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Abstract

To explore the impacts of pulse vaccination on the dynamical behaviors of virus, the current paper investigates the threshold

dynamics of a viral infection model with impulsive CTL immune response. We first discuss the existence of the infection-free

steady state, and define the crucial CTL-activated viral infection reproduction number $R 0$. Then, the fundamental extinction

and uniform persistence behaviors of virus are distinguished by various case of the threshold parameter $R 0$. Finally, we still

devote to studying special global attractivity of the positive steady state by employing the Lyapunov function. Our results

indicate that high vaccination rates stimulate the CTL response more effectively, and can eventually force the virus to eradicate.

1



Threshold dynamics of a viral infection model with

impulsive CTL immune response

Jie Wang a,∗, Ruirui Yang a, Haifeng Huo a

a Department of Applied Mathematics, Lanzhou University of Technology,

Lanzhou, Gansu 730050, People’s Republic of China

August 16, 2022

Abstract

To explore the impacts of pulse vaccination on the dynamical behaviors of virus, the current paper investigates

the threshold dynamics of a viral infection model with impulsive CTL immune response. We first discuss the

existence of the infection-free steady state, and define the crucial CTL-activated viral infection reproduction

number R0. Then, the fundamental extinction and uniform persistence behaviors of virus are distinguished by

various case of the threshold parameter R0. Finally, we still devote to studying special global attractivity of

the positive steady state by employing the Lyapunov function. Our results indicate that high vaccination rates

stimulate the CTL response more effectively, and can eventually force the virus to eradicate.

Keywords: Medical epidemiology; Reaction-diffusion equations; Viral infection model; Impulsive CTL im-

mune response; Threshold dynamics

AMS Subject Classification (2010): 92C60; 35K57; 35R12

1 Introduction

In the past decades, pulse vaccination has been remarkably successful in controlling polio and measles throughout Central

and South America. Prior theoretical results have noted that pulse vaccination strategies can be separated from classical

strategies in causing disease eradication at low values of vaccination. Another considerably significant application is the

vaccines that stimulate the cytotoxic T-lymphocyte (CTL) response, which stands for the best hope for controlling Human

Immunodeficiency Virus (HIV) [2], since the rising HIV specific CTL response observed during prime infection is strongly

associated with acute viral load decline. CTLs are host cells with the ability to recognize and kill viral infected cells in the

body, and can be activated by specific recognition of viral fragments (called epitopes).

The nature of the CTL response is the proliferation of CTL under the stimulation of viral antigen, and the extending

CTL population confronts with the viral population by killing the infected cells. Numerous literatures have considered the

viral model with CTL immune response [8, 15], in which infected cells are lysed by CTLs at a constant rate that is bilinear

to both the infected cells and the CTLs. In [12], Smith and Schwartz investigated such a model with the CTLs vaccinated at

fixed time moments, by assuming that the production of infected CD4+ T cells occurs at a constant rate. Nevertheless, this

assumption loses some of its validity in the earliest or latest stages of infection. Bartholdy et al. [1] and Wodarz et al. [13]

discovered that free virus populations turn over at greatly faster rates than the population of infected and uninfected cells,

which enabled them to make a quasi-steady-state assumption. Therefore, the amount of the free virus is proportional to that

of infected cells.

In particular, Yang and Xiao [16] recently still studied the threshold dynamics for compartmental epidemic models with

periodic pulses as the import incentives of the CTLs. Motivated directly by such investigations, we try to consider the

∗Corresponding author, email: jiema138@163.com.
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stronger growth mechanism that is not caused by impulse, but reaction term. Hence, we present the following model:

∂u

∂t
= dcuxx + θ − αu− βuv,

∂v

∂t
= dcvxx + βuv − σv − κvw,

∂w

∂t
= dwwxx + µvw + w(γ − w),


t 6= nT, x ∈ (0, l), n = 0, 1, · · · ,

u((nT )+, x) = u(nT, x),

v((nT )+, x) = v(nT, x),

w((nT )+, x) = g(w(nT, x)),

 t = nT, x ∈ (0, l), n = 0, 1, · · ·

(1.1)

with Neumann boundary conditions

ux(t, x) = vx(t, x) = wx(t, x) = 0, t > 0, x = 0, l, (1.2)

and initial conditions

u(0, x) = u0(x), v(0, x) = v0(x), w(0, x) = w0(x),≥, 6≡ 0, x ∈ (0, l), (1.3)

where u, v and w denote the concentration of uninfected cells, infected cells, and CTLs, respectively. θ is called the generation

rate of uninfected cells, α and σ are the death rate of uninfected and infected cells, respectively. β represents the infection

rate. Under antigen stimulation, the proliferation rate of CTL is µ, and we assume that its growth obeys the well-known

logistic equation. The parameter µ is also known as the CTL responsiveness. CTLs kill infected cells at a rate κ. In

particular, we suppose that the CTLs are pulsed by the vaccine at fixed times nT , and the effect of the vaccine is transient,

whereby solutions are continuous for t 6= nT and go through a transient change in the case where t = nT . All parameters

are positive.

Throughout this paper, we make the following assumptions about the impulsive function g:

(A1) g(w) is the first order continuously differentiable for w ≥ 0, g(0) = 0, g′(0) > 0, and for w > 0, g(w) > 0, g(w)/w is

nonincreasing with respect to w and 0 < g(w)/w < 1.

(A2) g(w) is nondecreasing with respect to w ≥ 0.

(A3) There are positive constants D, ι > 1 and small ι0 such that g(w) ≥ g′(0)w −Dwι for 0 ≤ w ≤ ι0.

In what follows, we first give some basic properties for problem (1.1)-(1.3).

Let X := C(R3, [0, l]) be the Banach space equipped with the supremum norm ‖ · ‖X. Define X+ := C(R3
+, [0, l]), then

(X,X+) is a strongly ordered space. For any given χ := (χ1, χ2, χ3) ∈ X, assume that (T1(t),T2(t),T3(t)) : X→ X, t ≥ 0, are

the strongly continuous semigroups associated with dc∂
2
xx − α, dc∂

2
xx − σ and dw∂

2
xx − ρ subject to the Neumann boundary

condition with some ρ > 0, respectively. According to [10, Section 7.1 and Corollary 7.2.3], we deduce that Ti(t) (i = 1, 2, 3)

is compact and strongly positive for all t > 0. Evidently, for any χ ∈ X, t ≥ 0, we still have

T1(t)χ(x) = e−αt
∫ l

0

Γ(dct, x, y)χ(y)dy, T2(t)χ(x) = e−σt
∫ l

0

Γ(dct, x, y)χ(y)dy

and

T3(t)χ(x) = e−ρt
∫ l

0

Γ(dwt, x, y)χ(y)dy,

where functions Γ(dct, x, y) and Γ(dwt, x, y) are the fundamental solutions corresponding to dc∂
2
xx and dw∂

2
xx subject to the

Neumann boundary condition, respectively.

