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Abstract

This paper is devoted to the numerical treatment of time fractional diffusion equation with mixed boundary conditions. A

new scheme based on the combination of the implicit finite difference method for Caputo derivative in time and the mimetic

finite difference in space is considered for solving this problem. The stability analysis of the proposed scheme is given by

using Von-Neumann method. The numerical results are provided to demonstrate the effectiveness of the proposed method as

compared with other finite difference methods.
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ANALYSIS AND NUMERICAL SIMULATION OF THE TIME FRACTIONAL DIFFUSION

EQUATION BY USING MIMETIC FINITE DIFFERENCES

MARDO GONZALES HERRERA, SHWETA SRIVASTAVA*, AND CÉSAR E. TORRES LEDESMA

Abstract. This paper is devoted to the numerical treatment of time fractional diffusion equation with mixed

boundary conditions. A new scheme based on the combination of the implicit finite difference method for Caputo

derivative in time and the mimetic finite difference in space is considered for solving this problem. The stability
analysis of the proposed scheme is given by using Von-Neumann method. The numerical results are provided to

demonstrate the effectiveness of the proposed method as compared with other finite difference methods.

1. Introduction

Fractional partial differential equations (FPDEs) plays an important role in various fields of science and engi-
neering, which has received increasing attention during the past 20 years. The various applications of fractional
PDEs verified experimentally started to accelerate, see [7, 9, 13, 15, 17, 3]. Mainardi [12] proposed the fractional
version of the time diffusion equation, which is obtained from the classical diffusion equation by replacing the
first-order time derivative with a fractional derivative of order α ∈ (0, 1). Later Gorenflo et al. [8] showed that this
equation is derived by considering continuous time random walk problems, which are in general non-Markovian
processes. In the last years, a number of numerical methods have been developed to solve the time fractional
diffusion equation with Dirichlet boundary conditions. Liu et al.[10] used a first-order finite difference scheme
in both time and space directions and derived the stability estimates for this equation. Yuste [18] presented a
difference scheme based on the weighted average methods for ordinary (non-fractional) diffusion equations. In
[11], a finite difference/spectral method based on a finite difference scheme in time and Legendre spectral methods
in space is designed.
There is considerable literature on the development and applications of numerical methods for the time fractional
diffusion equation with Dirichlet/Neumann boundary conditions. However, to the best of author’s knowledge,
we did not find any paper dealing with the time-fractional diffusion equation with mixed boundary conditions.
We believe that it is very important to develop a numerical method to solve this kind of equation with mixed
boundary conditions. Therefore in this paper, we propose a new numerical method to solve the time fractional
diffusion equation with mixed boundary conditions. This new numerical method is a combination of the implicit
finite difference method to approximate the time fractional derivative and the mimetic finite difference method
to approximate the spatial variable. More precisely, we are going to study the following fractional problem

(1.1) cϱ
∂αu(x, t)

∂tα
= λ

∂2u(x, t)

∂x2
+ g(x, t) , (x, t) ∈ D = [0, L]× [0, T ],

where ∂αu(x,t)
∂tα is the Caputo fractional derivative of order α ∈ (0, 1) defined as

(1.2)
∂αu(x, t)

∂tα
=

1

Γ(1− α)

∫ t

0

∂u(x, s)

∂s
(t− s)−αds, 0 ≤ t ≤ T.

Consider the initial condition associated with equation (1.1),

(1.3) u(x, 0) = f(x) , x ∈ [0, L],

2010 Mathematics Subject Classification. 26A33; 35A15; 35B38.

Key words and phrases. Fractional derivative of Caputo; discrete divergence; Mimetic finite difference; fractional diffusion equation.
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2 MARDO GONZALES HERRERA, SHWETA SRIVASTAVA*, AND CÉSAR E. TORRES LEDESMA

and the Neumann-Robin type boundary condition −λ∂u(0,t)
∂x = q(t) , t ∈ [0, T ]

−λ∂u(L,t)
∂x = h(t)

(
u(L, t)− u∞

)
,

(1.4)

where: c is the specific heat, λ : is the thermal conductivity coefficient, ϱ is the density, h is the heat transfer
coefficient, u∞ is the environmental temperature and q be the heat flux.

2. Preliminary Results

The basic idea of the numerical scheme for the time fractional diffusion equation is combining the implicit finite
difference method to discretize the temporal variable [11] and the mimetic finite difference scheme to discretize
the spatial variable [4]. The values of the functions u and g in the mesh points are denoted by un

i = u(xi, tn) and
gi = g(xi), respectively.

2.1. Discretization in the time: An implicit finite difference scheme. We follow the ideas of [11] to
discretize the Caputo fractional partial derivative with respect to the time. Let us discretize the time interval as
tk := k∆t, k = 0, 1, 2, · · · ,K, where ∆t := T

K is the time step. Then from the quadrature formula as in [3], for
all 0 ≤ k ≤ K − 1, we have

(2.1)
∂αu(x, tk+1)

∂tα
=

1

Γ(1− α)

k∑
j=0

u(x, tj+1)− u(x, tj)

∆t

∫ tj+1

tj

ds

(tk+1 − s)
α + rk+1

∆t ,

where

(2.2) rk+1
∆t ≤ cu

 1

Γ (1− α)

k∑
j=0

∫ tj+1

tj

tj+1 + tj − 2s

(tk+1 − s)
α ds+O

(
∆t2

) ,

is the truncation error given in [11] and cu is a constant which depends only of u.
Let

S(k) = (k + 1)
1−α

+ 2
(
(k)

1−α
+ (k − 1)

1−α
+ (k − 2)

1−α
+ · · ·+ (1)

1−α
)
− 2

2− α
(k − 1)

1−α
.

