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Abstract

Abstract: This study was conducted in Gerba Dima Forest, South Western Ethiopia to formulate allometric equations for

Pouteria adolfi-friederici. Prior to collecting data for tree allometry, the study forest was stratified into 3 forest strata based

on altitudinal variation. By employing semi-destructive technique, 30 individuals were systematically selected and sampled

for measuring biomass along the three forest strata. Based on the data collected, several equations were developed. Before

establishing the allometric equation, scatter plots were used to see whether the relationship between independent and dependent

variables was linear. Furthermore, several allometric relationships between independent and dependent variables were tested.

The best-fit model developed was validated by testing the regression assumptions. AGB was regressed against the various forms

of predictors (i.e., DBH, H and WD) and three allometric models showed significant performance (p < 0.05) on their F-test.

Among the three allometric equations which showed significant performance, the selection of the best-fit model was conducted

based on their P-value, adjusted r2, AIC, RMSE. The two models are nested to the third model and hence the complete model,

lnAGB=1.806+1.419×lnDBH+0.628×lnWD, is selected as the best-fit model against the other two nested models since the

p-values of coefficients of the complete model are significant (p < 0.05).
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Abstract

This study was conducted in Gerba Dima Forest, South Western Ethiopia to formulate allometric equations
for Pouteria adolfi-friederici . Prior to collecting data for tree allometry, the study forest was stratified into
3 forest strata based on altitudinal variation. By employing semi-destructive technique, 30 individuals were
systematically selected and sampled for measuring biomass along the three forest strata. Based on the data
collected, several equations were developed. Before establishing the allometric equation, scatter plots were
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used to see whether the relationship between independent and dependent variables was linear. Furthermore,
several allometric relationships between independent and dependent variables were tested. The best-fit model
developed was validated by testing the regression assumptions. AGB was regressed against the various forms
of predictors (i.e., DBH, H and WD) and three allometric models showed significant performance (p < 0.05)
on their F-test. Among the three allometric equations which showed significant performance, the selection
of the best-fit model was conducted based on their P-value, adjusted r2, AIC, RMSE. The two models are
nested to the third model and hence the complete model, lnAGB=1.806+1.419×lnDBH+0.628×lnWD, is
selected as the best-fit model against the other two nested models since the p-values of coefficients of the
complete model are significant (p < 0.05).

Key words/Phrases: Allometric equation, Model fitting, Model validation, Regression

1. Background

Pouteria adolfi-friederici is a tall tree of high forest, up to50 m tall, with the long, straight, more or less
fluted trunk, and with buttresses at the base. It is an emergent or upper canopy species in montane moist
forest and grows between 1350-2450m altitudinal ranges. The Phytogeographic distribution of the species in-
cludes Ethiopia, Sudan, Uganda, Kenya, the Democratic Republic of Congo, Zambia, Malawi, and Zimbabwe
(Hedberg et al., 2003). This species is a high-value timber tree used for all types of woodwork. Although
classified as ’not threatened’ on a global basis, the species and the high forest associated with it is rapidly
being cut down and very little is being done to either conserve representative forests or replant the species
in Ethiopia (Tesemma, 1993; Hedberg et al., 2003).

Allometric equations relate simply recorded variable (e.g. tree diameter, height) to other structural and
useful features (Niklas, 1994), which is the most common and reliable method for estimating biomass, net
primary production, and biogeochemical budgets in forest ecosystems (Gower et al., 1999). They have been
developed to satisfy various purposes in forest ecology and management. Diameter at breast height (DBH)
is commonly used as the only independent variable and most allometry develops an allometric relationship
between DBH and component biomass (Gower et al., 1999). Some investigations proposed to incorporate
tree height (H) as the second predictor and produce the DBH–H combined equation to increase the accuracy
of biomass estimates (Ketterings et al., 2001). The allometric technique estimates the entire or partial
(by compartments) mass of a tree from measurable tree dimensions, including trunk diameter and height,
using allometric equations (Kangas and Maltamo, 2006). Thus, dendrometric parameters of all the trees are
measured and using the allometric equation the biomass of the stand is estimated by summing the biomass
of individual trees.