Define F = (F1,F2,F3) : X+ → X by

F1(χ)(x) = θ − βχ1χ2, F2(χ)(x) = βχ1χ2 − κχ2χ3, F3(χ)(x) = µχ2χ3 + χ3(γ − χ3) + ρχ3.

As a result, problem (1.1)-(1.3) can be written as the following integral form

u(t) = T1(t)χ1 +

∫ t

0

T1(t− s)F1(u(s), v(s), w(s))ds,

v(t) = T2(t)χ2 +

∫ t

0

T2(t− s)F2(u(s), v(s), w(s))ds,

w(t) = T3(t− nT )g(w(nT )) +

∫ t

nT

T3(t− s)F3(u(s), v(s), w(s))ds, t ∈ (nT, (n+ 1)T ], n = 0, 1, · · · .
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Hence, for any given initial functions χ := (χ1, χ2, χ3) ∈ X+, we can straightforward obtain from [7, Corollary 4] that problem

(1.1)-(1.3) admits a unique mild solution U(t, x;χ) := (u, v, w)(t, x;χ) on [0, τ0) with U(0, ·;χ) = χ, and U(t, ·;χ) ∈ X+ for

t ∈ [0, τ0), where τ0 ≤ ∞. Moreover, utilizing the completely similar comparison views such as employed in [6] and [14], the

following boundedness result is valid, which means that the mild solution is global, i.e., τ0 =∞.

Proposition 1.1 The solutions of problem (1.1)-(1.3) are ultimately bounded and uniformly bounded in X+. Specifically,

there exist M > 0 and t∗ > 0 such that (u, v, w)(t, x) ∈ E0 :=
{

(u, v, w) | 0 < u, v, w ≤M
}

for all t ≥ t∗ and x ∈ [0, l].

Next, we claim that the mild solution U(t, x) of (1.1)-(1.3) obtained as above is still the classical one, that is, U(t, x) is

the first order continuously differentiable in time, and twice continuously differentiable in space. Actually, the initial value

χ(·) ∈ C1([0, l]) and the fact that g is the first order continuously differentiable show that U(0+, ·) ∈ C1([0, l]). By employing

the standard theory for parabolic equations, we have U(·, ·) ∈ C1,2((0, T ] × (0, l)). Thus, w(T+, x)=g(w(T, x)) ∈ C1([0, l])

and (u, v)(T+, x) = (u, v)(T, x) ∈ C1([0, l]) still hold. Once again, let U(T+, ·) be the new initial value for t ∈ (T+, 2T ], then

U(t, x) ∈ C1,2((T, 2T ] × (0, l)). Lastly, we can always deduce inductively the case for solution U(·, ·) of (1.1)-(1.3) for all

(t, x) ∈ [0,+∞)× (0, l) by the similar processes. Defining

PC([0,+∞)× [0, l]) = {U(t, ·) | U(t, ·) ∈ C((nT, (n+ 1)T ]× [0, l]), n = 0, 1, · · · },

and

PC1,2((0,+∞)× (0, l)) = {U(t, ·) | U(t, ·) ∈ C1,2((nT, (n+ 1)T ]× (0, l)), n = 0, 1, · · · },
we thus have the following statement.

Theorem 1.2 For any given initial function U0 := (u0, v0, w0) ∈ X+, problem (1.1)-(1.3) admits a unique global positive

solution U(t, x;χ) ∈ PC1,2((0,+∞)× (0, l)) on (0,∞) with U(0, ·;U0) = U0(·).

The remains of this paper are organized as follows. In Section 2, we discuss the infection-free steady state, and define the

CTL-activated viral infection reproduction number R0. In Section 3, we illustrate that R0 is a critical threshold parameter

to investigate the extinction and uniform persistence of virus. Finally, by utilizing the Lyapunov function, we still explore

the special global attractivity of the positive periodic steady state to problem (1.1)-(1.3).

2 Preliminaries: infection-free steady state and CTL-activated viral infection reproduction number

As a baseline, we begin with some analyses about the existence of the infection-free steady state to problem (1.1)-(1.3),

in which all infected cells are permanently absent from the population, i.e., v = 0.

In fact, we first consider the following scalar reaction-diffusion equation
∂u

∂t
= dcuxx + θ − αu, t 6= nT, x ∈ (0, l), n = 0, 1, · · · ,

ux(t, 0) = ux(t, l) = 0, t > 0,

u(0, x) = u0(x), x ∈ (0, l).

(2.1)

For problem (2.1), inspired by the global attractivity result of [17, Theorem 2.2.1], we have the following assertion.

Lemma 2.1 There exists a unique positive steady state u∗ = θ/α to problem (2.1), which is globally attractive in C(R, [0, l]).

Next, the equation only for w in problem (1.1)-(1.3) can be written as

∂w

∂t
= dwwxx + w(γ − w), t 6= nT, x ∈ (0, l), n = 0, 1, · · · ,

wx(t, 0) = wx(t, l) = 0, t > 0,

w(0, x) = w0(x), x ∈ (0, l),

w((nT )+, x) = g(w(nT, x)), t = nT, x ∈ (0, l), n = 0, 1, · · · ,

(2.2)

and its relevant steady periodic problem is thus

∂w

∂t
= dwwxx + w(γ − w), t 6= nT, x ∈ (0, l), n = 0, 1, · · · ,

wx(t, 0) = wx(t, l) = 0, t > 0,

w(0, x) = w(T, x), x ∈ (0, l),

w((nT )+, x) = g(w(nT, x)), t = nT, x ∈ (0, l), n = 0, 1, · · · .

(2.3)

The definition of upper and lower solutions to problem (2.2) with pulses are presented as follows

3



Definition 2.2 We give that w̃(t, x), ŵ(t, x) ∈ PC1,2((0,+∞)× (0, l))
⋂

PC([0,+∞)× [0, l]) satisfying 0 ≤ ŵ(t, x) ≤ w̃(t, x)

are upper and lower solutions of problem (2.2), respectively, if w̃(t, x) and ŵ(t, x) make the following problem hold:

∂w̃

∂t
≥ dww̃xx + w̃(γ − w̃), t 6= nT, x ∈ (0, l), n = 0, 1, · · · ,

∂ŵ

∂t
≤ dwŵxx + ŵ(γ − ŵ), t 6= nT, x ∈ (0, l), n = 0, 1, · · · ,

ŵx(t, 0) = 0 ≤ w̃x(t, 0), ŵx(t, l) = 0 ≤ w̃x(t, l), t > 0,

ŵ(0, x) ≤ ŵ(T, x), w̃(0, x) ≥ w̃(T, x), x ∈ [0, l],

w̃((nT )+, x) ≥ g(w̃(nT, x)), t = nT, x ∈ (0, l), n = 0, 1, · · · ,

ŵ((nT )+, x) ≤ g(ŵ(nT, x)), t = nT, x ∈ (0, l), n = 0, 1, · · · ,

0 ≤ ŵ(0, x) ≤ w0(x) ≤ w̃(0, x), x ∈ [0, l].

