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Abstract

Epilepsy is a common neurological disorder in which excessive and abnormal neuronal discharges can be observed and is char-
acterized by recurrent seizures. The epileptogenesis is usually involved in neuropathological processes such as ion channel
dysfunction, neuronal injury, inflammatory response, synaptic plasticity, glial cell proliferation and mossin fibrosis, currently
the pathogenesis of epilepsy is not yet completely understood. A growing body of studies have shown that epigenetic regulation,
such as histone modifications, DNA methylation, noncoding RNAs (ncRNAs), and restrictive element-1 silencing transcription
factor/neuron-restrictive silencing factor (REST/NRSF) are also involved in epilepsy. However, the functional roles of epigenet-
ics in pathogenesis and treatment of epilepsy are still to be explored. Therefore, in this review, we will summarize latest advances
concerning the mechanisms of epigenetic regulation in epilepsy, which provide novel insight into therapy and biomarkers for
epilepsy.
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Highlights

1. In epilepsy, the epigenetic regulation is involved in epileptogenesis. We summarize the roles of histone
modifications, DNA methylation, ncRNAs and REST/NRSF in epilepsy.

2. MicroRNAs may be the biomarkers for the diagnosis of epilepsy and is involved in treatment of epilepsy.
LncRNAs may regulate epilepsy by targeting microRNA. As one of the regulatory mechanisms of microRNAs,
m6A modification may be involved in the pathogenesis of epilepsy.

3. The mechanisms of epigenetic regulation in epilepsy may provide new strategies for the treatment of
epilepsy.

Abstract
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Epilepsy is a common neurological disorder in which excessive and abnormal neuronal discharges can be ob-
served and is characterized by recurrent seizures. The epileptogenesis is usually involved in neuropathological
processes such as ion channel dysfunction, neuronal injury, inflammatory response, synaptic plasticity, glial
cell proliferation and mossin fibrosis, currently the pathogenesis of epilepsy is not yet completely understood.
A growing body of studies have shown that epigenetic regulation, such as histone modifications, DNA methy-
lation, noncoding RNAs (ncRNAs), and restrictive element-1 silencing transcription factor/neuron-restrictive
silencing factor (REST/NRSF) are also involved in epilepsy. However, the functional roles of epigenetics in
pathogenesis and treatment of epilepsy are still to be explored. Therefore, in this review, we will summarize
latest advances concerning the mechanisms of epigenetic regulation in epilepsy, which provide novel insight
into therapy and biomarkers for epilepsy.

Key words: epilepsy; DNA methylation; histone modification; noncoding RNA; N6-methyladenosine; re-
strictive element-1 silencing transcription factor/neuron-restrictive silencing factor;

1.Introduction

Epilepsy is a common neurological disorder in which excessive and abnormal neuronal discharges can be
observed and is characterized by recurrent seizures(Chen et al., 2020). At present, antiepileptic drugs (AEDs)
are still the major methods of treatment for epilepsy in clinic and about 1/3rd of patients with epilepsy
are drug-resistant (DRE)(Moshé et al., 2015). The epileptogenesis is usually involved in neuropathological
processes such as ion channel dysfunction, neuronal injury, inflammatory response, synaptic plasticity, glial
cell proliferation and mossin fibrosis, whereby affecting neuronal function in the brain(Gan et al., 2015).
Owing to the neuropathological process of epilepsy is complex and changeable, the pathogenesis of epilepsy
is not completely clear, which brings difficulties to the prevention and treatment of epilepsy. In addition, an
increasing number of epileptic patients with potential genetic causes fully proves that the regulation of genes
may play a pathophysiological role in the epileptogenesis or progression of epilepsy.

In gene regulation, epigenetics mainly regulates gene expression through DNA methylation, histone modi-
fication and RNA methylation, so as to change the genetic information of organisms, but does not change
the sequence of DNA nucleotides(Huang et al., 2021). At present, epigenetic mechanisms have been proved
to be necessary to maintain neuronal function in the human brain(Hauser et al., 2018). A growing number
of studies have shown that epigenetic regulation including histone modification, DNA methylation, ncRNAs
and REST/NRSF, is also involved in epilepsy(Henshall and Kobow, 2015; Citraro et al., 2017; Butler-Ryan
and Wood, 2021). In cultured hippocampal neurons of rats, it has been found that the cellular memory of
epileptogenesis may be related to epigenetic regulation of epileptic target genes(Kiese et al., 2017). Import-
antly, epigenetic regulation can influence susceptibility and severity of SE, and in turn SE can also drive
the changes of epigenetic markers that influence the expression of epileptogenesis-associated genes(Henshall,
2018). In the CNS, DNA methylation has been demonstrated to be involved in the expression of nerve cell-
specific genes and is significantly altered in the animal models of epilepsy and human epileptic tissues(Zhu
et al., 2012; Dębski et al., 2016). Meanwhile, improved cognitive function and hyperexcitability phenotypes
after status epilepticus (SE) is also associated with altered DNA methylation(Henshall, 2018). In addition,
in animal models of epilepsy and epileptic patients, altered histone acetylation have been thought to be
involved in epileptogenesis and prolonged seizures also modify chromatin compaction by histone acetylation
(Citraro et al., 2017; Henshall, 2018). Different brain-specific microRNAs have been observed to be abnor-
mally expressed in animal models of epilepsy and epileptic patients, particularly in temporal lobe epilepsy
(TLE)(Cattani et al., 2016). In addition, ncRNAs including microRNAs and lncRNAs have been studied in
epileptogenesis and treatment of epilepsy and may play an antiepileptic role as a new therapeutic strategy
since they have highly selective targeting(Xiao et al., 2018). MicroRNAs, as potential molecular biomark-
ers, can affect SE by targeting epilepsy-related gene networks through post-transcriptional mechanisms.
Meanwhile, lncRNAs can also influence expression of some genes which are involved in electrophysiological
functions of neurons by targeting microRNAs in epilepsy(Henshall, 2018). Thus, discovering new therapeu-
tic targets related to epigenetics and exploring the correlation between epigenetics and epileptogenesis are
crucial for the prevention and treatment of epilepsy. Here, we discussed the role of epigenetic mechanisms
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in the occurrence and treatment of epilepsy.