Now we are going to show that |S (k)| is bounded for all α ∈ [0, 1], and ∀ k ≥ 1, in the following lemma. Just for
the reader’s convenience, we give the details of the proof here.

Lemma 2.1. [11] For all α ∈ [0, 1] and for all k ≥ 1, there is a positive constant C ≥ 0, independent of α and
k, such that |S (k)| ≤ C.

Proof. For α = 0 we have

(2.3)
S (k) = (k + 1) + 2 [k + (k − 1) + (k − 2) + (k − 3) + · · ·+ 1]− (k + 1)

2

= (k + 1) (1− k − 1) + 2
k (k + 1)

2
= 0.

Now for α ∈ (0, 1], we claim that

(2.4) S (k) = (k + 1)
1−α

+2
[
(k)

1−α
+ (k − 1)

1−α
+ (k − 2)

1−α
+ · · ·+ (1)

1−α
]
−
(

2

2− α

)
(k + 1)

2−α
=

k∑
i=0

ai,

where

ai = (i+ 1)
1−α

+ (i)
1−α − 2

2− α

[
(i+ 1)

2−α − (i)
2−α

]
.
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Evaluating for each i, we get

i = 0; a0 = (1)
1−α − 2

2− α
(1)

2−α

i = 1; a1 = (2)
1−α

+ (1)
1−α − 2

2− α

[
(2)

2−α − (1)
2−α

]
...

i = k; ak = (k + 1)
1−α

+ (k)
1−α − 2

2− α

[
(k + 1)

2−α − (k)
2−α

]
.

Thus we have,

k∑
i=0

ai = a0 + a1 + a2 + a3 + · · ·+ ak

= 2
[
(1)

1−α
+ (2)

1−α
+ (3)

1−α
+ (4)

1−α
+ · · ·+ (k − 2)

1−α
+ (k − 1)

1−α
+ (k)

1−α
]
+ (k + 1)

1−α

− 2

2− α
(k + 1)

2−α
= S (k) .

According to (2.4), we will show that
∑∞

i=1 ai is convergent. Therefore, it is enough to prove that |ai| ≤ 1
i1+α , for

i large enough. Note that for i ≥ 2, we have

(2.5) |ai| = (i)
1−α

∣∣∣∣∣
(
1 +

1

i

)1−α

+ 1− 2i

2− α

((
1 +

1

i

)2−α

− 1

)∣∣∣∣∣
Let

Θ1 =

(
1 +

1

i

)1−α

and Θ2 =

(
1 +

1

i

)2−α

− 1.

Thus by Newton’s binomial theorem

(2.6)

Θ1 =1 + (1− α) .
1

i
+

(1− α) (−α)

2!

(
1

i2

)
+

(1− α) (−α) (−α− 1)

3!

(
1

i3

)
+

(1− α) (−α) (−α− 1) (−α− 2)

4!

(
1

i4

)
+ · · ·

and

Θ2 =1 +
(2− α)

1!
.
1

i
+

(2− α) (1− α)

2!

1

i2
+

(2− α) (1− α) (−α)

3!

1

i3

+
(2− α) (1− α) (−α) (−α− 1)

4!

1

i4
+ · · ·

(2.7)

Combining (2.5), (2.6), (2.7) and taking i = k, we get

|ak| = (k)
1−α

∣∣∣∣( 1

2!
− 2

3!

)
(1− α) (−α) .

1

k2
+

(
1

3!
− 2

4!

)
(1− α) (−α) (−α− 1)− 1

k3
+ · · ·

∣∣∣∣
= (k)

1−α

∣∣∣∣ 13! (1− α) (−α) .
1

k2
+

2

4!
(1− α) (−α) (−α− 1)− 1

k3
+ · · ·

∣∣∣∣ .
Therefore
(2.8)

|ak| ≤ (k)
1−α

∣∣∣∣ (1− α)

3!

1

k2

∣∣∣∣ |−α|+
∣∣∣∣2 (1− α) (−α)

4!

1

k3

∣∣∣∣ |−α− 1|+
∣∣∣∣3 (1− α)

5!

1

k4

∣∣∣∣ |−α| |−α− 1| |−α− 2|+ · · ·

≤ (1− α) (α)

3!

1

k1+α

(
1 +

1

k
+

1

k2
+ · · ·

)
≤ 2 (1− α) (α)

3!

1

k1+α
≤ 1

k1+α
.

Hence we conclude that |S(k)| is bounded. □
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From Lemma 2.1 and since 1
Γ(2−α) ≤ 2, for all α ∈ [0, 1], we have

(2.9)

∣∣∣∣∣∣ 1

Γ (1− α)

k∑
j=0

∫ tj+1

tj

tj+1 + tj − 2s

(tk+1 − s)
α ds

∣∣∣∣∣∣ ≤ 2∆t2−α.