(2.4)

Furthermore, we still have the following fundamental lemma.

Lemma 2.3 ( Comparison principle) Assume that w̃(t, x) and ŵ(t, x) are the upper and lower solutions to problem (2.2)

with initial value ŵ(0, x) ≤ w(0, x) ≤ w̃(0, x), ∀ x ∈ [0, l], then any solution w(t, x) of problem (2.2) satisfies

ŵ(t, x) ≤ w(t, x) ≤ w̃(t, x), t ∈ [0,∞), x ∈ [0, l].

Let f(w, t) = w(γ−w) and choose k∗ = γ such that F (w, t) = k∗w+ f(w, t) is monotonically nondecreasing with respect

to w. If there are upper and lower solutions w̃ and ŵ of problem (2.3), taking w(0) = w̃ and w(0) = ŵ as initial iteration, we

can construct the iteration sequences {w(m)} and {w(m)} by the following process

∂w(m)

∂t
− dww(m)

xx + k∗w(m) = k∗w(m−1) + w(m−1)(γ − w(m−1)), t 6= nT, x ∈ (0, l), n = 0, 1, · · · ,

∂w(m)

∂t
− dww(m)

xx + k∗w(m) = k∗w(m−1) + w(m−1)(γ − w(m−1)), t 6= nT, x ∈ (0, l), n = 0, 1, · · · ,

w(m)
x (t, 0) = w(m)

x (t, l) = w(m)
x (t, 0) = w(m)

x (t, l) = 0, t > 0,

w(m)(0, x) = w(m−1)(T, x), w(m)(0, x) = w(m−1)(T, x), x ∈ (0, l),

w(m)((nT )+, x) = g(w(m−1)((n+ 1)T, x)), t = nT, x ∈ (0, l), n = 0, 1, · · · ,

w(m)((nT )+, x) = g(w(m−1)((n+ 1)T, x)), t = nT, x ∈ (0, l), n = 0, 1, · · · .

(2.5)

Now, we study the existence, uniqueness and attractivity of a positive periodic steady state to the problem (2.2), i.e.,

the positive solution to the problem (2.3). Linearizing problem (2.2) at w = 0, we have the following eigenvalue problem

∂ψ

∂t
= dwψxx + γψ − λψ, t ∈ ((nT )+, (n+ 1)T ], x ∈ (0, l), n = 0, 1, · · · ,

ψx(t, 0) = ψx(t, l) = 0, t > 0,

ψ(0, x) = ψ(T, x), x ∈ [0, l],

ψ((nT )+, x) = g′(0)ψ(nT, x), x ∈ (0, l), n = 0, 1, · · · .

(2.6)

The existence of the principal eigenvalue, denoted by λw henceforth, and it’s eigenfunctions associated are explored thoroughly

in [6], and we refer to it and discussions there for more details. In fact, by some direct calculations, we still have

λw = γ +
1

T
ln g′(0)− dwλ0 = γ +

1

T
ln g′(0),

where λ0 = 0 is just the principal eigenvalue of the following problem{
− ϕxx = λϕ, x ∈ (0, l),

ϕx(0) = ϕx(l) = 0.
(2.7)

The following analogous result has already been obtained in [6], but we present the proofs with some crucial modifications

for completeness.

Theorem 2.4 If the principal eigenvalue λw > 0, then the problem (2.2) admits a unique positive periodic steady state

w∗(t, x), which is globally attractive, i.e., limm→∞ w(t+mT, x)→ w∗(t, x).
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Proof. We divide the proof into three steps.

Step 1 The existence of the positive periodic steady states to problem (2.2).

We first construct the upper solution of problem (2.3). Let w̃=MW (t)(M > 1) with W (t) satisfying
Wt(t) = γW (t)−W 2(t), t 6= nT, n = 0, 1, · · · ,

W (t) = W (t+ T ), t ≥ 0,

W ((nT )+) = g′(0)W (nT ) ≥ g(W (nT )), t = nT, n = 0, 1, · · · .

(2.8)

It is nature to verify that w̃=MW (t)(M > 1) is an upper solution to problem (2.3). Actually, integrating from (nT )+ to t

(t ∈ ((nT )+, (n+ 1)T ]), we can obtain that

W (t) =
eγtW (nT+)

W (nT+)
∫ t
nT+ eγτdτ + eγnT

, t ∈ ((nT )+, (n+ 1)T ],

then

W ((n+ 1)T ) =
eγ(n+1)TW (nT+)

W (nT+)
∫ (n+1)T

nT+ eγτdτ + eγnT
=

eγ(n+1)T g′(0)W (nT )

g′(0)W (nT )
∫ T

0
eγτdτ + eγnT

=
eγT g′(0)W (nT )

g′(0)W (nT )
∫ T

0
eγτdτ + 1

.

Owing to λw > 0, we have γT > − ln g′(0), i.e., eγT g′(0) > 1. From the periodicity, we deduce that W (nT ) = eγT g′(0)−1

g′(0)
∫ T
0 eγτdτ

>

0 and

W (t) =
eγt(eγT g′(0)− 1)

(eγT g′(0)− 1)
∫ t
nT+ eγτdτ + eγnT

∫ T
0
eγτdτ

, t ∈ ((nT )+, (n+ 1)T ].

Hence, we get the upper solution w̃ to problem (2.3).

Next, we aim to consider the lower solution and define

ŵ(t, x) =


δψ(nT, x), t = nT, n = 0, 1, · · · ,

δ
ρ1

g′(0)
ψ((nT )+, x), t = (nT )+, n = 0, 1, · · · ,

δ
ρ1

g′(0)
e[λw−ε](t−nT )ψ(t, x), t ∈ ((nT )+, (n+ 1)T ], n = 0, 1, · · · ,

(2.9)

where the positive eigenfunction ψ(t, x) is defined in (2.6) associated with the principal eigenvalue λw > 0, and δ is a small

enough positive constant to be chosen later. We select the positive constants ε = λw
2

and ρ1 = e−
λw
2
T g′(0) such that ŵ is

well-defined and ŵ(nT, x) = ŵ((n+ 1)T, x) uniformly holds.

For t ∈ ((nT )+, (n+ 1)T ] and x ∈ (0, l), if δ < δ1 := ε, we can obtain that

∂ŵ

∂t
−
[
dwŵxx + γŵ − ŵ2]

= [λw − ε] δ
ρ1

g′(0)
e[λw−ε](t−nT )ψ + δ

ρ1

g′(0)
e[λw−ε](t−nT ) [dwψxx + γψ − λwψ]

−
[
dwδ

ρ1

g′(0)
e[λw−ε](t−nT )ψxx + γδ

ρ1

g′(0)
e[λw−ε](t−nT )ψ − (δ

ρ1

g′(0)
e[λw−ε](t−nT )ψ)2

]
=

[
−ε+ δ

ρ1

g′(0)
e[λw−ε](t−nT )ψ

]
δ
ρ1

g′(0)
e[λw−ε](t−nT )ψ

<0.