2. Epigenetic modification inepilepsy

2.1DNA methylation

DNA methylation, as an epigenetic modification, has been shown to be involved in a variety of CNS dis-
orders, including epilepsy(Portales-Casamar et al., 2016). DNA methylation refers to the formation of
5-methylcytosine (5mC) from cytosine under the catalytic action of DNA methyltransferase, which occurs
mainly in cytosine-guanine dinucleotides (CpGs). In this process, DNA methyltransferases mainly include
DNMT1, DNMT3a and DNMT3b(Figure1 )(Heikkinen et al., 2022). In the genome of normal cells, most
CpG sequences are methylated and the hypomethylated regions of DNA function are considered as elements
to regulate gene expression, such as promoters and enhancers(Nishiyama and Nakanishi, 2021). Meanwhile,
DNA methylation can also promote the binding of various transcription factors(Nishiyama and Nakanishi,
2021). Currently, two major regulatory mechanisms of DNA methylation in modifying gene activity have
been proposed. On the one hand, DNA methylation can directly block the binding of transcription fac-
tors, resulting in gene silencing. On the other hand, DNA methylation can attract methyl-binding proteins,
such as MBD1, MBD2, MBD3, MBD4 and MeCP2, which recognize methylated cytosine, thereby indirectly
leading to the changes of gene expression(Heikkinen et al., 2022; Xie et al., 2022). In addition, the methyl
groups required for DNA methylation depend mainly on the transmethylation of S-adenosine methionine
(SAM) in the methionine cycle of organisms, resulting in the formation of S-adenosine homocysteine (SAH).
Then, SAH is cleaved into adenosine and homocysteine. Adenosine kinase (ADK) is a cytoplasmic en-
zyme that catalyzes the conversion of adenosine to AMP. ADK activation represents the main pathway of
adenosine clearance, which can increase the DNA methylation status of epigenome through the transmethy-
lation pathway, whereas experimental or therapeutic adenosine augmentation prevents the reactions of DNA
methylation(Williams-Karnesky et al., 2013). In epilepsy, ADK also regulates intracellular adenosine to
modulate epileptogenesis by the epigenetic mechanism(Williams-Karnesky et al., 2013; Xu et al., 2017). In
addition, the ketogenic diet (KD), as an important treatment for epilepsy, can enhance the production of
adenosine which is a metabolic feedback inhibitors of DNA methylation(Lusardi et al., 2015; Longo et al.,
2019). Relevant studies have shown that DNA methylation contributes to neuron cell-specific gene expres-
sion, which is significantly changed in the animal models of epilepsy and epileptic patients(Zhu et al., 2012;
Dębski et al., 2016). In a word, nutrient metabolism and DNA methyltransferases may serve as a potentially
modifiable upstream mechanism regulating DNA methylation in epileptogenesis.