Generalized models have immense potential for large-scale carbon budgets computed from inventory data,
(Pastor et al., 1984). When estimating the above-ground biomass of a forest, the uses of species-specific
equations are preferred because trees of different species may differ greatly in tree architecture and wood
density. However, due to the great number of different tree species in humid tropical rainforests and enormous
efforts needed to develop these equations. Species-specific allometric equations for the humid tropics are
almost absent while relatively few mixed-species equations have been developed (Ketterings, et al., 2001).
This study was aimed to develop a species-specific allometric equation for Pouteriaadolfi-friederici , which
can help the precise estimation of forest carbon stock in south western Ethiopia.

2. Material and methods

2.1 The study area

This study was conducted in Gerba Dima forest found in south western Ethiopia between 70 45’ to 80 10’
North latitude and 350 29 ’ to 350 50’ East longitude. The studied forest is part of the mountainous highlands
west of the Great Rift Valley and is situated on undulating and dissected mountain ranges between1582m
to 2285m altitudinal ranges.

Figure 1. Map of the study area
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The rainfall data collected from Gore meteorological station indicated that the study area receives very
high annual rainfall. The climate diagram constructed using 20 years of climate data of the nearest Gore
meteorological station shows unimodal rainfall pattern with the monthly mean maximum and mean minimum
temperature of the area is 27.20C and 13.3 0C, respectively. The mean annual temperature is 19.20C and
with slight variation from year to year (Figure 2). The mean annual rainfall of the study area is 1854mm.
The rainfall pattern exhibits low rainfall in December, January and February, steadily rising to the peak
period in August. The vegetation type at the studied site is part of the moist evergreen Afromontane forest,
which is characterized by one, or more closed strata of evergreen trees that may attain a height of 30 to 40
m. The characteristic emergent species that form the upper canopy includePouteria adolfi-friederici , Albizia
gummifera, A. schimperiana, A. grandi bracteata, Sapium ellipticum, Ekebergia capensis, Ficus sur, Hallea
rubrostipulata, Olea welwitschii, Polyscias fulva and Schefflera abyssinica .

Figure 2. Climate diagram of Gore

2.2 Biomass Data collection

The studied forest was stratified into three forest strata based on the altitudinal variation. Strata one was
found at an altitudinal range of between 1500-1800m while strata two and three were located between the
altitudinal range of 1801-2000m and 2001-2300m respectively. Following the methodologies recommended in
Picard et al ., (2012), area and species-specific allometric equations were formed involving a semi-destructive
approach. Thirty individuals were systematically selected and sampled for measuring biomass along the three
forest strata. In order to minimize the error of sampling and to obtain the representative tree and samples,
diameter distributions were taken into account during tree selection. Accordingly, the trees were classified
into five DBH classes and each class having six individuals per DBH class ranging from 10-20 cm, 20.1-30
cm, 30.1-40 cm, 40.1-50 cm and greater than 50 cm.Experienced persons climbing on live trees using ropes
did the measurement of diameter at 2m interval in each section of a tree. Using data obtained by climbing
live trees, aboveground biomass of trunk, branches and leaves were estimated. Generally, three random
small branches with less than 10cm basal diameter per individual plant were destructed and trimmed. The
measurements of fresh biomass (in kg) were divided into two parts: measuring trimmed fresh biomass and
measuring untrimmed fresh biomass.