Besides, if δ < δ2 :=
(
g′(0)−ρ1

D

) 1
ι−1

, from the assumption A3, we have

g(ŵ(nT, x))− ŵ((nT )+, x) = g(ŵ(nT, x))− δ ρ1

g′(0)
ψ((nT )+, x) = g(ŵ(nT, x))− ρ1ŵ(nT, x)

≥ (g′(0)− ρ1)ŵ(nT, x)−D(δψ(nT, x))ι

= [(g′(0)− ρ1)−D(δψ(nT, x))ι−1]δψ(nT, x) ≥ 0.

Henceforth, we obtain that ŵ(t, x) is a lower solution to problem (2.3).

Further, we select the w(0) = w̃ and w(0) = ŵ as initial iteration, the sequences
{
w(m)

}
and

{
w(m)

}
are defined by (2.5).

It follows from problems (2.4) and (2.5) that we have

ŵ ≤ w(m) ≤ w(m+1) ≤ w(m+1) ≤ w(m) ≤ w̃.
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Due to the monotone convergence theorem, we obtain that the limits of the sequences
{
w(m)

}
and

{
w(m)

}
exist and

limm→∞ w
(m) = w, limm→∞ w

(m) = w, where w and w are T -periodic solutions of problem (2.3). Moreover,

ŵ ≤ w(m) ≤ w(m+1) ≤ w ≤ w ≤ w(m+1) ≤ w(m) ≤ w̃.

Now, we claim that w and w are the maximal and minimal positive T -periodic solutions of problem (2.3). In fact, for any

positive periodic solution w(t, x) of problem (2.3) satisfies ŵ ≤ w ≤ w̃. Employing the same iteration as problem (2.5), we

choose w̃ and w as the initial iteration with w(0) = w̃ and w(0) = w, it follows that w(t, x) ≤ w(t, x), t ≥ 0, x ∈ (0, l), thus,

w is the maximal positive T -periodic solution of problem (2.3). Similarly, w is the minimal positive T -periodic solution of

problem (2.3).

Step 2 The uniqueness of a positive periodic steady state to problem (2.2).

Without loss of generality, suppose that w1 and w2 are the two solutions, and set

S =
{
ς ∈ [0, 1], ςw1 ≤ w2, t = 0, t = 0+, t ∈ (0+, T ], x ∈ [0, l]

}
,

which can be seen that S contains a neighbourhood of 0. We claim that 1 ∈ η. Suppose not, then we have ς0 = supS < 1.

We note that F (w, t) = f(w, t) + k∗w is nondecreasing and f(w,t)
w

is decreasing in w on [0, max
[0,T ]×[0,l]

w2(t, x)], which yields

that
(w2 − ς0w1)t − dw(w2 − ς0w1)xx + k∗(w2 − ς0w1)

= f(w2, t) + k∗w2 − ς0(f(w1, t) + k∗w1)

≥ f(ς0w1, t) + k∗ς0w1 − ς0(f(w1, t) + k∗w1) ≥ 0

for t ∈ (0+, T ] and x ∈ (0, l). By assumptions A1 and A2, we deduce that

w2(0+, x)− ς0w1(0+, x) = g(w2(0, x))− ς0g(w1(0, x))

≥ g(ς0w1(0, x))− ς0g(w1(0, x)) ≥ 0

for x ∈ (0, l). However, for t > 0,

w2x(t, 0)− ς0w1x(t, 0) = w2x(t, l)− ς0w1x(t, l) = 0.

Due to the strong maximum principle [9], we have the significant statements as follows:

(a) w2 − ς0w1 > 0 holds for t = 0+, t ∈ (0+, T ] and x ∈ (0, l). Since w1 and w2 are T -periodic solutions, that is,

w1(0, x) = w1(T, x) and w2(0, x) = w2(T, x) for x ∈ (0, l), then w2 − ς0w1 > 0 for (t, x) ∈ (0, T ]× (0, l). Based on the

Hopf’s boundary lemma, we deduce that ∂
∂n
|x=0 (w2− ς0w1) > 0 and ∂

∂n
|x=l (w2− ς0w1) < 0, where n is the outward

unit normal vector. Then there is a constant ε0 > 0 such that w2− ς0w1 ≥ ε0w1, we have ς0 + ε0 ∈ S. This contradicts

the maximality of ς0.

(b) w2− ς0w1 ≡ 0 holds for t = 0+, t ∈ (0+, T ] and x ∈ (0, l), we thus have f(w2, t) = ς0f(w1, t). However, recalling ς0 < 1,

f(w2, t) = f(ς0w1, t) > ς0f(w1, t), thus it is also impossible.

In conclusion, problem (2.3) admits a unique positive T -periodic solution w∗(t, x).

Step 3 The attractivity of a positive periodic steady state to problem (2.2).

The Hopf’s boundary lemma implies ψx(0, 0) > 0 and ψx(0, l) < 0, and we select a small enough δ to make sure

δψ(0, x) ≤ w(0, x). Meanwhile, there exists a large enough M such that w(0, x) ≤ MW (0). For any given δ and M , the

function w̃=MW (t) with W (t) defined in (2.8) and ŵ defined in (2.9), satisfies

ŵ(0, x) ≤ w(0, x) ≤ w̃(0, x), x ∈ [0, l].

It follows from (A2) that g is nondecreasing for w, we obtain that

ŵ(0+, x) ≤ g(ŵ(0, x)) ≤ g(w(0, x)) = w(0+, x) ≤ g(w̃(0, x)) = w̃(0+, x).

The classical comparison principal yields ŵ(t, x) ≤ w(t, x) ≤ w̃(t, x), t ∈ (0+, T ], x ∈ [0, l]. Induction reveals that ŵ(t, x) ≤
w(t, x) ≤ w̃(t, x), t = nT, (nT )+, t ∈ ((nT )+, (n + 1)T ], x ∈ [0, l]. Besides, we have that ŵ(t, x) ≤ w(t, x) ≤ w̃(t, x),

t > 0, x ∈ [0, l0]. Therefore,

w(0)(t, x) ≤ w(t, x) ≤ w(0)(t, x), t = nT, (nT )+, t ∈ ((nT )+, (n+ 1)T ], x ∈ [0, l], n = 0, 1, · · · .

Moreover,

w(0)(T, x) ≤ w(T, x) ≤ w(0)(T, x), x ∈ [0, l], (2.10)
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together with w(1)(0, x) = w(0)(T, x) and w(1)(0, x) = w(0)(T, x) yields

w(1)(0, x) ≤ w(T, x) ≤ w(1)(0, x), x ∈ [0, l].

From the assumption (A2) and (2.10), we obtain that

g(w(0)(T, x)) ≤ g(w(T, x)) ≤ g(w(0)(T, x)), x ∈ [0, l].