In the KA-induced and pilocarpine-induced SE models, the similar patterns of DNA hypermethylation
have been demonstrated in the epileptic hippocampal neurons (Murugan and Boison, 2020). Meanwhile,
in the three models of chronic epilepsy (pilocarpine injection, focal amygdala stimulation and post-TBI),
genome-wide changes in global DNA methylation were also investigated (Dębski et al., 2016). This study
has concluded that changes in genomic DNA methylation provide the general pathological mechanism of
epileptogenesis(Dębski et al., 2016). It have been reported that upregulated DNMT activity and associated
changes of DNA methylation in patients with TLE, including focal cortical dysplasia (FCD)(Dixit et al.,
2018). Moreover, FCD subtypes including FCDIa, FCDIIa and FCDIIb may also be distinguished by DNA
methylation profiles, which suggesting that DNA methylation may serve as a biomarker for FCD(Kobow et
al., 2019). Recently, a study about human epilepsy has shown 224 genes with differential DNA methylation
persons in epilepsy patients and healthy people(Wang et al., 2016b). In the epileptic samples, three genes
(TUBB2B, ATPGD1, HTR6 ) exhibited relative transcriptional regulation by DNA methylation. TUBB2B
and ATPGD1 showed hypermethylation and reduced mRNA levels, while HTR6 showed hypomethylation
and increased mRNA levels(Wang et al., 2016b). These findings suggest that some genes are differentially reg-
ulated by DNA methylation in human epilepsy. Previous studies have shown that 27 hypomethylated genes
and 119 hypermethylated genes are present in hippocampal tissue from patients with DR-TLE compared
with healthy people(Miller-Delaney et al., 2015). Meanwhile, DNMT1 and DNMT3a are highly expressed
in the temporal neocortex of DR-TLE patients, which are involved in DNA methylation(Zhu et al., 2012).
The lower levels of global DNA methylation and the lower expression of DNMT3a2 were found in the hip-
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pocampus of TLE. Interestingly, compared with control and TLE groups, the expression of DNMT3a1 and
DNMT3a2 was more significant reduced in the hippocampus of TLE with febrile seizures (FS) history(de
Nijs et al., 2019). Mesial temporal lobe epilepsy with hippocampal sclerosis (mTLE-HS) is the most common
focal epilepsy, which characterized by strong drug resistance. In the intracortical KA-induced mouse mod-
els of mTLE-HS, contralateral hippocampus (CLH) shows substantial changes in gene expression and DNA
methylation in glia and neurons, in which some genes and pathways associated with antiepileptic effects were
upregulated(Berger et al., 2020). Although changes of gene expression in CLH and ILH overlap to a large
extent, changes of DNA methylation were not overlapped(Berger et al., 2020). As the seizures last longer,
DNA methylation of many genomic sites is significantly changed, and progression of epilepsy is also relevant
to changes in DNA methylation of inflammatory-related genes(Martins-Ferreira et al., 2021). Therefore,
seizures may be responsible for altered DNA methylation of certain genes(Caramaschi et al., 2020). And
changes of DNA methylation may also contribute to the development of epilepsy.

At present, the regulation of synaptic function in epilepsy may also have light with DNA methylation
of related genes. Relevant studies have shown that DNA methylation-dependent endocytosis may be in-
volved in the regulation of synaptic function in inhibitory cortical interneurons of mice, which have potential
significance in TLE(Pensold et al., 2020). Moreover, synaptic NMDAR expression is also regulated by
DNA methylation. Related study has found that activated NMDAR-containing GluN2A subunits control
DNMT3a1 levels in neurons and drive degradation of DNMT3a1 in a ubiquitin-like dependent manner, which
may be associated with synaptic plasticity and memory formation(Bayraktar et al., 2020). At the same time,
the upregulation of DNMT3b expression is also regulated by NO produced by NMDAR activation in the
hippocampus(de Sousa Maciel et al., 2020). Moreover, glutamate dysfunction and cognitive decline are also
closely associated with changes in GRIN2Bpromoter methylation(Fachim et al., 2019). Overexpression of
DNMT1 in ES cells leads to epigenetic changes, which results in abnormal neuronal differentiation with
upregulated functional NMDARs(D’Aiuto et al., 2011). SE can trigger early and late changes of BDEF
andGRIN2B DNA methylation levels in the hippocampus(Ryley Parrish et al., 2013). In the epileptic
hippocampus, increased levels ofGRIN2B DNA methylation lead to decreased expression of GluN2B and
decreased levels of BDNF DNA methylation also result in increased expression of BDNF. Meanwhile, inhi-
bition of DNMT can decreaseGRIN2B mRNA expression and increase excitatory postsynaptic potential in
hippocampus of epileptic rats(Ryley Parrish et al., 2013).

The blocking of DNA methylation may play an important role in epileptogenesis and treatment of epilepsy.
Abnormal DNA methylation ofRASgrf1 is closely associated with epilepsy. RG108 as a DNMT inhibitor, can
block hypermethylation of the RASgrf1 promoter and inhibited acute epileptic activity in the KA-induced
epilepsy models(Chen et al., 2017). The high-dose 5-Aza-2dC as a DNMT inhibitor, significantly increase
seizure threshold and attenuate seizures in PTZ-kindled model of rats, which suggesting inhibited DNMT
activity can reduce epilepsy acquisition and seizure susceptibility(Williams-Karnesky et al., 2013). Adeno-
sine intervention can reverse DNA hypermethylation in the epileptic brain, thereby inhibiting sprouting of
mossy fibers in the hippocampus and preventing the progression of epilepsy in a rat model of TLE(Williams-
Karnesky et al., 2013). Studies have shown that methylation level of EPHX1 promoter is significantly
correlated with epilepsy that is resistant to carbamazepine (CBZ). EPHX1methylation may be a potential
target of CBZ treatment and a potential marker of DREs for CBZ (Lv et al., 2019). Elevated levels of matrix
metalloproteinase-9 (MMP-9) have been implicated in epileptogenesis of humans and animals. Upregulated
MMP-9 expression is primarily regulated by deletion of MMP-9 gene proximal promoter including inter-
weaved potent silencing mechanisms-DNA methylation and polycomb repressive complex 2 (PRC2)-related
repression(Zybura-Broda et al., 2016). In addition, DNA demethylation has also been reported to depend on
the gradual dissociation of DNMT3a and DNMT3b, as well as the progressive binding of DNA demethylation
promoter Gadd45β to the MMP-9 proximal gene promoter in vivo(Zybura-Broda et al., 2016). These studies
identify MMP-9 expression is regulated by DNA methylation in human epilepsy.