Now by using (2.9), we get

(2.10)

∂αu(x, tk+1)

∂tα
=

1

Γ(1− α)

k∑
j=0

∫ tj+1

tj

∂u(x; s)

∂t
(tk+1 − s)−αds

=
1

Γ(1− α)

k∑
j=0

[
uj+1
i − uj

i

∆t
+O(∆t)

]∫ tj+1

tj

((k + 1)(∆t)− s)−αds

=
1

Γ(1− α)

(
1

1− α

)(
1

∆tα

) k∑
j=0

{(
uj+1
i − uj

i

) [
(k − j + 1)1−α − (k − j)1−α

] }
+

(
1

Γ(1− α)

)(
1

1− α

) k∑
j=0

[
(k − j + 1)1−α − (k − j)1−α

]
O(∆t2−α).

Thus the approximation of the fractional derivative is given by

(2.11)
∂αui

∂tα
= O(α,∆t)

k∑
j=0

ω(α, j)(uk−j+1
i − uk−j

i ),

where

(2.12) O(α,∆t) =
1

Γ(1− α)(1− α)∆tα
.

and

(2.13) ω(α, j) = (j + 1)
1−α − (j)1−α, ∀ j = 0, 1, 2 · · · , k,

are positive for all α, j,∆t.

(2.14)

∂αu(x, tk+1)

∂tα
= O (α,∆t)

k∑
j=0

(uk−j+1
i − uk−j

i )
[
(j + 1)

1−α − (j)1−α
]

+
1

(1− α)Γ(1− α)

k∑
j=0

[
(j + 1)

1−α − (j)1−α
]
O(∆t2−α).

Therefore, the expression for fractional derivative becomes,

∂αu(x, tk+1)

∂tα
= O (α,∆t)

k∑
j=0

(uk−j+1
i − uk−j

i )
[
(j + 1)

1−α − (j)1−α
]
+O(∆t2−α).

Remark 2.2. The expression (2.11) provides the values of the time fractional derivative at t = 0, which is not
required by the implicit finite difference scheme.

2.2. Discretization of the spatial variable using the mimetic finite difference scheme. Now we are
going to use a discrete version of divergence theorem to determine the discrete gradient. The divergence theorem
says that

(2.15)

∫
Ω

∇.−→v f dV +

∫
Ω

−→v ∇f dV =

∫
∂Ω

f−→v −→n dS.

where Ω is a domain and ∂Ω is the boundary of the domain, −→n is the exterior normal, f is a scalar function
defined over the boundary ∂Ω.



ANALYSIS AND NUMERICAL SIMULATION OF THE FRACTIONAL ORDER TIME DIFFUSION EQUATION 5

Let f , g be the scalar fields and −→v , −→w be the vector fields, the appropriate inner product of the continuum
are given by

(2.16) ⟨f, g⟩ =
∫
Ω

fg dV, ⟨−→v ,−→w ⟩ =
∫
Ω

−→v −→w dV.

Thus the equation (2.15) can be written as

(2.17) ⟨∇.−→v , f⟩+ ⟨−→v ,∇f⟩ =
∫
∂Ω

f−→v −→n dS.

The divergence theorem in one dimension becomes an integration by parts, thus we have

(2.18)

∫ 1

0

dv

dx
f dx+

∫ 1

0

v
df

dx
dx = v(1)f(1)− v(0)f(0).

A discrete form of the conservation law needs to be constructed in order to satisfy the local conservation in each
cell interval so that the law of global conservation is fulfilled throughout the investigated interval.

Definition 2.3 ( [4], [5] ). Let −→v : R → RN+1, be a discrete vector function defined on the nodes of the one-
dimensional mesh, such that v(t) = (v0(t), v1(t), · · · , vN (t)), ∀ t ∈ R. Dv ∈ RN represents the approximation in
the centers of the cells ∇−→v , the divergence in the centers of the cell are defined as:

Dv ⊂ RN+1 →RN

(Dv)i+ 1
2
=
(vi+1 − vi)

h
for i = 0, 1, 2, · · · , n− 1.

The approximation of the divergence in the centers of the cells coincide with the central difference scheme, which
is expressed as the matrix D(N)×(N+1)

D =
1

h



−1 1 0 · · · 0

0 −1 1 · · · 0

0 0 −1 · · · 0
...

...
...

. . .
...

0 0 0 −1 1


(N)×(N+1)

Definition 2.4 ( [4], [5] ). Let f = (f0, f1/2, f3/2, · · · , fN−1/2, fN )T ∈ RN+2 be a discrete function defined in

the center of the cell and in the domain border of a one-dimensional mesh. Further, let Gf ∈ RN+1 represents
the approximations at the nodes ∇f . The gradient Gf ⊂ RN+2 → RN+1 defined in a one-dimensional mesh at
the boundary points, has the form

(Gf)0 =
− 8

3f0 + 3f 1
2
− 1

3f 3
2

h
,

(Gf)N =

8
3fN − 3fN− 1

2
+ 1

3fN− 3
2

h
.

The gradient Gf at the interior points coincides with the central difference scheme, that is

(Gf)i =
fi+ 1

2
− fi− 1

2

h
for i = 1, 2, · · ·n− 1,

matrix G(N+1)×(N+2) is expressed as,
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G =
1

h



−8
3 3 −1

3 0 · · · · · · · · · 0 0

0 −1 1 0 · · · · · · · · · 0 0

0 0 −1 1 · · · · · · · · · 0 0
...

...
...

...
. . .

. . . · · · 0 0
...

...
...

... · · · −1 1 0 0
...

...
...

... · · · 0 −1 1 0

0 · · · · · · · · · · · · 0 1
3 −3 8

3


(N+1)×(N+2)

Observation 2.5. Now we have the matrix operators, the conditions of the discrete operators gradient (G) and
divergence (D) will be reformulated.