Trimmed fresh biomass

The three small branches destructed per tree were trimmed using a machete. A tree caliper was used to
determine the diameter at the base of each branch. The basal diameters were determined at the first point at
which the branch became cylindrical, typically within 5 cm of the trunk then the leaves were separated from
the trimmed branches. The fresh biomass of the leaves from the trimmed branches (Btrimmed fresh leaf)
and the fresh biomass of the wood from the trimmed branches (Btrimmed fresh wood) were determined (by
weighing separately). Three random samples of the leaves from three different trimmed branches were taken
to constitute the aliquot. Its fresh weight (B aliquot fresh leaf in g) was measured. Without debarking, an
aliquot of the wood was also taken at random from the trimmed branches. Its fresh mass was measured (B
aliquot fresh wood in g) in the field, immediately after cutting. Samples about 10 cm long were taken from
twigs and 6 disks were taken from the destructed three branches. These aliquots were placed in numbered
plastic bags and sent to the laboratory. The subsamples were then dried at 650C for 48 h or until a constant
weight was obtained to determine the moisture content. The fresh volume of the wood aliquot was measured
in the lab, and the value was used to determine mean wood density. These data (dry biomass of trimmed
component) were used to develop regressions between basal diameter and trimmed branch component weight
(trimmed branches, twigs and leaves) (Vann et al ., 1998; Picard et al ., 2012).

Untrimmed fresh biomass

Untrimmed biomass is measured indirectly as non-destructive. The small untrimmed branches with less
than 10cm basal diameter were processed differently from the large branches and the trunk. For the small
branches, only basal diameter was measured. The biomass of these small untrimmed branches with their
accompanying twigs and leaves was estimated from the relationship between their basal diameter and the
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regression developed from the trimmed branches (Vann et al ., 1998; Picard et al ., 2012).

The biomass of the trunk and the large branches was estimated from measurements of volumes (Vi in cm3)
and mean wood density (ῥ in g cm-3). The large branches and trunk were divided virtually into sections
that are then materialized by marking the tree. The volume Vi of each section i was obtained by measuring
its diameter and its length. Diameter measurements were carried out in sections of about two meters in
length along the length of the trunk. For larger branches greater than 10 cm in basal diameter, diameter
measurements were conducted in sections of 50 cm in length using tree caliper.

The volume (V aliquot fresh wood) of the wood aliquot taken from the trimmed compartments was measured
by measuring the volume of water displaced when the sample is immersed in water using a graduated tube
of suitable dimensions for the sample (Picard et al ., 2012). The dry biomass of the tree was obtained by
the sum of the trimmed dry biomass and the untrimmed dry biomass:

B dry = B trimmed dry + B untrimmed dry

2.3 Data analysis

Calculating trimmed biomass

From the fresh biomass Baliquot
fresh wood of a wood aliquot and its dry biomassBaliquot

dry wood, the moisture content of
the wood (including bark) was calculated as follow:

Xwood,i =
B aliquot dry wood, i

B aliquot fresh wood, i

Likewise, the moisture content of the leaves was calculated from the fresh biomass Baliquot
fresh leaf,i of the leaf

aliquot and its dry biomass.

Xleaf,i =
Baliquot
dry leaf,i

Baliquot
fresh leaf,i

Trimmed dry biomass can then be calculated:

B trimmed dry = B trimmed fresh wood ×X wood + B trimmed fresh leaf ×X leaf

Where B trimmed fresh leaf is the fresh biomass of the leaves stripped from the trimmed branches and B
trimmed fresh wood is the fresh biomass of the wood in the trimmed branches (Picard et al ., 2012).

Calculating untrimmed biomass

Two calculations were required to calculate the dry biomass of the untrimmed part (i.e. that still standing):
one for the small branches accompanied with leaves and twigs and the other for the large branches. The
untrimmed biomass is the sum of the two results:

B untrimmed dry = B untrimmed dry branch + B dry section

Each section i of the large branches was considered as a cylinder of volume (Smalian’s formula):

Vi =π/8 Li (D2
1i + D2

2i)

Where Vi is the volume of section i, Li its length, and D1i and D2i are the diameters of the two extremities of
section i. The dry biomass of the large branches is the product of mean wood density and the total volume
of the large branches:

B dry section = R ×
∑
i

Vi

4
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Where the sum corresponds to all the sections in the large branches, and where mean wood density is
calculated by:

R =
Baliquot

dry wood

V aliquot
fresh wood

The dry biomass of small untrimmed branches, twigs and leaves was calculated from the regression model
developed between the basal diameter of the trimmed branches and biomass of trimmed branches, twigs and
leaves. This model is established by following the same procedure as for the development of an allometric
model. Power type equations were used:

B dry branch = a + bDc

Where a, b and c are model parameters and D branch basal diameter. Using a model of this type, the dry
biomass of the untrimmed branches and their components (twigs and leaves) is:

B untrimmed dry branch=
∑
j (a + bD

c

j
)

Where the sum is all the untrimmed small branches and their components and Dj is the basal diameter of
the branch j (Picard et al ., 2012).

Calculating the biomass of the trunk

The truncated cone volume formula was used instead of the cylinder formula, for larger trees their diameter
measured at two meters interval. For each log i, the circumferences at the two extremities were measured:
circumference C1i is the circumference of the log taken at the bottom end and circumference C2i is the
circumference of the log taken at the upper end. This was conducted to calculate the volume of the fresh
log using the truncated cone volume formula (or Newton’s formula):

Vfrais,i = Li ×π
3 × (R2

1i + R1iR2i + R2
2i)

Where Li is the length of log i, and R1i=
C1i
2 π ; R2i =C2i

2 π are the radii of log i at its two extremities. The dry
biomass of the trunk is the product of mean wood density and total volume of the trunk

B dry section = ῥ ×
∑
i Vi, where the sum corresponds to all the sections in the trunk (Picard et al ., 2012).

Formulation of allometric equation

Based on the data collected, several equations were developed. Before establishing the allometric equation,
scatter plots were used to see whether the relationship between independent and dependent variables was
linear. Furthermore, several allometric relationships between independent and dependent variables were tes-
ted. The independent variables included DBH, Height, and wood density, whereas the dependent variable
was the dry weight of the AGB. Because the data exhibited heteroscedasticity, a power function was an
inappropriate model in this study, so the data was transformed for linear regression using logarithmic trans-
formation. The transformation equalized the variance over the entire range of biomass values, which satisfies
the prerequisite of linear regression (Sokal and Rohlf, 1995; Sprugel, 1983).

To develop an allometric model for the above-ground biomass, Diameter at breast height ((DBH), Height
(H) and Wood density (WD) were taken as explanatory variables. Given that there are p effect variables X1,
X2, . . . ,Xp, there are 2p - 1 models that include all or some of these effect variables (Picard et al., 2012).
Thus, in this study, the 3 effect variables can result in 23-1 which becomes 7 candidate regression model
(Table 1). Table 1. The seven candidate regression model which serve to select the best models

Model Allometric equations

1 ln(AGB) = c + αln(DBH) + ε
2 ln(AGB) = c + βln(H) + ε

5
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Model Allometric equations

3 ln(AGB) = c + χln(WD) + ε
4 ln(AGB) = c + αln(DBH) + βln(H) + ε
5 ln(AGB) = c + αln(DBH) + χln(WD) + ε
6 ln(AGB) = c + βln(H) + χln(WD + ε
7 ln(AGB) = c + αln(DBH) + βln(H) + χln(WD) + ε

where: c is the intercept, and α,β and χ are the slope coefficient of the regression.

Model comparison and selection were based on average deviation (Brand and Smith, 1985; Chave et al .,
2005), slope coefficient of the regression (Nelson et al ., 1999), Akaike Information Criterion (AIC) (Burnham
and Anderson, 2002; Chave et al ., 2005), confidence interval (CI) of the predictions, paired t-test and
Coefficients of determination (r2).

Model validation

The best-fit models developed for trees and shrubs have been validated by testing the regression assump-
tions. Model validation confirms that the model complies with underlying assumptions. All regression-type
techniques are based on a series of assumptions, those of prime importance is the residuals are independent,
residuals follow a normal distribution andresiduals variance is constant(homoscedasticity).