In conclusion, DNA methylation is involved in the occurrence and treatment of epilepsy. However, the regu-
latory mechanism of DNA methylation in epilepsy is still not completely clear and needs further exploration.

4



P
os

te
d

on
9

A
u
g

20
22

—
T

h
e

co
p
y
ri

gh
t

h
ol

d
er

is
th

e
au

th
or

/f
u
n
d
er

.
A

ll
ri

gh
ts

re
se

rv
ed

.
N

o
re

u
se

w
it

h
ou

t
p

er
m

is
si

on
.

—
h
tt

p
s:

//
d
oi

.o
rg

/1
0.

22
54

1/
au

.1
66

00
56

33
.3

21
02

70
2/

v
1

—
T

h
is

is
a

p
re

p
ri

n
t

a
n
d

h
as

n
o
t

b
ee

n
p

ee
r-

re
v
ie

w
ed

.
D

a
ta

m
ay

b
e

p
re

li
m

in
a
ry

.

2.2 Histone modifications

Currently, histone tails and globular domains contain multiple targets of several posttranslational modifi-
cations, such as ubiquitination, phosphorylation, acetylation, methylation and ADP-ribosylation. Previous
studies have supported that epilepsy and seizures can induce histone modifications and histone modifica-
tions also influence epileptogenesis. Therefore, we will focus on the roles of histone acetylation and histone
methylation in epilepsy.

2.2.1 Histone acetylation

Histone acetylation modifying enzymes regulate transcription process by changing the status of histone
acetylation in chromosomes(Riaz et al., 2015). Histone deacetylases (HDACs) and histone acetyltransferases
(HATs) are necessary to maintain epigenetic regulation of gene expression by histone acetylation. HATs
catalyze the reversible acetylation reaction at the ε-amino group of lysine residues. Chromatin relaxation
and increased transcriptional activity of genes is associated with neutralization of the positive charge of lysine
residues by histone acetylation. Meanwhile, HDACs can remove acetyl groups silencing the transcriptional
activity of genes and leading to chromatin condensation(Figure2) (Wawruszak et al., 2021). HDACs are
divided into four main classes: Class I (HDACs 1, 2, 3,8), Class IIa (HDAC4, 5, 7, 9) and Class IIb (HDAC6,
10), Class III (SIRT1-SIRT7), Class IV (HDAC11) (Wawruszak et al., 2021). HDACs (Class I, II and III)
share sequence similarity and require Zn2+ for deacetylase activity. However, SIRT1-7(class III), show no
sequence resemblance to members of the classical family and require NAD+ as the cofactor(Gregoretti et
al., 2004; Whittle et al., 2007). In the HDAC family, classes I and II are most associated with epilepsy,
and have been found to have the highest expression in the brain(Younus and Reddy, 2017). In the CNS,
HDAC2 is thought to inhibit memory consolidation and synaptic plasticity by inhibiting HDAC acetylation
and HDAC5 is also critical to memory formation(Younus and Reddy, 2017). HDAC6 plays a neuroprotective
role by promoting autophagy of damaged proteins(Boyault et al., 2007). However, HDAC6 is also involved
in regulating the function of microtubule networks and impairs neuronal axon transport(d’Ydewalle et al.,
2012). In addition, the biological functions of HDACs are also involved in metabolism, protein degradation,
angiogenesis, DNA damage, immune regulation, cell cycle and apoptosis.

In patients and animal models of epilepsy, changes of histone acetylation have attracted widespread attention
and have been considered to be involved in epileptogenesis(Hauser et al., 2018; Boison and Rho, 2020).
Relevant studies have shown that seizures promote deacetylation of histone H4 of GluR2, which is closely
related to epileptogenesis and increased neuronal excitability(Huang et al., 2002; Tsankova et al., 2004; Chen
et al., 2021b). In a model of Tuberous Sclerosis Complex (TSC) of mouse, histone H3 acetylation (H3K9Ac
and H3K27Ac) levels are generally decreased in the hippocampal neurons. Inhibition of HDAC activity can
restore histone H3 acetylation levels and improve abnormal synaptic plasticity and seizure threshold in TSC2,
which suggesting HDAC inhibitors may be novel therapeutic strategies for TSC(Basu et al., 2019). Multiple
studies reported increased H3 phosphorylation in pilocarpine and KA-induced seizures, which is believed to
promote the underlying mechanism that induces histone acetylation(Younus and Reddy, 2017). Furthermore,
increased histone H4 acetylation is also reported in pilocarpine, KA and electroconvulsive-induced epilepsy
models(Huang et al., 2002; Tsankova et al., 2004; Sng et al., 2006). Altered histone acetylation at GluR2 and
BDNF genes is an early event triggered by SE. Meanwhile, increased histone H4 acetylation is also linked
to upregulated BDNF and c-FOS/c-JUN genes(Huang et al., 2002). Related studies have shown that the
downregulation of c-FOS transcription may be achieved by histone H4 acetylation, while the upregulation
of BDNF transcription may be related to the regulation of histone H3 acetylation(Tsankova et al., 2004).