Figure 1. One-dimensional Uniform Staggered Mesh

where (D) indicates the approach for the divergence operator applied to the vector function in the cell centers
and (G) denotes the approximation for the gradient operator applied to the scalar function in the nodes of the
cells and the border.
In figure (1), the cell with uniform spacing and length h = 1

N , over the interval [0, 1] is considered. The investigated
interval is divided into n sub-intervals, each node has coordinate xi = (i× h), for 0 ≤ i ≤ N .
Each cell has a central point, means the interval [xi, xi+1] includes the center of coordinates xi+1/2.
The discrete form of the gradient operator (G) inside the domain and in the border are given by (see [4, 5])

(2.19) (Gu)i =
ui+ 1

2
− ui− 1

2

h
1 ≤ i ≤ N,

(Gu)0 =
−8

3h
u0 +

3

h
u 1

2
− 1

3h
u 3

2
,(2.20)

(Gu)N =
8

3h
uN − 3uN− 1

2
+

1

3h
uN− 3

2
.(2.21)

The mimetic discretization of the divergence (D) in the centers of each cell is given by

(2.22) (Dv)i+ 1
2
=

vi+1 − vi
h

0 ≤ i ≤ N.

Definition 2.6 ( [4], [5] ). Let v : R → RN+1 be a discrete vector function defined on the nodes of the one-
dimensional mesh such that v(t) = (v0(t), v1(t), v2(t), . . . , vN (t)) ,∀ t ∈ R. Further, let Dv ∈ RN represents the
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discrete approximation of the divergence (D) in the centers of the cells, the divergence (D̂) is defined as :

D̂v : RN+1 → RN+2(
D̂v

)
i+ 1

2

=
(vi+1 − vi)

h
, ∀ i = 0, 1, . . . , n− 1;

(Dv)0 = (Dv)N = 0.

The Matrix operator D̂ is expressed as :

D̂ =
1

h



0 0 0 · · · 0

−1 1 0 · · · 0

0 −1 1 · · · 0

0 0 −1 · · · 0
...

...
...

. . .
...

0 0 0 −1 1

0 0 0 0 0


(N+2)×(N+1)

2.3. Discrete divergence theorem (Castillo-Grone approach [4, 5]). In general, the Castillo-Grone ap-
proach given in (2.15) expresses the law of conservation of the equation (2.17). It can be represented in the form
of a weighted internal product of discrete vector and scalar functions on a stepped grid as,

(2.23) ⟨D̂v, f⟩Q + ⟨v,Gf⟩P = ⟨Bv, f⟩I

where D, G and B are the discrete versions of their corresponding continuums: divergence (∇.), gradient (∇),
and the border operator ( ∂

∂−→n ). The ⟨ , ⟩ represents the generalization of the internal product with weights Q, P
and I. Using the identity (2.23), a relation is obtained for the border operator

(2.24) B = QD̂ +GtP,

where [Q], [P ] and [I] are positive definite matrices of order (N + 2)× (N + 2) , (N + 1)× (N + 1) and (N+2)×
(N + 2) respectively, which are used to determine the form of D̂ and G. Thus the matrix B is given as

B =



−1 0 0 · · · 0 0 0
1
8 − 1

8 0 · · · 0 0 0

− 1
8

1
8 0 · · · 0 0 0

0 0 0 · · · 0 0 0
...

...
...

. . .
...

...
...

0 0 0 · · · 0 0 0

0 0 0 · · · 0 − 1
8

1
8

0 0 0 · · · 0 1
8 − 1

8

0 0 0 · · · 0 0 1


(N+2)×(N+2)

The discrete second order operators introduced by Castillo-Grone are given in [4], [5] and [6].

Therefore the mimetic operators gradient (G), divergence (D̂) are of second order, both inside of the domain as
well as at the border, in a uniform refined mesh of a one-dimensional domain.
Thus (2.15) can be written as

(2.25) ⟨∇.−→v , f⟩+ ⟨−→v ,∇f⟩ =
∫
∂Ω

f−→v −→n dS.



8 MARDO GONZALES HERRERA, SHWETA SRIVASTAVA*, AND CÉSAR E. TORRES LEDESMA

3. Numerical Scheme

3.1. Incorporation of discrete temporal and spatial scheme for fractional order diffusion equation.
From (1.1), we have

(3.1)
∂αu(x, t)

∂tα
=

a∂2u(x, t)

∂x2
+ g(x, t),

where a = λ
cϱ is the thermal diffusion coefficient and g(x, t) = g(x,t)

cϱ . Using implicit finite difference relation for

fractional order time derivative and mimetic discretization for the spatial variable, we obtain

O (α, k)

k∑
j=0

ω (α, j)
(
uk−j+1
i − uk−j

i

)
= a[D][G]uk

i + gki ,

Now, ∀ k ≥ 1 and i = 0, we have

O (α, k)ω (α, 0)
(
uk+1
0 − uk

0

)
+O (α, k)

k∑
j=1

ω (α, j)
(
uk−j+1
0 − uk−j

0

)
= a[D][G]uk+1

0 + gk+1
0 ,

O (α, k)
(
uk+1
0 − uk

0

)
+O (α, k)

k∑
j=1

ω (α, j)
(
uk−j+1
0 − uk−j

0

)
= a[D][G]uk+1

0 + gk+1
0 .