Testing the assumption of Normality and Homoscedasticity

A quantile-quantile graph was plotted to check the residuals follow a normal distribution and whether the
cluster of points form a straight line was visually verified. To check that the variance of the residuals is
constant, we can plot the residuals against the fitted values and verify visually that the cluster of points does
not show any particular trend (Picard et al ., 2012). Furthermore, the scale-location plot and each points
leverage plot were also constructed to check the homoscedasticity assumption and the existence of possible
outliers respectively.

Test for multicollinearity

Multicollinearity is the strong correlation between the independent variables. Some correlation between
them is highly expected as all variables are ‘causing factors’ to tree biomass. However, ‘strong correlation’
causes ‘strong multicollinearity’ by which the true effect of estimated regression coefficients would be lost.
Thus, we can no longer depend on standard statistical tests. In such circumstances, a variable that has less
explanatory power with the dependent variable must be removed from the regression model. Nevertheless,
while doing so, there should not have strong collinearity between the remaining variable with other potential
explanatory variables. A variance inflation factor (VIF) quantifies how much the variance is inflated. It is
a measure of how much the variance of the estimated regression coefficient bk is ”inflated” by the existence
of correlation among the predictor variables in the model. A VIF of 1 means that there is no correlation
between the kth predictor and the remaining predictor variables, and therefore the variance of bk is not
inflated at all. The general rule of thumb is that VIFs exceeding 4 warrant further investigations, while VIFs
exceeding 10 are signs of serious multicollinearity requiring correction (Belsley et al ., 1980).

3. Results

Trimmed and untrimmed Biomass

The average wood and leaf aliquot moisture contents were 0.61% and 0.53%.Mean trimmed fresh leaf biomass,
mean trimmed fresh wood biomass, mean trimmed dry leaf biomass, mean trimmed wood dry biomass and
the overall mean trimmed dry biomass were 6.02kg, 7.23kg, 3.19kg,4.41kg and 7.60kg respectively. The
dry biomass of small untrimmed branches, twigs and leaves was calculated from the linear regression model
developed between the biomass of trimmed branches, twigs, leaves and the basal diameter of trimmed

6
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branches (equation 1) and accordingly the mean basal diameter was 7.25cm and the mean untrimmed
biomass for small branches was 9.01kg.

B = 547.5 BD + 15382, r2= 0.92 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (Equation 1)

The mean wood density was 0.45 gcm-3while the mean untrimmed biomass for large branches calculated
from the volume of each section of a branch obtained by Smalian’s formula of a tree was 105.78kg. The
mean biomass of trunks was 1543±312kg while the mean DBH, Height and the mean overall aboveground
biomass (AGB) were 69.29±7.97cm, 22.87±0.9m and 1785.12±344kg respectively.

The person’s correlation analysis between above-ground biomass and with biomass predictor variables (DBH,
Height and wood density) showed that the above-ground biomass was strongly correlated with DBH while
Height is the second important factor correlating with biomass showing moderate correlation. However, the
AGB was not significantly correlated with wood density (Table 2).

Table 2. Pearson’s product moment correlations coefficient and P value between the response variable (AGB)
and explanatory variables(WD, DBH and H)

AGB WD DBH H
AGB 1 0.287 0.961** 0.539**

0.124 0.000 0.002
WD 0.287 1 0.257 0.205

0.124 0.171 0.276
DBH 0.961** 0.257 1 0.623**

0.000 0.171 0.000
H 0.539** 0.205 0.623** 1

0.002 0.276 0.000

**. Correlation is significant at the 0.01 level.

Model fitting

AGB was regressed against the various form of predictors (i.e., DBH, H and WD) and three allometric
models showed significant performance (p < 0.05) on their F-test (Model 1, 3 and 6)(Table 3). Among
the three allometric equations which showed significant performance, the selection of the best-fit model was
conducted based on their P-value, adjusted r2, AIC, RMSE. The first two models (models 1 and 3) are nested
to model 6 and hence the complete model 6is selected against the nested models 1 and 3 since the p-values
of coefficients of the complete model are significant (p < 0.05). Model6 selected as the best-fit model is
indicated below.