Currently, several HDACs are upregulated during epilepsy. In the brain tissue of patients with DR-TLE,
HDAC2 is upregulated, which is associated with reduced histone acetylation and gene expression. HDAC4
downregulates the gene expression of GABAA α1 subunit and AMPAR subunit GluA2, which suggest-
ing that decreased GABAA α1 subunit and downregulated AMPAR subunit GluA2 are associated with
histone deacetylation after seizures(Fonseca-Barriendos et al., 2021). In addition, mutations in the factor-
induced-gene 4 (FIG4) gene are associated with multiple disorders including epilepsy. Defects of HDAC1
may also explain FIG4-associated disorders including epilepsy(Muraoka et al., 2021). Moreover, the trans-
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formation/transcription domain-associated protein (TRRAP) is a common component of many HAT com-
plexes(Leduc et al., 2014). Some results demonstrate TRRAP-dependent histone acetylation plays an es-
sential role in regulating neurogenesis and cell cycle(Tapias et al., 2014). Meanwhile, it has been found that
mutations of TRRAP can also cause human neuropathies including epilepsy. In addition, TRRAP regulates
microtubule dynamics through the SP1 signaling pathway to prevent neurodegeneration(Tapias et al., 2021).

In epilepsy, some drugs, including ADEs, also regulate histone acetylation. Blocking HDACs with specific
inhibitors appears to be an effective therapeutic strategy for enhancing neuroprotection and interfering with
epileptogenesis(Boison and Rho, 2020). Ketogenic diet (KD), as an important treatment for epilepsy, can
enhance the production of β-hydroxybutyrate which is a HDAC inhibitor(Lusardi et al., 2015; Longo et al.,
2019). Traumatic brain injury (TBI) is an important cause of epileptogenesis. Related study has found that
inhibition of HDAC can improve learning and memory after TBI by combining with behavioral therapy (Dash
et al., 2009). Meanwhile, HDAC inhibitor ITF2357 has neuroprotective effects and promotes neurological
function recovery following TBI(Shein et al., 2009). In addition, HDAC inhibitor can also promote histone
H3 acetylation and inhibt inflammatory response of microglia following TBI in rats(Zhang et al., 2008).
Valproic acid (VPA), the most common AED, is known to suppress seizures by increasing levels of GABA
in the brain. Meanwhile, VPA is also a well-known HDAC inhibitor(Lunke et al., 2021; Wawruszak et al.,
2021). VPA regulates histone acetylation together with HATs, suggesting that epigenetic regulation of genes
by VPA may be involved in the occurrence of neurological diseases(Hu et al., 2020b). Relevant study has
shown that VPA may also participates in epileptogenesis by regulating HDACs(Hu et al., 2020b). The study
has found that the inhibitory concentration of VPA on HDACs activity is about 0.3-1.0mM, which is within
the therapeutic range of VPA in human epilepsy(Blaauboer et al., 2022). Both class I and class II HDACs
are inhibited by VPA, with the highest potency for class I HDACs, especially HDAC1(Phiel et al., 2001;
Blaauboer et al., 2022). The epigenetic effects of VPA mainly depend on inhibition of HDACs and regulation
of BDNF(Ghiglieri et al., 2010). VPA and Other HDAC inhibitors can downregulate TrkB expression and
BDNF/TrkB signaling(Dedoni et al., 2019). Meanwhile, VPA is also involved in inflammatory response
by inhibiting of HDACs. VPA can mitigate traumatic spinal cord injury-induced inflammation response
by HDAC3-dependent STAT1 and NF-κB pathway(Chen et al., 2018). In addition, sodium butyrate, a
critical HDAC inhibitor in the aliphatic fatty acid family, can increase histones H3 and H4 acetylation in
the hippocampus and cerebral cortex of mice(Younus and Reddy, 2017). Sodium butyrate can also improve
the anticonvulsant activity of MK-801 (dizocilpine), an NMDAR antagonist(Deutsch et al., 2008). Sodium
butyrate has been shown to modulate the effects of AED flurazepam to antagonize electrically precipitated
seizures(Deutsch et al., 2009). Meanwhile, sodium butyrate significantly delays epileptogenesis, delays the
development of seizures and reduces the severity of behavioral seizures in mice(Younus and Reddy, 2017).
In the hippocampus kindling model of TLE, sodium butyrate significantly inhibited HDAC activity and
retarded the development of limbic epileptogenesis. Meanwhile, inhibition of HDAC can significantly reduce
persistent seizures, eliminate the epileptic state, and significantly reduce the sprouting mossy fiber(Reddy
et al., 2018). Histone H3 and H4 acetylation levels are decreased in epileptic rats, while histone acetylation
levels is significantly increased when treated with sodium butyrate or VPA alone in the brain, especially
combined administration(Citraro et al., 2020). These findings suggest that sodium butyrate has a strong
antiepileptic effect by regulating HDACs.

In a word, these findings support the underlying theory that HDAC inhibitors prevent epilepsy by interfering
with epigenetic gene expression profiles. Importantly, histone acetylation modifications may have a crucial
role in epileptogenesis and early treatment with HDAC inhibitors might be a possible strategy for preventing
epileptogenesis.