(3.2)

Using the approximations for Neumann and Robin boundary conditions (1.4), we get

−λ∂u(0, t)

∂x
= q(t) =⇒ −λ[B][G]uk+1

i = qk+1, ∀t ∈ [0, T ](3.3)

−λ∂u(L, t)

∂x
= h(t)u(L, t)− h(t)u∞

h (t)u (L, t) + λ
∂u

∂x
(L, t) = h (t)u∞ =⇒ h (t)uk+1 + β[B][G]uk+1 = h (t)u∞(3.4)

substituting (3.3) in (3.2), equation becomes

O (α, k)
(
uk+1
0 − uk

0

)
+O (α, k)

k∑
j=1

ω (α, j)
(
uk−j+1
0 − uk−j

0

)
= a[D][G]uk+1

0 + gk+1
0

β[B][G]uk+1
0 = qk+1 , β = −λ

O (α, k)
(
uk+1
0 − uk

0

)
+O (α, k)

k∑
j=1

ω (α, j)
(
uk−j+1
0 − uk−j

0

)
= (a[D][G]− β[B][G])uk+1

0 + gk+1
0 + qk+1

(3.5) (O (α, k)− a[D][G] + β[B][G])uk+1
0 = O (α, k)uk

0 −O (α, k)

k∑
j=1

ω (α, j)
(
uk−j+1
0 − uk−j

0

)
+ gk+1

0 + qk+1

Further, ∀ k ≥ 1 and i = 1, 2, . . . , N − 1, we have

O (α, k)
(
uk+1
i − uk

i

)
+O (α, k)

k∑
j=1

ω (α, j)
(
uk−j+1
i − uk−j

i

)
= a[D][G]uk+1

i + gk+1
i

(O (α, k)− a[D][G])uk+1
i = O (α, k)uk

i −O (α, k)

k∑
j=1

ω (α, j)
(
uk−j+1
i − uk−j

i

)
+ gk+1

i(3.6)

And, ∀ k ≥ 1 and i = N , we have



ANALYSIS AND NUMERICAL SIMULATION OF THE FRACTIONAL ORDER TIME DIFFUSION EQUATION 9

O (α, k)
(
uk+1
N − uk

N

)
+O (α, k)

k∑
j=1

ω (α, j)
(
uk−j+1
N − uk−j

N

)
= a[D][G]

(
uk+1
N

)
+ gk+1

N

h (t)uk+1
N + β[B][G]uk+1

N = h (t)u∞ , β = −λ.

Thus, we obtain

O (α, k)uk+1
N −O (α, k)uk

N +O (α, k)

k∑
j=1

ω (α, j)
(
uk−j+1
N − uk−j

N

)
= (a[D][G]− h (t)− β[B][G])uk+1

N

+ h (t)u∞ + gk+1
N

(O (α, k)− a[D][G] + h (t) + β[B][G])uk+1
N = O (α, k)uk

N −O (α, k)

k∑
j=1

ω (α, j)
(
uk−j+1
N − uk−j

N

)
+ h (t)u∞ + gk+1

N .(3.7)

Figure 2. (a) Mesh for the Fractional Order Derivative, (b) Mesh for the Integer Order Derivative

Figure 3. One-dimensional mesh for mimetic operators: B,G,D and, S operators
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From the graph it can be seen that:

L = D ·G
S = O (α, k)

M = A+B ·G
MI = A+ ·M ·B ·G−D ·G

where A is a matrix of order (N + 2) × (N + 2) which has nonzero entries on its diagonal, which correspond to
the nodes of the boundary. The values associated with the inputs are not null.
Then O (α,∆t) = [T ](N+2)×(N+2) is a matrix of order (N + 2)× (N + 2) .

4. Stability analysis

In this section, we prove an unconditional stable estimates of the proposed scheme with mixed boundary condi-
tions. The expanded form of equation(3.5) for the left most boundary for k ≥ 1 and i = 0 is given by(

O (α, k)− 8β

3h

)
uk+1
0 +

3

h
uk+1
1/2 − 1

3h
uk+1
3/2(4.1)

= O (α, k)uk
0 −O (α, k)

k∑
j=1

ω (α, j)
(
uk−j+1
0 − uk−j

0

)
+ gk+1

0 + qk+1

Further, for the inner node solution, ∀ k ≥ 1 and i = 1, 2, . . . , N − 1, we have from (3.6)

− a

h2
uk+1
i−1/2 +

(
O (α, k) +

2a

h2

)
uk+1
i+1/2 −

a

h2
uk+1
i+3/2(4.2)

= O (α, k)uk
i+1/2 −O (α, k)

k∑
j=1

ω (α, j)
(
uk−j+1
i+1/2 − uk−j

i+1/2

)
+ gk+1

i+1/2

Now, we look for the right boundary, so (3.7) in the expanded form ∀ k ≥ 1 and i = N is given by

(O (α, k))uk+1
N +

(
hk +

8λ

3h

)
uk+1
N +

(
λ

3h

)
uk+1
N−3/2 −

(
3λ

h

)
uk+1
N−1/2(4.3)

= O (α, k)uk
N −O (α, k)

k∑
j=1

ω (α, j)
(
uk−j+1
N − uk−j

N

)
+ hku

∞ + gk+1
N .

Theorem 4.1. The fully discrete scheme defined by (4.1), (4.2), and (4.3) for the solution of (1.1) with 0 < α < 1
on finite domain is unconditionally stable.