lnAGB = c + αlnDBH + xlnWD + ε, with values of coefficient inserted the model form is: lnAGB =
1.806 + 1.419 × lnDBH + 0.628 × lnWD. . . . . . . . . . . . . . . . . . . . . . . . (Equation 2)

(r
2

= 0.951, ε = 0.219, AIC = −1.026, RMSE = 0.208)

Where AGB is in kg, DBH in cm and WD in cm 3. The ANOVA also showed that the best-fit model was
found to be statistically significant (F=283.042, p < 0.000).

7



P
os

te
d

on
12

A
u
g

20
22

—
T

h
e

co
p
y
ri

gh
t

h
ol

d
er

is
th

e
au

th
or

/f
u
n
d
er

.
A

ll
ri

gh
ts

re
se

rv
ed

.
N

o
re

u
se

w
it

h
ou

t
p

er
m

is
si

on
.

—
h
tt

p
s:

//
d
oi

.o
rg

/1
0.

22
54

1/
au

.1
66

02
95

11
.1

33
77

51
3/

v
1

—
T

h
is

is
a

p
re

p
ri

n
t

an
d

h
a
s

n
o
t

b
ee

n
p

ee
r-

re
v
ie

w
ed

.
D

a
ta

m
ay

b
e

p
re

li
m

in
a
ry

.

Model
Number

Allometric
equation Coefficients Coefficients

Standard
Error of
coefficients

Adjusted
r2

Residuals
stan-
dard
Error AIC RMSE

1 ln(AGB) =
c +
αln(DBH)
+ε

Symbol Value 0.268 0.945 0.233 1.594 0.225

c 1.123***
α 1.462*** 0.065

2 ln(AGB)=
c+β
ln(H)
+ε

c -3.270 1.759 0.536 0.676 65.549 0.653

β 3.318*** 0.565
3 ln(AGB)=

c+ χ
ln(WD)+ε

c 9.193*** 0.975 0.122 0.930 0.898

χ 2.668 * 1.190 84.706
4 c 0.694 0.671 0.944 0.235

ln(AGB)=
c+
αln(DBH)+
βln(H)+
ε

α 1.411
***

0.099 0.223

β 0.204 0.293 3.058
5 c -1.332 2.056 0.621

ln(AGB)=
c
βln(H)+
χ

ln(WD)+
ε

β 3.074
***

0.566 0.565 0.655 64.550

χ 1.460 0.867
6 c 1.806*** 0.410 0.208

ln(AGB)=c+αln(DBH)+
χ

ln(WD)+
ε

α 1.419
***

0.065 0.951 0.219

χ 0.628 * 0.296 -1.026
7 ln(AGB)=c+αln(DBH)+

βln(H)+
χlnWD+ε

c 1.411 0.722 0.950 0.222 0.463 0.206

α 1.373
***

0.095

β 0.185 0.277
χ 0.621 * 0.299

8



P
os

te
d

on
12

A
u
g

20
22

—
T

h
e

co
p
y
ri

gh
t

h
ol

d
er

is
th

e
au

th
or

/f
u
n
d
er

.
A

ll
ri

gh
ts

re
se

rv
ed

.
N

o
re

u
se

w
it

h
ou

t
p

er
m

is
si

on
.

—
h
tt

p
s:

//
d
oi

.o
rg

/1
0.

22
54

1/
au

.1
66

02
95

11
.1

33
77

51
3/

v
1

—
T

h
is

is
a

p
re

p
ri

n
t

an
d

h
a
s

n
o
t

b
ee

n
p

ee
r-

re
v
ie

w
ed

.
D

a
ta

m
ay

b
e

p
re

li
m

in
a
ry

.