2.2.1 Histone methylation

Histone methylation, is a unique post-translational modification catalyzed by histone methyltransferases
(HMTs), which occurs mainly on lysine (K) and arginine (R) residues. Key enzymes involved in histone
methylation include HMTs and histone lysine demethylase (KDMs)(Jin et al., 2022). Lysine methylation
occurs in mono-, di-, and tri-states, whereas arginine methylation only occurs in monoand di-states. Histone
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H3 methylation occurs at lysine residues K4, K9, K27, K36, and K79 and histone H4 methylation occurs
at lysine residues K20(Jin et al., 2022). Most studies have found that H3K9me2/me3, H3K27me2/me3
and H4K20me3 frequently occur on gene silenced heterochromatin(Vermeulen et al., 2010). In general,
methylation at H3K9, H3K27, and H4K20 is associated with transcriptional inhibition, while methylation
at H3K4, H3K36, and H3K79 is associated with gene transcription(Hon et al., 2009). Currently, there are
two main families of histone demethylases, including lysine-specific demethylases (LSDs) and Jumonji C
(JmjC) domain-containing lysine demethylases (JmjC-KDMs)(Jin et al., 2022). Related study has found
that both LSD1 and LSD2 function as corepressors marks on H3K4 through the demethylation of mono-
or di-methyl (Han et al., 2019). However, LSD1 may also be as a coactivator of androgen receptors by the
demethylation of H3K9me1/me2(Metzger et al., 2005). In addition, the members of the JmjC-KDM family
are mainly responsible for the demethylation of H3K4, H3K9, H3K27, H3K36, H3K79 and H4K20 through
cosubstrate2-oxoglutarate, dioxygen and Fe (II) as cofactors(Labbé et al., 2013; Jin et al., 2022).

In the diseases of CNS, an association between between the severity of intellectual disability and the dysregu-
lation in the KDM5C-H3K4me3 pathway has been reported in neurodevelopmental disorders (NDDs)(Poeta
et al., 2021). Meanwhile, KDM5C variants are resulted in neuropsychiatric symptoms, such as epilepsy, de-
layed development of language and intellectual disability(Wei et al., 2016). In addition, the development of
intellectual disability and Rett syndrome has also been found to be associated with mutations of JMJC-KDM
(Sáez et al., 2016). Recent studies have shown that histone methylation is also involved in the pathogenesis
and treatment of epilepsy. Setdb1, as the member of the H3K9 HMT family, is widely expressed in the
developmental brain and is related to the inhibition of chromatin remodeling by targeting histone H3K9
residues(Jiang et al., 2010). The inhibition of Setdb1-mediated histone methylation of GRIN2B is related to
the decreasing of GluN2B expression(Jiang et al., 2010). It has also been found that SETD1B, as an import-
ant component of the HMT complex, is involved in epigenetic regulation of chromatin structure and gene
expression by specifically methylating histone H3K4(Krzyzewska et al., 2019). However, SETD1B variants
are related to autism, intellectual disability and epilepsy. Meanwhile, SETD1B variants also contribute to a
number of clinical phenotypes, including variable epileptic phenotypes, delayed language and delayed global
development(Hiraide et al., 2018; Weerts et al., 2021). LSD1 is a commonly expressed histone H3K4 deme-
thylase that acts as a transcription corepressor together with CoREST and HDAC1/2(Rusconi et al., 2015).
In a mouse epilepsy model, LSD1/KDM1A can regulate neuronal excitability by neural-specific alternative
splicing(Rusconi et al., 2015). In addition, specific deletion of neuroLSD1 in mice showed hypoexcitable and
reduced susceptibility to epilepsy(Rusconi et al., 2015). Related research has found that H3K9me2 and its
enzyme euchromatic histone-lysine-methyltransferase 2 (G9a) affect transcriptional regulation of the potassi-
um channel 10 (Kcnj10) gene which encodes the Kir4.1 channel and are sensitive to epileptic seizure activity
in epileptic rats(Zhang et al., 2018c).

These findings suggest that the regulation of histone methylation may provide new research directions for
the pathogenesis and treatment of epilepsy. However, the mechanism of histone methylation regulation in
epilepsy is not completely clear and needs to be further explored in the future.

2.3 Noncoding RNAs (ncRNA)

NcRNAs which include small (microRNA) and long (lncRNA), play a crucial role in regulating gene ex-
pression. Bioinformatics analysis have found that abnormal methylation of lncRNAs and microRNAs are
associated with neurotrophic factor signaling pathway, MAPK signaling pathway, drug metabolism and ion
channel activity (Xiao et al., 2018). In addition, aberrantly methylation of ncRNAs may be involved in
development and progression of TLE(Xiao et al., 2018). NcRNAs are highly selectively targeting and may
play an important role in epilepsy, but their role in refractory epilepsy still needs to be explored further.
Thus, we will discuss microRNAs and lncRNAs.

2.3.1 MicroRNA

MicroRNAs can be detected in biological fluids, making them potential diagnostic biomarkers, which have
been reported as biomarkers for the diagnosis of epilepsy. Meanwhile, microRNA, as an emerging thera-
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peutic target, provides unique therapeutic advantages for some epilepsy with complex pathophysiological
mechanisms by negatively regulating related proteins(Morris et al., 2021). Currently, many microRNAs are
consistently dysregulated in epilepsy and affect seizures, which are also described as biomarkers for the dia-
gnosis of TLE and predictive biomarkers for AED response(Mooney et al., 2016; De Benedittis et al., 2021)
(Table1) .