Recalling the last two equations in (2.5) and the last equation in (1.1), one deduce that

w(1)(0+, x) = g(w(0)(T, x)) ≤ g(w(T, x))

= w(T+, x) ≤ g(w(0)(T, x)) = w(1)(0+, x), x ∈ [0, l],

that is,

w(1)(0+, x) ≤ w(T+, x) ≤ w(1)(0+, x), x ∈ [0, l].

The comparison principle implies that w(1)(t, x) ≤ w(t+T, x) ≤ w(1)(t, x) holds for (t, x) ∈ (0+, T ]× [0, l]. Utilizing induction

again we have

w(1)(t, x) ≤ w(t+ T, x) ≤ w(1)(t, x), t = nT, (nT )+, t ∈ ((nT )+, (n+ 1)T ], x ∈ [0, l], n = 0, 1, · · · ,

together with the last two equations in problem (2.5) shows that

w(m)(t, x) ≤ w(t+mT, x) ≤ w(m)(t, x), t ≥ 0, x ∈ [0, l],

since the above inequality holds for m = 0 and m = 1. Recalling the uniqueness of the periodic solution of problem (2.3)

provided with lim
m→∞

w(m)(t, x) = lim
m→∞

w(m)(t, x) = w∗(t, x), we have

lim
m→∞

w(t+mT, x)→ w∗(t, x), t ≥ 0, x ∈ [0, l].

�

Since due to the comparison principle Lemma 2.3, the stronger the pulse vaccination is, the larger the steady state

solution w∗ is, we still note that has a positive effect on the CTL response, i.e., w∗ increases as g increases.

To sum up, we obtain that problem (1.1)-(1.3) possesses an infection-free steady state solution (u∗, 0, w∗), where u∗ = θ
α

.

Linearizing problem (1.1)-(1.3) at (u∗, 0, w∗), we obtain the following linearized system
∂V

∂t
= dcVxx + (βu∗ − σ − κw∗)V, t 6= nT, x ∈ (0, l), n = 0, 1, · · · ,

Vx(t, 0) = Vx(t, l) = 0, t > 0,

V ((nT )+, x) = V (nT, x), t = nT, x ∈ [0, l], n = 0, 1, · · · .

(2.11)

Let CT be the Banach space consisting of all T -periodic and continuous functions from R to C([0, l]), which is equipped

with the maximum norm ‖ · ‖ and the positive cone C+
T := {ζ ∈ CT | ζ(t, x) ≥ 0, ∀ t ∈ R, x ∈ [0, l]}. It is clear that CT is an

ordered Banach space, and we henceforth take the nation ζ(t, x) := [ζ(t)] (x) for any given ζ ∈ CT .

Besides, assume that E(t, s)(t ≥ s) is the evolution operator of problem
∂V

∂t
= dcVxx − (σ + κw∗)V, t 6= nT, x ∈ (0, l), n = 0, 1, · · · ,

Vx(t, 0) = Vx(t, l) = 0, t > 0,

V ((nT )+, x) = V (nT, x), t = nT, x ∈ (0, l), n = 0, 1, · · · .

The standard semigroup theory implies that, there exist positive constants K ≥ 1 and ω such that

‖E(t, s)‖ ≤ Keω(t−s), ∀t ≥ s, t, s ∈ R.

Now, suppose that ζ ∈ CT , and let ζ(s, x) = [ζ(s)](x) be the density distribution of infected individuals at time s and

spatial location x ∈ [0, l]. Then the term βu∗(s, x)ζ(s, x) is the distribution of newly infected individuals generated by the

infectious individuals who were introduced at time s. Then, for any given t ≥ s, E(t, s)βu∗(s, x)ζ(s, x) is the distribution at

location x of those infected individuals who were newly infected at time s and remain in the infected compartments at time

t. Considering all of such individuals together, the following expression
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∫ t

−∞
E(t, s) [βu∗(·, s)ζ(·, s)] ds =

∫ ∞
0

E(t, t− s) [βu∗(·, t− s)ζ(·, t− s)] ds

thus represents the accumulative density distribution of the newly infected individuals at time t and spatial location x ∈ [0, l],

which are produced by all those individuals ζ(s, x) introduced at all the time before t.

According to the statement in [5], we define the operator L : CT → CT :

[Lζ](t) =

∫ t

−∞
E(t, s) [βu∗(·, s)ζ(·, s)] ds =

∫ ∞
0

E(t, t− s) [βu∗(·, t− s, )ζ(·, t− s, )] ds,

which is called as the next generation operator. It is obvious that L is continuous, strongly positive and compact on CT .

Hence, we define the spectral radius of L as the CTL-activated viral infection reproduction number of problem (2.11), that

is,

R0 = r(L).

The following results are well known, and we refer to [5, 6] for more details.

Lemma 2.5 (i) R0 = µ0, where µ0 is the principal eigenvalue of the following periodic parabolic eigenvalue problem



∂φ

∂t
= dcφxx +

βu∗

µ0
φ− (σ + κw∗)φ, t 6= nT, x ∈ (0, l), n = 0, 1, · · · ,

φx(t, 0) = φx(t, l) = 0, t > 0,

φ(0, x) = φ(T, x), x ∈ [0, l],

φ((nT )+, x) = φ(nT, x), t = nT, x ∈ (0, l), n = 0, 1, · · · .

(2.12)

(ii) sign(R0 − 1) = sign(λc), where λc is the principal eigenvalue of the following periodic parabolic eigenvalue problem

∂φ

∂t
= dcφxx + (βu∗ − σ − κw∗)φ− λcφ, t 6= nT, x ∈ (0, l), n = 0, 1, · · · ,

φx(t, 0) = φx(t, l) = 0, t > 0,

φ(0, x) = φ(T, x), x ∈ [0, l],

φ((nT )+, x) = φ(nT, x), t = nT, x ∈ (0, l), n = 0, 1, · · · .

(2.13)

In fact, the CTL-activated viral infection reproduction number of problem (1.1)-(1.3) can be explicitly expressed by

R0 =
βu∗

dcλ0 + σ + 1
T

∫ T
0
κw∗dt

=
βu∗

σ + 1
T

∫ T
0
κw∗dt

,

while, similarly, the explicit expression of the principal eigenvalue λc := λc(u
∗, w∗) is given by

λc = βu∗ − σ − dcλ0 −
1

T

∫ T

0

κw∗dt = βu∗ − σ − 1

T

∫ T

0

κw∗dt,

where u∗ = θ/α is the unique positive steady state to problem (2.1), and λ0 = 0 is the principal eigenvalue of problem (2.7).

Here, we could still note that in a sense, R0 is thus monotone decreasing in w∗, and this fact further reveals that R0

decreases as g increases, which implies that the pulse vaccination has a negative effect on the CTL-activated viral infection

reproduction number.