Proof. Let the solution of above fully discrete equation is given by uk
j = ξke

(iwjh), where i =
√
−1. First we

consider the stability of left boundary nodes for which the solution in given by the equation(4.1).
Let uk

j = ξke
(iwjh) be the form of solution then substituting it in (4.1) we obtain,

(
O (α, k)− 8β

3h

)
ξk+1 +

3

h
ξk+1 e(iwh/2) − 1

3h
ξk+1 e(3iwh/2)

= O (α, k) ξk −O (α, k)

k∑
j=1

ω (α, j) (ξk−j+1 − ξk−j) + gk+1
0
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After simplifying, we get(
O (α, k)− 8β

3h

)
ξk+1 +

1

3h
ξk+1 {9e(iwh/2) − e(3iwh/2)}

= O (α, k) ξk −O (α, k)

k∑
j=1

ω (α, j) (ξk−j+1 − ξk−j) + gk+1
0

(
O (α, k)− 8β

3h
+

1

3h

{
8e(iwh/2) − 2ie(iwh) sin(wh/2)

})
ξk+1

= O (α, k) ξk −O (α, k)

k∑
j=1

ω (α, j) (ξk−j+1 − ξk−j) + gk+1
0

ξk+1 =
ξk +

∑k
j=1 ω (α, j) (ξk−j − ξk−j+1) + gk+1

0(
1 + 8e(iwh/2)−2ie(iwh) sin(wh/2)−8β

3h O(α,k)

)
Here we can see that denominator is always greater than 1 as i.e.

8e(iwh/2) − 2ie(iwh) sin(wh/2)− 8β

3h O (α, k)
=

8e(iwh/2) − 2ie(iwh) + 8λ

3h O (α, k)
≥ 0

which is always true. Hence, we observe from the above equation that

(4.4) ξ1 ≤ ξ0

and

(4.5) ξk+1 ≤ ξk +

k∑
j=1

ω (α, j) (ξk−j − ξk−j+1) + gk+1
0 , ∀k ≥ 2.

Therefore for k = 1, the above inequality implies

ξ2 ≤ ξ1 + ω(α, 2)(ξ0 − ξ1) + g20

and using the result ξ1 ≤ ξ0 and the positiveness of the coefficients w(α, j) (2.13), it follows that ξ2 ≤ ξ1.
Repeating the process, we have

ξk+1 ≤ ξk ≤ ξk−1 ≤ ... ≤ ξ1 ≤ ξ0.

Thus for the left boundary nodes, we can see that the stability estimates holds.
Now we look for stability estimates at the inner points of the domain, in (4.2) after simplifying we get,

− a

h2
e−iwh/2ξk+1 +

(
O (α, k) +

2a

h2

)
eiwh/2ξk+1 −

a

h2
e3iwh/2ξk+1

= O (α, k) eiwh/2ξk −O (α, k)
k∑

j=1

ω (α, j) eiwh/2 (ξk−j+1 − ξk−j) + gk+1
i+1/2

ξk+1

(
2ai

h2
sin(wh/2) +O (α, k) eiwh/2 − 2ai

h2
sin(wh/2) eiwh

)

=

O (α, k) ξk −O (α, k)

k∑
j=1

ω (α, j) (ξk−j+1 − ξk−j)

 eiwh/2 + gk+1
i+1/2

ξk+1 =

(
ξk +

∑k
j=1 ω (α, j) (ξk−j+1 − ξk−j)

)
eiwh/2 + gk+1

i+1/2/O (α, k)(
eiwh/2 + 2ai

h2 O(α,k) sin(wh/2) (1− eiwh)
)
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Since the denominator is always greater than 1, and following the same procedure as we did for the left most
boundary, it can be concluded that ξk+1 ≤ ξk and the solution is stable at the inner nodes.
Furthermore we look for the stability of solution for the right most boundary. Assuming the form of solution, the
equation (4.3) becomes

(O (α, k))ξk+1e
iwNh +

(
hk +

8λ

3h

)
ξk+1e

iwNh +

(
λ

3h

)
ξk+1e

iw(N−3/2)h −
(
3λ

h

)
ξk+1e

iw(N−1/2)h

= O (α, k) ξke
iwNh −O (α, k)

k∑
j=1

ω (α, j) (ξk−j+1 − ξk−j) e
iwNh + hku

∞ + gk+1
N .

(
(O (α, k)) + hk +

λ

3h

(
16 sin2(wh/4) + 2i sin(wh/2)(4− e−iwh)

) )
ξk+1

= O (α, k) ξk −O (α, k)

k∑
j=1

ω (α, j) (ξk−j+1 − ξk−j) + hku
∞

Taking the upper bound for left hand coefficient of ξk+1 and simplifying, we get

ξk+1 ≤
ξk +

∑k
j=1 ω (α, j) (ξk−j − ξk−j+1) + hku

∞/O (α, k)(
1 + 3h2+26λ

3h O(α,k)

)
We can see that

(
1 + 3h2+26λ

3h O(α,k)

)
≥ 1 for all α, k, ω, and hk, therefore it follows that the solution is stable for the

right most boundary also. Hence from the above estimates, we can see that the solution is stable in all three
cases means ξk+1 ≤ ξk. Thus we can conclude that the solution is stable throughout the domain.