Related studies have found that microRNAs are significantly upregulated in epilepsy. MicroRNA-20a-5p is
involved in synaptic plasticity and silencing microRNA-20a-5p inhibits neuronal branching and axonal grow-
th and prevents epileptogenesis by regulating RGMa-RhoA-mediated synaptic plasticity in the PTZ-induced
epilepsy model(Feng et al., 2020). MicroRNA-21-5p reduces IL-6 levels, loss of hippocampal neurons and
apoptosis by inhibiting STAT3 expression, which suggesting protective effects of microRNA-21-5p in hippo-
campal neurons of epileptic rats(Zhang et al., 2020). In KA-induced SE models, targeting of microRNA-21-5p
also protects against seizure-induced injury by PTEN-mTOR (Tang et al., 2018). MicroRNA-23a is invol-
ved in hippocampal neuron injury, hippocampal oxidative damage and impairment of spatial memory in
KA-induced TLE mice(Zhu et al., 2019b). Meanwhile, microRNA-23a can also regulate ADAM10, which
contributes to epileptogenesis in pilocarpine-induced SE mice(Zhu et al., 2019a). MicroRNA-27a-3p regula-
tes ion channel-related DEGs in multiple mTLE and downregulation of microRNA-27a-3p inhibits apoptosis
of hippocampal neurons and inflammatory response by upregulating MAP2K4 in KA-induced epilepsy mo-
dels(Lu et al., 2019; Su et al., 2022b). Inhibition of microRNA-103a regulates BDNF to improve neuron
injury and inhibit activated astrocytes in pilocarpine-induced epilepsy rat models(Zheng et al., 2019). Deple-
tion of microRNA-132 can reduce seizure-induced neuronal death in KA-induced epilepsy mice models and
microRNA-132 can suppress BDNF/TrkB signaling to aggravate epileptiform discharges in the Mg2+-free
treated hippocampal neuronal model of SE(Jimenez-Mateos et al., 2011; Xiang et al., 2015). Meanwhile,
microRNA-132 also reduces the expression of pro-epileptogenic factors (COX-2, IL-1β, TGF-β2, CCL2 and
MMP3) in human cultured astrocytes of TLE(Korotkov et al., 2020). Inhibition of microRNA-134 can ef-
fectively reduce the occurrence of spontaneous recurrent seizures and silencing microRNA-134 can produce
neuroprotective, reducing the severity of seizures in KA-induced epilepsy mice model(Jimenez-Mateos et al.,
2012; Morris et al., 2019). MicroRNA-134 inhibits the expression of cAMP-response element binding protein
(CREB) and p-CREB to regulate synaptic plasticity in pilocarpine-induced epilepsy rat model(Zhu et al.,
2015). Antagonizing microRNA-135a can reduce spontaneous recurrent seizures to affect synaptic function
and plasticity by targeting Mef2a in KA-induced epilepsy mice model. And inhibition of microRNA-135a
protects glial cells against apoptosis by regulating SIRT1-related signaling pathway in KA-induced BV2
microglia epilepsy model(Vangoor et al., 2019; Wang et al., 2021c). Inhibition of microRNA-141 can inhibit
P53 to protect against apoptosis by SIRT1 expression in KA-induced epilepsy rat model(Liu et al., 2019a).
MicroRNA-142 performs well in differentiating between drug-resistant and drug-sensitive TLE. Inhibition
of microRNA-142 promotes mitochondrial autophagy and reduces hippocampal neuron damage by target-
ing PINK1 in pilocarpine-induced epilepsy rat model(Xiao et al., 2021). Downregulation of microRNA-145
improves the abilities of learning and memory by reducing apoptosis of hippocampal neurons in pilocarpine-
induced epilepsy rat model(Zhao et al., 2019a). MicroRNA-146a is a powerful regulator of microglia-mediated
inflammation in the chronic TLE(Aronica et al., 2010; Su et al., 2016). MicroRNA-146a-CFH-IL-1β loop cir-
cuit mediates the perpetuate inflammation of chronic TLE in KA-induced epilepsy rat model and antagonists
targeting microRNA-146a can also protect against SE by regulating NF-κB pathway in pilocarpine-induced
epilepsy rat model(Li et al., 2018c; Zhang et al., 2018a). In addition, microRNA-146a can ameliorate dysreg-
ulation of the MMP/TIMP proteolytic system in TSC(Broekaart et al., 2020). Febrile seizure(FS)-related
microRNA-148a-3p plays neuroprotective roles by increasing the proliferation of hippocampal neurons in
Mg2+ -free medium treated TLE cell model(Yu et al., 2021). MicroRNA-155 is involved in epileptogenesis
by the PI3K/Akt/mTOR signaling pathway(Duan et al., 2018). Meanwhile, inhibition of microRNA-155
attenuates MMP3 expression in cultured human astrocytes, increases the expression of BDNF and allevi-
ates seizure severity in the pilocarpine-induced epilepsy, and attenuates KA-induced seizure by inhibiting
microglia activation(Cai et al., 2016; Korotkov et al., 2018; Fu et al., 2019). MicroRNA-181b can inhibit
P38/JNK signaling pathway by targeting TLR4, thereby reducing apoptosis and autophagy in KA-induced
epilepsy rat model(Wang et al., 2019b). However, inhibition of microRNA-181a-5p also activates SIRT1
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to reduce neuronal apoptosis, neuroinflammation, oxidative stress, cognitive dysfunction and activation
of astrocyte and microglia in pilocarpine-induced epilepsy rat model(Kong et al., 2020). Downregulated
microRNA-183 results in an inactivation of JAK/STAT signaling pathway by targeting Foxp1 to promote
neuron proliferation and inhibit apoptosis of hippocampal neurons, thereby attenuating hippocampal neuron
injury in pilocarpine-induced epilepsy rat model(Feng et al., 2019). MicroRNA-187-3p is upregulated and
regulates KCNK10/TREK-2 potassium channel in electrical stimulation-induced SE(Haenisch et al., 2016).
MicroRNA-194-5p regulates the proliferation and apoptosis of hippocampus neuron in children with TLE
and Mg2+ -free medium treated epilepsy cell model (Niu et al., 2021). Targeting of microRNA-199a-5p
protects against neuron damage by SIRT1-p53 cascade in pilocarpine-induced epilepsy rat model (Wang et
al., 2016a). Downregulation of microRNA-200c-3p upregulates RECK and inactivates the AKT signaling
to decrease apoptosis of hippocampal neuron in pilocarpine-induced epilepsy rat model(Du et al., 2019).
MicroRNA-203 is targeted to Ppp2ca in both humans and mice, which can target Ppp2ca to increase seizure
activity in the KA-induced SE model(Zhang et al., 2018b). And microRNA-203 antagomirs can targets
glycine receptor-β(GLRB) to decrease the frequency of spontaneous seizures in pilocarpine-induced mice
epilepsy(Lee et al., 2017). MicroRNA-219 regulates NMDARs in the amygdala and hippocampus of patients
with mTLE and also suppresses seizure formation by regulating the CaMKII/NMDAR pathway in KA-
induced epilepsy mice model(Zheng et al., 2016; Hamamoto et al., 2020). MicroRNA-223 also have the good
performance in distinguishing drug-sensitive and drug-resistant TLE and microRNA-223 affects microglial
autophagy by targeting ATG16L1 in TLE(De Benedittis et al., 2021; He et al., 2021b). MicroRNA-451 reg-
ulates GDNF expression to aggravate hippocampal neuronal apoptosis and seizure in KA-induced epilepsy
mice model(Weng et al., 2020).