Model
Number

Allometric
equation Coefficients Coefficients

Standard
Error of
coefficients

Adjusted
r2

Residuals
stan-
dard
Error AIC RMSE

Significant
codes: 0
‘***’
0.001
‘**’ 0.01
‘*’ 0.05
‘.’ 0.1 ‘ ’
1

Significant
codes: 0
‘***’
0.001
‘**’ 0.01
‘*’ 0.05
‘.’ 0.1 ‘ ’
1

Significant
codes: 0
‘***’
0.001
‘**’ 0.01
‘*’ 0.05
‘.’ 0.1 ‘ ’
1

Significant
codes: 0
‘***’
0.001
‘**’ 0.01
‘*’ 0.05
‘.’ 0.1 ‘ ’
1

Significant
codes: 0
‘***’
0.001
‘**’ 0.01
‘*’ 0.05
‘.’ 0.1 ‘ ’
1

Significant
codes: 0
‘***’
0.001
‘**’ 0.01
‘*’ 0.05
‘.’ 0.1 ‘ ’
1

Significant
codes: 0
‘***’
0.001
‘**’ 0.01
‘*’ 0.05
‘.’ 0.1 ‘ ’
1

Significant
codes: 0
‘***’
0.001
‘**’ 0.01
‘*’ 0.05
‘.’ 0.1 ‘ ’
1

Significant
codes: 0
‘***’
0.001
‘**’ 0.01
‘*’ 0.05
‘.’ 0.1 ‘ ’
1

Table 3. Model description for the estimation of the above-ground biomass of Pouteriaadolfi-friederici in
Gerba Dima forest

Model Validation

Testing the Independence Assumption

The Durbin-Watson statistical test was conducted for the occurrence of serial correlation between residuals
which can be used to check the independence of residuals for the best-fitted model. The Durbin-Watson
statistics obtained for the model selected was 1.942.

Testing the assumption of Normality and Homoscedasticity

A quantile-quantile graph was plotted in R- software for the best-fitted model and visually verified that
almost the cluster of points forms a straight line. Homoscedasticity characterized by a constant variance of
the residuals was also checked by plotting the residuals against the fitted values in R software and visually
verified that more or less the cluster of points does not show any particular trend (Figure 3).

Figure 3. Residuals plotted against fitted values (upper-left), quantile–quantile plot (lower left), scale-
location plot (upper - right) and plots for each point leverage (lower-right)for best fitted model of
Pouteriaadolfi-friederici

4. Discussion

Fitting Allometric Regression Models

The above-ground biomass was strongly correlated with DBH so that DBH is the most influential factor
affecting the biomass of the trees. Height is the second important factor correlating with biomass showing
a strong correlation coefficient while the biomass was poorly correlated with wood density. Thus, if there is
no multicollinearity between DBH and H, the combination of these two variables gives the best regression
model. Conducting a correlation test between response and explanatory variables is an important step to
select an appropriate explanatory variable and to develop the best-fit regression model (Maraseni et al .,
2005).