□

5. Numerical Results

In this section, numerical tests are considered to show the numerical performance of the proposed formulation.
From (1.1) and (3.1), the fractional partial differential equation in time with α = 0.5 is given as

(5.1)
∂0.5u(x, t)

∂t0.5
=

∂2u(x, t)

∂x2
+ ext0.5

(
−t+

√
tΓ(2 + α)

Γ( 32 + α)

)
,

with domain

(5.2) D = {(x, t) : x, t ∈ [0, 1],

the initial condition

(5.3) u (x, 0) = 0,

and Neumann and Robin type boundary conditions

−∂u

∂x
(0, t) = −t1+0.5

u(1, t) +
∂u

∂x
(1, t) = 0

(5.4)

The exact solution is represented by the function: u(x, t) = ext1+0.5.
The mimetic scheme used for the spatial discretization is expressed as
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∂2u(x, t)

∂x2
≈ D.(KG)u(x, t) . g(x, t) = gi(x, t)

h(t) ≈ A

∂u

∂x
≈ B.G

q(t) ≈ qi(t).

This can be written mimetically as

MI =
[
Â+BG+ D̂.(G)

]
u(x, t),

where Â is a diagonal matrix of order (N + 2)× (N + 2) that has non-null entries. The elements corresponding
to the boundary conditions are

Â(1, 1) = 0 Â(N + 2, N + 2) = −1.

The purpose of this example is to study the influence of the grid size ∆x and time-step length ∆t on the numerical
solution obtained with Mimetic finite difference scheme. We evaluate the error between the exact and approximate
solution with the maximum norm. The following Table shows the Error in the maximum norm for the implicit
finite difference (I.F.D) and the mimetic finite difference method (M.F.D) at time t = 0.75 and t = 1. It can
be seen from the Table (1) that the error decreases when the time step length ∆t is reduced. Though the
approximation error is optimal when the grid size reduces, there is a significant difference in error distribution
between Mimetic and Implicit discretizations. These errors are higher in the case of Implicit finite difference
method, see Table 1 compare to Mimetic finite difference scheme. This behavior is expected as Mimetic finite
difference method is of second order in time, while the Implicit scheme is of first order only, which supports the
proposed numerical scheme for fractional order PDEs.

Table 1. Variation of the approximation error for Implicit finite difference and Mimetic finite
difference scheme with different time refinement level ∆t.

Grid(∆x×∆t)

E (∆x,∆t)

t = 0.75 t = 1

IFD MFD IFD MFD
1

100 × 1
100 0.00414288 0.00190269 0.01080850 0.00423427

1
100 × 1

200 0.00146142 9.34982209e−04 0.00384188 0.00224898
1

100 × 1
300 7.73882266e−04 5.76161563e−04 0.00205081 0.00141923

It can be seen from the Table (2) that the error slowly decreases, when the grid size (∆x) is reduced using the
Mimetic finite difference scheme (M.F.D). However, the same does not happen with respect to the Implicit finite
difference scheme (I.F.D). Here, the error increases due to round off errors, when we reduce the grid size (∆x).
This shows that even by varying the grid size (∆x), the (M.F.D) scheme shows some advantage over the (I.F.D)
method. This verifies the efficiency of the proposed Mimetic finite difference method over the Implicit finite
difference scheme.
Next, the distribution of error obtained with the Mimetic finite difference scheme for different time step length ∆t
and different time instances are depicted in the following figures. As expected, the distribution of error reduces
when the time step is reduced, see Figure 4(a) at time t = 0.75. In addition, we can observe that distribution of
error reduced by half with each successive refinement. Similar is the case of distribution error at time t = 1, see
Figure 5(a). This behavior supports the Mimetic finite difference over Implicit finite difference method.
Furthermore, the next Figures presents the Approximate and exact solution with different time step length ∆t.
This shows that the approximation error between the exact solution and the discrete one improves with the



14 MARDO GONZALES HERRERA, SHWETA SRIVASTAVA*, AND CÉSAR E. TORRES LEDESMA

Table 2. Variation of the approximation error for Implicit finite difference and Mimetic finite
difference scheme with different space grid refinement (∆x) level

Grid(∆x×∆t)

E (∆x,∆t)

t = 0.75 t = 1

IFD MFD IFD MFD
1

100 × 1
100 0.0041428757 0.0019026870 0.010808523 0.0042342705

1
200 × 1

100 0.004195998 0.0019008641 0.0109263755 0.0042286135
1

300 × 1
100 0.004205837 0.0019006521 0.0109482022 0.0042278331

further refinement of the time step length, see Figure 4(b) at time t = 0.75, and Figure 5(b) at time t = 1. This
comparative study is performed in order to see the effects of Mimetic finite difference method.

(a) (b)

Figure 4. Approximation error obtained with Mimetic finite difference method with grid size
1

100 ×
1

100 ,
1

100 ×
1

200 ,
1

100 ×
1

300 at time t = 0.75 (a) Distribution of error, (b) comparison of exact
and approximate solution.

For the time fractional partial differential equation given in (5.1) together with the conditions (5.2),(5.3), (5.4),
and the grid size n = m = 100, the maximum error using (I.F.D) is equal to E (∆x; ∆t) = 0.0108085, while
the maximum error using (M.F.D) is equal to E (∆x; ∆t) = 0.00423427. Moreover, the distribution of the total
errors of the approximate solution using Mimetic finite difference (M.F.D) and Implicit finite difference (I.F.D)
are presented in Figure 6 (a) and (b) respectively. Further the approximate and exact solutions are depicted in
Figure 7.
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(a) (b)

Figure 5. Approximation error obtained with Mimetic finite difference method with grid size
1

100 × 1
100 ,

1
100 × 1

200 ,
1

100 × 1
300 at time t = 1 (a) Distribution of error, (b) comparison of exact

and approximate solution.

