\partial^{2} u}{\partial \varphi_{k}^{2}} \frac{1}{r^{2} p_{k}^{2}}+\sum_{k=1}^{N-2} \frac{\partial u}{\partial \varphi_{k}} \frac{(N-k-1) \cot \varphi_{k}}{r^{2} p_{k}^{2}}=0 .
$$

Acknowledgment

The article is supported by NNSF of China (No. 11871129).

References

1. A. Aleksandrov, Uniqueness theorem for surfaces in the large I, Vestnik Leningrad Univ. 11 (1956), 5-17 . (Russian)
2. H. Berestycki, L. Caffarelli and L. Nirenberg, Monotonicity for elliptic equations in unbounded Lipschitz domains, Commun. Pure Appl. Math. 50 (1997), 1089-1111.
3. M. G. Crandall and P.H. Rabinowitz, Bifurcation from simple eigenvalues, J. Funct. Anal. 8 (1971), 321-340.
4. M. A. Fontelos and A. Friedman, Symmetry breaking bifurcations of charged drops, Arch. Rational Mech. Anal. 172 (2004), 267-294.
5. A. Friedman and O. Reitich, Nonlinear Stability of a Quasi-static Stefan Problem with Surface Tension: a Continuation Approach. Annali Della Scuola Normale Superiore Di Pisa Classe Di Scienze. 30 (2001), 341-403.
6. B. Gidas, W.M. Ni and L. Nirenberg, Symmetry and related properties via the maximum principle, Comm. Math. Phys. 68 (1979), 209-243.
7. D. Gilbarg and N. Trudinger, Elliptic partial differential equations of second order, Reprint of the 1998 edition. Classics in Mathematics. Springer, Berlin 2001.
8. H. Groemer, Geometric applications of Fourier series and spherical Harmonics, Encyclopedia of Mathematics and its Applications, vol. 61. Cambridge University Press, Cambridge 1996.
9. F. Morabito, Symmetry breaking bifurcations for an overdetermined boundary value problem on an exterior domain issued from electrodynamics, Nonlinear Anal. 158 (2017), 1-22.
10. F. Morabito, Symmetry breaking bifurcations for two overdetermined boundary value problems with non-constant Neumann condition on exterior domains in \mathbb{R}^{3}, Comm. Partial Differential Equations. 46 (2021), 1137-1161.
11. J. Serrin, A symmetry problem in potential theory, Arch. Rational Mech. Anal. 43 (1971), 304-318.
12. B. Sirakov, Overdetermined elliptic problems in physics, In: Berestycki, H., Pomeau, Y. (eds.) Nonlinear PDE's in Condensed Matter and Reactive Flows, Springer, Dordrecht, 2002.
13. I. S. Sokolnikoff, Mathematical theory of elasticity, 2nd edn. McGraw-Hill, New York 1956.

[^0]: *Research supported by NNSF of China (No. 11871129).
 ${ }^{\dagger}$ Corresponding author
 E-mail: daiguowei@dlut.edu.cn, liufang2019mail.dlut.edu.cn.