3 Dynamical behaviors of the entire system: uniform persistence and global attractivity

In this section, we will explore the dynamical behaviors of entire system, including the extinction-persistence of virus, and

global attractivity of the positive steady state. Particularly, for the general uniform persistence, it will be solved by adopting

the comparison principal and eigenvalue theory, while employing the Lyapunov function and some necessary analyses to

prove the special global attractivity.
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3.1 The uniform persistence of the entire system

Theorem 3.1 Assume that U(t, x;χ) is the solution to problem (1.1)-(1.3) with U(0, ·;χ) = χ ∈ X+. Then we have

(i) If R0 < 1, then the infection-free steady state solution (u∗, 0, w∗) of problem (1.1)-(1.3) is globally attractive in X+;

(ii) If R0 > 1, then problem (1.1)-(1.3) is uniformly persistent, that is, for any χ ∈ X+ with χ2(·) 6≡ 0, there is a positive

constant η > 0 such that any positive solution of (1.1)-(1.3) satisfies lim inft→∞ v(t, x;χ) ≥ η uniformly for all x ∈ [0, l].

Proof. (i) From the first equation of (1.1), we obtain that

∂u

∂t
≤ dcuxx + θ − αu.

By Lemma 2.1 and the comparison principal, it follows that for ∀ ε0 > 0, there exist positive constants t0 such that

u(t, x;χ) ≤ u∗ + ε0,∀ t ≥ t0, x ∈ [0, l].

Moreover, for the equation of w in (1.1), we have
∂w

∂t
≥ dwwxx + w(γ − w), t 6= nT, x ∈ (0, l), n = 0, 1, · · · ,

w((nT )+, x) = g(w(nT, x)), t = nT, x ∈ (0, l), n = 0, 1, · · · .

Recalling Theorem 2.4 and the comparison principal, one can find that for ∀ ε1 > 0, there also exist t1 ≥ t0 such that

w(t, x;χ) ≥ w∗(t, x)− ε1, ∀ t ≥ t1, x ∈ [0, l].

Furthermore, for the second equation of (1.1), we can obtain that

∂v

∂t
≤ dcvxx + β(u∗ + ε0)v − σv − κ(w∗ − ε1)v,∀ t ≥ t1, x ∈ (0, l).

Due to R0 < 1, by Lemma 2.5 and [3, Lemma 4.5], there is a strongly positive eigenfunction φ̂ corresponding to λc(u
∗ +

ε0, w
∗ − ε1) and λc(u

∗ + ε0, w
∗ − ε1) < 0. Note that the following linear problem
∂v

∂t
= dcvxx + β(u∗ + ε0)v − σv − κ(w∗ − ε1)v, t ≥ t1, x ∈ (0, l),

vx(t, x) = 0, t > 0, x = 0, l,

v(0, x) = v0(x) ≥, 6≡ 0, x ∈ (0, l)

admits a solution α0e
λc(u

∗+ε0,w
∗−ε1)(t−t1)φ̂ for some α0 > 0. For ∀ t ≥ t1, the comparison principal shows that v(t, x;χ) ≤

α0e
λc(u

∗+ε0,w
∗−ε1)(t−t1)φ̂, then we obtain limt→∞ v(t, x;χ) = 0 uniformly for all x ∈ [0, l].

Accordingly, for any small ε2 ∈ (0, 1), there is t2 ≥ t1 such that v(t, x;χ) < ε∗ for all t > t2, x ∈ [0, l]. Plugging into the

equations of u and w in (1.1) yields
∂u

∂t
≥ dcuxx + θ − αu− βuε2, t 6= nT, t ≥ t2, x ∈ (0, l), n = 0, 1, · · · ,

∂w

∂t
≤ dwwxx + µε2w + w(γ − w), t 6= nT, t ≥ t2, x ∈ (0, l), n = 0, 1, · · · .

(3.1)

By the comparison principal, there is t3 ≥ t2 such that u(t, x;χ) ≥ θ
α+βε2

, ∀ t > t3, x ∈ [0, l]. Similar to Theorem 2.4, since

λε2w = γ + µε2 + 1
T

ln g′(0) − dwλ0 = γ + µε2 + 1
T

ln g′(0) > 0 for any sufficiently small ε2, we also find that for arbitrary

ε3 > 0, there exist t4 ≥ t3 such that w(t, x;χ) ≤ w∗∗+ ε3, ∀ t > t4, x ∈ [0, l], where w∗∗ is the positive steady state satisfying

the following problem 

∂w

∂t
= dwwxx + µε2w + w(γ − w), t 6= nT, x ∈ (0, l), n = 0, 1, · · · ,

wx(t, 0) = wx(t, l), t > 0,

w(0, x) = w(T, x), x ∈ (0, l),

w((nT )+, x) = g(w(nT, x)), t = nT, x ∈ (0, l), n = 0, 1, · · · .

Due to the arbitrariness of ε0, ε1, ε2 and ε3, we immediately deduce that lim
t→∞

(u(t, x)−u∗) = 0 and lim
t→∞

(w(t, x)−w∗(t, x)) = 0

uniformly for all x ∈ [0, l]. Thus, the infection-free steady state solution (u∗, 0, w∗) of (1.1)-(1.3) is globally attractive.
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(ii) If R0 > 1, we first prove that the inequality

lim sup
t→∞

v(t, x;χ) ≥ ξ, (3.2)

uniformly for all x ∈ [0, l]. Assume that (3.2) is false, then there is a t4 > 0 such that v(t, x;χ) < ξ, ∀ t ≥ t4, x ∈ [0, l].

Recalling the analysis of (3.1) and the comparison principal, then there exists a t5 ≥ t4 such that u(t, x;χ) ≥ θ
α+βξ

for any

t ≥ t5, x ∈ [0, l]. Due to lim
ξ→0

θ
α+βξ

= θ
α

, there is a ξ1 small enough and a positive constant η1 such that θ
α+βξ

≥ θ
α
− η1,

ξ < ξ1. Hence, we have u(t, x;χ) ≥ θ
α
− η1, ∀ t ≥ t4, ξ < ξ1, x ∈ [0, l].

When v(t, x;χ) < ξ for ∀ t ≥ t4, we now suppose kT ≥ t4 for any integer k. Then, the third equation of (1.1) implies
∂w
∂t
≤ dwwxx + µξw + w(γ − w), t ≥ kT, x ∈ (0, l). Considering the auxiliary problem

∂z

∂t
= dwzxx + µξz + z(γ − z), t 6= nT, n ≥ k, x ∈ (0, l), n = 0, 1, · · · ,

z((nT )+, x) = g(z(nT, x)), t = nT, n ≥ k, x ∈ (0, l), n = 0, 1, · · · ,
(3.3)

together with the aforementioned method and Theorem 2.4, we know that the periodic solution z∗ of problem (3.3) is globally

attractive when λξw > 0, and z∗ is continuous for small ξ associated with lim
ξ→0

z∗(t, x) = w∗(t, x). Next, we choose ξ2 < ξ1 small

enough and a positive constant η2 such that z∗ ≤ w∗ + η2, ξ ≤ ξ2. Then, combining with the comparison principal and the

global stability of z∗, for a sufficiently small constant η3 > 0, we obtain w(t, x) ≤ z(t, x) ≤ z∗+ η3 ≤ w∗+ η2 + η3 := w∗+ η4,

ξ ≤ ξ1, t ≥ kT , x ∈ [0, l].

