Protein constraints in genome-scale metabolic models: data integration, parameter estimation, and prediction of metabolic phenotypes

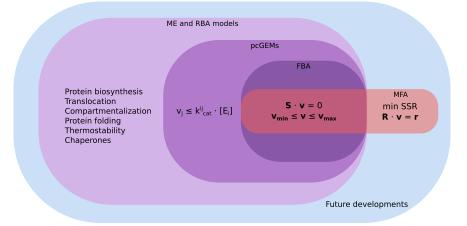
Maurício Alexander de Moura Ferreira¹, Wendel Batista da Silveira¹, and Zoran Nikoloski^{2,3}

¹Department of Microbiology, Federal University of Viçosa, Viçosa, Minas Gerais, Brazil ²Bioinformatics, Institute of Biochemistry and Biology, University of Potsdam, Potsdam, Germany

³Systems Biology and Mathematical Modelling, Max Planck Institute of Molecular Plant Physiology, Potsdam, Germany

August 18, 2022

Abstract


Genome-scale metabolic models provide a valuable resource to study metabolism and cell physiology. These models are employed with approaches from the constraint-based modelling framework to predict metabolic and physiological phenotypes. The prediction performance of genome-scale metabolic models can be improved by including protein constraints. The resulting protein-constrained models consider data on turnover numbers (k_{cat}) and facilitate the integration of protein abundances. In this systematic review, we present and discuss the current state-of-the-art regarding the estimation of kinetic parameters used in protein-constrained models. We also highlight how data-driven and constraint-based approaches can aid the estimation of turnover numbers and their usage in improving predictions of cellular phenotypes. Lastly, we identify standing challenges in protein-constraint metabolic models and provide a perspective regarding future approaches to improve the predictive performance.

Hosted file

Main_text_BB.docx available at https://authorea.com/users/502099/articles/582285-proteinconstraints-in-genome-scale-metabolic-models-data-integration-parameter-estimation-andprediction-of-metabolic-phenotypes

2006	2009	2011	2014	2019 2020 2021
Zero-inflated Poisson reg.	Gradient boosted trees	Multilayer perceptron	Bayesian network	Joint Adaboost learning