(a) (b)

Figure 6. Distribution of errors of the approximate solution for the grid size n = m = 100.

6. Conclusions

In this paper, we present the mimetic finite difference scheme to solve the fractional order diffusion equation with
mixed boundary conditions, characterized mainly by not using ghost points at the boundary of the domain. The
result of this method presents an approximation order (∆x2) for the spatial variable, while the implicit finite
difference method for the time variable shows an approximation order (∆t2−α).
It is concluded that the approximation error between the exact and approximate solution using the mimetic finite
difference method is much better than the error using the approximation method of implicit finite difference,
given in [3].

7. 2-D Fractional Time Diffusion Equation Mimetic Code

1 Tmax = 1 . ; % in t e r v a l o de tiempo
2 format long
3 x0 = 0 . ;

4 xn = 1 . ;
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Figure 7. Approximate and exact solutions for a mesh n = m = 100.

5

6

7 n = 100 ;
8 m = 100 ;

9 k = Tmax/(m) ;
10 h = (xn−x0 ) /(n) ;
11

12 x = zeros (n+2 ,1) ;

13 t = zeros (m+1 ,1) ;
14 w = zeros (n+2,m+1) ;
15

16 x (1) = x0 ;
17 x (n+2) = xn ;
18

19 for i = 2 : n+1
20 x ( i ) = h ∗ ( ( i −1)−1/2) ;
21 end

22

23 for j =1:m+1;
24 t ( j ) = k ∗ ( ( j −1) ) ;

25 end
26

27

28

29 alpha = 0 . 5 ;
30

31 a l f a 0 = 0 ;
32 mu0 = 1 ;

33

34 a l f a 1 = −1;
35 mu1 = 1 ;
36

37 Mu = MatrixMu(n ,mu0 ,mu1) ;

38 B = normalB (n) ;

39 G = grad i en t e (n) /h ;
40 D = dive r g enc i a (n) /h ;

41

42 %va l o r e s en l a f ron t e ra
43

44
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45 for i =1:n+2
46 w( i , 1 )= 0 ;

47 end

48

49 A = matrixA (n , a l f a0 , a l f a 1 ) ;

50

51 omega = zeros (m+1 ,1) ;

52 sigma = 1/(gamma(2− alpha ) ∗( kˆ alpha ) ) ;

53 for j = 1 :m+1
54 omega ( j ) = ( j ) ˆ(1−alpha ) − ( j −1)ˆ(1−alpha ) ;

55 end

56

57 Id = eye (n+2) ;

58 Id (1 , 1 ) = 0 ;

59 Id (n+2,n+2)= 0 ;
60

61 Fuente = zeros (n+2,m+1) ;
62 for j = 1 :m+1

63 for i = 2 : n+1

64 Fuente ( i , j ) = exp( x ( i ) ) ∗( t ( j ) ˆ alpha )∗(− t ( j ) + ( t ( j ) ˆ(1/2) ) ∗(gamma(2+alpha ) / gamma
(3/2+alpha ) ) ) ;

65 end

66 end
67

68 for j = 1 :m+1

69 Fuente (1 , j ) = −t ( j ) ˆ(1+alpha ) ;
70 Fuente (n+2, j )= 0 ;
71 end

72

73 MI = (A + Mu∗B∗G) − D∗G;
74

75 for j =2:m

76 suma = zeros (n+2,m+1) ;
77 i f j >= 2
78 for j j =2: j

79 suma ( : , j ) = suma ( : , j ) + omega ( j j , 1 ) ∗ Id ∗(w( : , j− j j +2)−w( : , j− j j +1) ) ;
80 end
81 end
82 w( : , j +1)= ( sigma∗ Id + MI) \ ( Fuente ( : , j +1) + sigma ∗( Id∗w( : , j )−suma ( : , j ) ) ) ;

83 end
84

85

86 u r e a l=zeros (n+2,m+1) ;

87

88 for j= 1 :m+1
89 for i = 1 : n+2

90 u r e a l ( i , j ) = exp( x ( i ) ) ∗ t ( j ) ˆ(1+alpha ) ;
91 end
92 end
93

94 e = zeros (m+1 ,1) ;
95

96 for j =1:m+1
97 e ( j ) = norm(w( : , j ) ’− u r e a l ( : , j ) ’ , i n f ) ;
98 end

99

100

101 norm( e , ’ i n f ’ )

102 subplot ( 1 , 2 , 1 )
103 [X T]=meshgrid (x , t ) ;

104 mesh(X,T,w’ ) ;
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105 t i t l e ( ’ Approximate So lu t i on ’ )
106 xlabel ( ’ Axis X ’ )

107 ylabel ( ’ Axis Y ’ )

108 zlabel ( ’ Axis Z ’ )
109 subplot ( 1 , 2 , 2 )

110 [X T]=meshgrid (x , t ) ;
111 mesh(X,T, u r ea l ’ ) ;

112 t i t l e ( ’ Exact So lu t i on ’ )

113 xlabel ( ’ Axis X ’ )
114 ylabel ( ’ Axis Y ’ )

115 zlabel ( ’ Axis Z ’ )

116 % spy (w)
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