From the equation of v to (1.1), one can find

∂v

∂t
≥ dcvxx + β(u∗ − η1)v − σv − κ(w∗ + η4)v, ∀ t ≥ kT, x ∈ (0, l).

Similar to the discussion in (i), we can still obtain lim
t→∞

v(t, x;χ) = ∞ uniformly for all x ∈ [0, l], which contradicts the

boundedness of v. Thus, we prove inequality (3.2). Next, we discuss the following two cases.

(a) v(t, x) ≥ ξ uniformly for all large t and x ∈ (0, l);

(b) v(t, x) oscillates around ξ for all large t and x ∈ (0, l).

If (a) holds, let η = ξ, then our proof is completed. In the following, we only consider (b). Suppose that t and t are

large enough such that v(t, x) = v(t, x) = ξ, v(t, x) < ξ, t ∈ (t, t) uniformly for all x ∈ [0, l]. Together with the continuous,

bounded and without impulses properties of v(t, x) for all t ∈ [t, t], x ∈ [0, l], we can conclude that it is uniformly continuous.

Hence, there exists a constant τ > 0 (τ is independent of the choice of t) such that v(t, x) ≥ ξ
2

for all t ∈ [t, t+ τ ], x ∈ [0, l].

If t− t ≤ τ , then v(t, x) ≥ ξ
2

for all t ∈ (t, t), x ∈ [0, l]. We can take η = ξ
2
, then our proof is completed.

If t− t > τ , then v(t, x) ≥ ξ
2

for all t ∈ [t, t+ τ ], x ∈ [0, l].

Next, we aim to prove that v(t, x) ≥ ξ
2

for all t ∈ [t + τ, t], x ∈ [0, l]. Assume, by contradiction, there exist a positive

constant ω and k1 ∈ N such that t+ τ + ω = k1T , and

v(t, x) ≥ ξ

2
, for ∀ t ∈ [t, k1T ], x ∈ (0, l),

v(k1T, x) =
ξ

2
, v(t, x) ≤ ξ

2
, for ∀ t ∈ [t+ τ + ω, t], x ∈ (0, l).

Suppose that there exists k2 ∈ N (k2 > k1), such that k2T < t. For t ∈ (k1T, k2T ], repeating above procedure and method,

we have v(k2T ) > ξ
2
. This contradicts our hypothesis. Henceforth, v(t, x) ≥ ξ

2
:= η, for ∀ t ∈ [t, t], x ∈ [0, l]. Since the

interval [t, t] is arbitrary, we obtain limt→∞ v(t, x;χ) ≥ η uniformly for all x ∈ [0, l]. �

From the above statements, we note that high vaccination rates are a effective condition to eradicate the virus. To be

specific, high vaccination rates can enhance the CTL response resulting in producing a large w∗, which fact together with

the negative feedback of R0 on w∗, we can obtain that virus will eventually be forced to vanish.

3.2 The global attractivity investigation

Despite the weaker uniform persistence results for the entire system as stated above, we still are inclined to establish

some stronger results about the global dynamics of the entire system. In fact, since the system is non-cooperative, we will

utilize the theory of Lyapunov function and some necessary analyses to lift the threshold type results for problem (1.1)-(1.3).
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As the starting point, we first present the compactness of the solution semiflow. Let U = (u, v, w) ∈ Lp(0, l)× Lp(0, l)×
Lp(0, l), p > 1, problem (1.1)-(1.3) can be written as

∂U

∂t
= BU + F (t, U), t 6= nT, x ∈ (0, l), n = 0, 1, · · · ,

Ux(t, 0) = Ux(t, l) = 0, t > 0,

U(0, x) = U0(x) ≥, 6≡ 0, x ∈ (0, l),

(3.4)

and impulsive condition

u((nT )+, x) = u(nT, x), v((nT )+, x) = v(nT, x), w((nT )+, x) = g(w(nT, x)), x ∈ (0, l), n = 0, 1, · · · , (3.5)

where

B :=

dc∂
2
xx − % 0 0

0 dc∂
2
xx − % 0

0 0 dw∂
2
xx − %

 , % > 0, F (t, U) :=

 θ − αu− βuv + %u

βuv − σv − κvw + %v

µvw + w(γ − w) + %w

 .
The operator B has the domain of definition Λ(B) =

{
Ψ : Ψ ∈ Ω2,p(0, l),Ψx(t, 0) = Ψx(t, l) = 0

}
, where Ω2,p(0, l) is the

Sobolev space of functions from Lp(0, l) that possesses two generalized derivatives. Motivated by [11], we know that B is

sectorial and <Υ(B) < −%, where Υ(B) is the spectrum of B. For ∀ ϑ > 0, the functional power B−ϑ of B is defined by

B−ϑ = 1
Γ(ϑ)

∫ +∞
0

e−tBtϑ−1dt, where Γ is the gamma function. Naturally, the operator B−ϑ is bounded and bijective. Since

Bϑ = (B−ϑ)−1 and Λ(Bϑ) = H(B−ϑ), where H stands for the range of B−ϑ and B0 is the identity in Y = Lp × Lp× Lp

together with norm ‖ · ‖. Then, for ϑ ∈ [0, 1], we introduce a new space Y ϑ = Λ(Bϑ) such that ‖y‖ϑ = ‖Bϑy‖ϑ. Hence, we

have the following lemma ( [4][Lemma 2.2]) about the compactness of the solution semiflow.

Lemma 3.2 Assume that the function g is continuously differentiable and there exists a positive function q(M) such that

sup‖w‖ϑ≤M ‖g(w)‖ ≤ q(M), ϑ ∈
(

1
2

+ n
2p
, 1
)

. Let U(t, U0) = (u(t, x, u0, v0, w0), v(t, x, u0, v0, w0), w(t, x, u0, v0, w0)) and

U0 = (u0, v0, w0) ∈ Y ϑ be a bounded solution of problem (3.4)-(3.5). Then the set {U(t, U0) : t > 0} is relatively compact in

C1+$(R3
+, [0, l]) for 0 < $ < 2ϑ− 1− n

p
.

Now, according to the result of uniform persistence as stated above, we can strength the boundedness of solutions from

E0 to E := {(u, v, w) | M ≤ (u, v, w) ≤ M} for sufficiently large t. In particular, we have the following investigation about

the global attractivity of the entire system (1.1)-(1.3).

Theorem 3.3 Suppose that R0 > 1. If lnN + λAT < 0, where N = max

{
max

M≤s≤M
(g′(s))2, 1

}
, and λA is the maximal

eigenvalue of the matrix

A =

2
(
− α− βM

)
−βM + βM 0

−βM + βM 2
(
βM − σ − κM

)
−κM + µM

0 −κM + µM 2
(
− 2M + µM + γ

)
 , (3.6)

then problem (1.1)-(1.3) admits a unique positive steady state, which is T -periodic, piecewise continuous and globally attractive.