Model fitting for Pouteria adolfi-friederici involves choosing the best model among the 3 statistically sig-
nificant candidate models. The third complete model (Model six) is selected against the first two nested
models since the p-values of coefficients of the complete model are significant (p < 0.05). In the case of
nested models, a statistical test can be used to test one of the models against the other. The null hypothesis
of this test is that θ = 0, i.e. the additional terms are not significant, which can also be expressed as the
nested model is better than the complete model. If the p-value of this test proves to be below the significance
level (typically 5 %), then the null hypothesis is rejected, i.e. the complete model is best. Conversely, if
the p-value is above the significance threshold, the nested model is considered to be the best (Picard et al.,
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2012). Since the best-fit model selected for P. adolfi-friederici involves two predictor variables, the absence
of Multicollinearity was also checked using the Variance Inflation Factor. The VIF value obtained was 1.8
for each predictor variable and this value assures that multicollinearity is not a problem in this model. A
strong correlation between independent variables causes ‘strong multicollinearity’ by which the true effect of
estimated regression coefficients would be lost. The general rule of thumb is that VIFs exceeding 4 warrant
further investigations, VIFs exceeding 10 are signs of serious multicollinearity requiring correction while VIFs
less than 4 indicates an absence of multicollinearity problem (Belsley et al., 1980). The overall accuracy of
the model is 95.11% with an overall p-value < 0.001, in this model the Adjusted R-squared (0.9511) is closer
to 1, showing that 95.11% of the variability of the above-ground biomass is explained by this model. The
ANOVA test conducted also shows that the overall allometric equation was found to be statistically significant
(F=283.042, P < 0.001).Model validationThe best-fit regression models developed were validated based
on a series of assumptions, those of major importance are the residuals are independent, residuals follow a
normal distribution and residuals variance is constant (homoscedasticity). Violation of these assumptions
may result in biased parameter estimates and type I errors (Quinn & Keough 2002; Picard et al., 2012).
The Independence Assumption was tested by Durbin-Watson statistics which has values ranging between 0
and 4. However, the residuals are considered not correlated (independent) if the Durbin-Watson statistic is
between 1.5 and 2.5 (Field, 2009). The Durbin-Watson statistics of models is less than 2.5, indicating that
the residuals for the model selected are uncorrelated; therefore, the independence assumption is met in this
study. The independence assumption is a significant assumption that should be investigated prior to any in-
terpretation of multiple regression analysis, as a violation of this assumption could hold critical implications
(Stevens, 2009). Even a slight violation of the independence assumption should be taken seriously, as it can
greatly increase the risk of Type 1 error, resulting in the risk of falsely rejecting the null hypothesis several
times greater than the level of error assumed for the test (Stevens, 2009). The assumption of normality
and homoscedasticity was tested by thoroughly investigating a quantile-quantile graph (Q-Q plot) and the
residuals against the fitted values plot developed. The residual errors plotted versus their fitted values for the
best-fit model indicated that the residuals are randomly distributed around the horizontal line representing
a residual error of zero; that is, no distinct trend in the distribution of points is observed and confirms the
homoscedasticity assumption of the model. The standard Q-Q plot of the best-fit models also suggests that
the residual errors are normally distributed.

Screening for normality is an important early step when conducting multiple regressions, as residuals are
normally distributed is assumed (Stevens, 2009; Tabachnick & Fidell, 2006). Non-normal distributions that
are positively or negatively skewed, contain large kurtosis or have extreme outliers which can distort the
obtained significance levels of the analysis, resulting in the standard errors becoming biased (Osborne &
Waters, 2002).

The assumption of homoscedastic indicates that the variance of errors is equal and constant across all levels
of the variables (Osborne & Waters, 2002; Stevens, 2009). Homoscedasticity is related to the assumption
of normality because when the assumption of normality is met, the relationship between the variables is
homoscedastic (Tabachnick & Fidell, 2006). Heteroscedasticity occurs when the variance of errors differs at
different values of the independent variables (Osborne & Waters, 2002). Slight heteroscedasticity has little
effect on significance tests; however, when heteroscedasticity is marked it can lead to serious distortions of
findings and seriously weaken the analysis thus increasing the possibility of a Type 1 error for a small sample
size (Osborne & Waters, 2002).

The scale-location plot for all models shows the square root of the standardized residuals (sort of a square
root of relative error) as a function of the fitted values. Again, there is no obvious trend in this plot which
further confirms the absence of heteroscedasticity. Finally, the plot in the lower right (Figure 3) shows each
point’s leverage, which is a measure of its importance in determining the regression result. Superimposed
on the plot are contour lines for the Cook’s distance, which is another measure of the importance of each
observation to the regression. Smaller distances mean that removing the observation has little effect on the
regression results. Distances larger than 1 are suspicious and suggest the presence of a possible outlier or
a poor model. In this study, the model selected exhibits Cook’s distance of less than 1 which confirms the
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absence of possible outliers.

5. Conclusion

The species-specific and area specific allometric model developed forP. adolfi-friederici has good quality as
evaluated by testing the regression assumptions. In the regression models developed, DBH, H and wood
density were predictors in the estimation of the Above ground biomass.
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