Proof. To begin with, we present the existence of the positive steady state.

Define the operator

Θ : X+ → X+,Θ(u(0+), v(0+), w(0+)) = (u((nT )+), v((nT )+), w((nT )+)), n = 1, 2, · · · .

Due to the system being persistent, the continuous operator Θ maps the closed, bounded, connected, and convex set E into

itself. According to Brouwer’s fixed point theorem, the operator Θ admits at least a fixed point (u∗∗, v∗∗, w∗∗) ∈ E, which is

a periodic solution of problem (1.1)-(1.3). Hence, problem (1.1)-(1.3) admits at least a strictly positive piecewise continuous

T -periodic solution. The existence of the positive stable state is proved.

In the following, the global attractivity of the positive steady state will be given.

Let (u, v, w) be a periodic solution of problem (1.1)-(1.3) and let (ŭ, v̆, w̆) be an other solution of (1.1)-(1.3) in the set E.

Consider an auxiliary function

I(t) =

∫ l

0

[(u(t, x)− ŭ(t, x))2 + (v(t, x)− v̆(t, x))2 + (w(t, x)− w̆(t, x))2]dx.
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Then

dI(t)

dt
= 2

∫ l

0

[
(u− ŭ)

(
∂u

∂t
− ∂ŭ

∂t

)
+ (v − v̆)

(
∂v

∂t
− ∂v̆

∂t

)
+ (w − w̆)

(
∂w

∂t
− ∂w̆

∂t

)]
dx

=2

∫ l

0

[dc(u− ŭ)(uxx − ŭxx) + dc(v − v̆)(vxx − v̆xx) + dw(w − w̆)(wxx − w̆xx)] dx

+ 2

∫ l

0

(u− ŭ) [(θ − αu− βuv)− (θ − αŭ− βŭv)] dx+ 2

∫ l

0

(v − v̆) [(βuv − σv − κvw)− (βŭv − σv̆ − κv̆w)] dx

+ 2

∫ l

0

(w − w̆) [(µvw + w(γ − w))− (µv̆w + w̆(γ − w̆))] dx

≤− 2dc

∫ l

0

| ux − ŭx |2 dx− 2dc

∫ l

0

| vx − v̆x |2 dx− 2dw

∫ l

0

| wx − w̆x |2 dx

+ 2

∫ l

0

(u− ŭ)2(−α− βv̆)dx+ 2

∫ l

0

(v − v̆)2(βŭ− σ − κw̆)dx+ 2

∫ l

0

(w − w̆)2(−w + µv̆ + γ − w̆)dx

+ 2

∫ l

0

(u− ŭ)(v − v̆)(−βu+ βv)dx+ 2

∫ l

0

(v − v̆)(w − w̆)(−κv + µw)dx

≤2

∫ l

0

(u− ŭ)2(−α− βv̆)dx+ 2

∫ l

0

(v − v̆)2(βŭ− σ − κw̆)dx+ 2

∫ l

0

(w − w̆)2(−w + µv̆ + γ − w̆)dx

+ 2

∫ l

0

(u− ŭ)(v − v̆)(−βu+ βv)dx+ 2

∫ l

0

(v − v̆)(w − w̆)(−κv + µw)dx

≤2

∫ l

0

(u− ŭ)2(−α− βM)dx+ 2

∫ l

0

(v − v̆)2(βM − σ − κM)dx+ 2

∫ l

0

(w − w̆)2(µM + γ − 2M)dx

+ 2

∫ l

0

(u− ŭ)(v − v̆)(−βM + βM)dx+ 2

∫ l

0

(v − v̆)(w − w̆)(−κM + µM)dx

≤λA
∫ l

0

[
(u− ŭ)2 + (v − v̆)2 + (w − w̆)2] dx,

that is, dI(t)
dt
≤ λAI(t). Straightforward calculation implies that I((n+ 1)T ) ≤ I((nT )+)eλAT , and we have

I(((n+ 1)T )+) =

∫ l

0

[(u((n+ 1)T, x)− ŭ((n+ 1)T, x))2 + (v((n+ 1)T, x)− v̆((n+ 1)T, x))2

+ (g(w((n+ 1)T ), x)− g(w̆((n+ 1)T, x)))2]dx

≤NI((n+ 1)T ) ≤ NI((nT )+)eλAT .

Now, we take the change of the function over the period T into consideration. Naturally, we have

I(t+ T ) ≤ N∗I(t) = NeλAT I(t).

Due to lnN + λAT < 0, we obtain that N∗ < 1. Consequently, we deduce that I(t̃+mT ) ≤ Nm
∗ I(t̃) and Nm

∗ I(t̃)→ 0

as m→∞, which implies that

lim
t→∞

‖u(t, x)− ŭ(t, x)‖L2 = lim
t→∞

‖v(t, x)− v̆(t, x)‖L2 = lim
t→∞

‖w(t, x)− w̆(t, x)‖L2 = 0.

From the solutions of problem (1.1)-(1.3) are bounded, we can obtain that

lim sup
t→∞x∈(0,l)

| u(t, x)− ŭ(t, x) |= lim sup
t→∞x∈(0,l)

| v(t, x)− v̆(t, x) |= lim sup
t→∞x∈(0,l)

| w(t, x)− w̆(t, x) |= 0.

Identically, the solutions of problem (1.1)-(1.3) are globally attractive.

Lastly, consider the sequence (u(nT, x, u0, v0, w0), v(nT, x, u0, v0, w0), w(nT, x, u0, v0, w0)) = U(nT,U0). Recalling the

orbit compactness conclusion Lemma 3.2, we still have the compactness in space C([0, l])×C([0, l])×C([0, l]). Let U∗ be a limit

point of this sequence satisfying U∗ = lim
i→∞

U(niT,U0), then U(T,U∗) = U∗. Due to U(T,U(niT,U0)) = U(niT,U(T,U0))

and lim
ni→∞

U(niT,U(T,U0))− U(niT,U0) = 0, then as i→∞, we have

‖U(T,U∗)− U∗‖ ≤ ‖U(T,U∗)− U(T,U(niT,U0))‖+ ‖U(T,U(niT,U0)− U(niT,U0)‖

+ ‖U(niT,U0)− U∗‖ → 0.
(3.7)
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Thus, the sequence {U(nT,U0)} admits a unique limit point. Without loss of generality, we assume that the sequence has

two different limit points U∗ = lim
i→∞

U(niT,U0) and U∗ = lim
i→∞

U(niT,U0). According to (3.7) and U∗ = U(niT,U∗), then we

have

‖U∗ − U∗‖ ≤ ‖U∗ − U(niT,U0)‖+ ‖U(niT,U0)− U∗‖ → 0, as i→∞, .

Thus, U∗ = U∗. The solution (u(t, x, u, v, w), v(t, x, u, v, w), w(t, x, u, v, w)) := U∗ is the unique positive steady state of

problem (1.1)-(1.3). The proof is completed. �
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