Related studies have also found that microRNAs are significantly downregulated in epilepsy. MicroRNA-15a
targets GFAP to inhibit inflammation and apoptosis of hippocampal neurons by downregulating GFAP in
pilocarpine-induced epilepsy rat model and Mg2+-free medium treated TLE cell model(Fan et al., 2020).
Propofol regulates microRNA-15a-5p/GluN2B/ERK1/2 pathway to suppress apoptosis hippocampal neu-
ronal apoptosis in Mg2+ -free medium treated epilepsy cell model (Liu et al., 2020). MicroRNA-22 in-
hibits neuroinflammatory signaling to protect against the development of epileptogenic brain networks.
MicroRNA-22 prevents inflammation and development of epileptogenic focus by targeting P2X7R in the
brain and microRNA-22 regulates aberrant neurogenesis and changes in neuronal morphology after SE in
KA-induced epilepsy mice model(Jimenez-Mateos et al., 2015; Beamer et al., 2018; Almeida Silva et al.,
2020). MicroRNA-25-3p targets OXSR1 to suppress oxidative stress and apoptosis of neurons, thereby
suppressing epileptiform discharges in KA-induced epilepsy mice model(Li et al., 2020). MicroRNA-29a
regulates seizure-induced cell death and inflammation in Mg2+-free medium treated epilepsy cell model(Wu
et al., 2021). Activated microRNA-34a may lead to impaired corticogenesis in TSC during early brain devel-
opment and inhibition of microRNA-34a can regulate apoptosis and Notch signaling to inhibit epileptiform
discharges in Mg2+-free medium treated epilepsy cell model(Wang et al., 2019a; Korotkov et al., 2021).
Meanwhile, microRNA-34c plays a negative role in seizure and cognitive function by regulating NMDARs
and AMPARs in PTZ-induced epilepsy rat model(Huang et al., 2018). In addition, decreased microRNA-34c-
5p enhances neuroinflammation to increase loss of hippocampal neuron in DRE from KA-induced epilepsy
mice model and in children with DRE(Fu et al., 2020). MicroRNA-101a-3p inhibits apoptosis and autophagy
by downregulating c-FOS in pilocarpine-induced epilepsy rat model and Mg2+-free medium treated epilepsy
cell model(Geng et al., 2021). MicroRNA-124 inhibits some target genes to prevent upregulation of hip-
pocampal NRSF, which participates in epilepsy and promotes the activation of hippocampal microglia and
inflammatory cytokines(McClelland et al., 2014; Brennan et al., 2016). MicroRNA-124 suppresses seizure,
regulates CREB1 activity, and inhibits neuronal firing with decreased expression of NMDAR in pilocarpine
and PTZ-induced epilepsy rat model(Wang et al., 2016c). MicroRNA-125a-5p targets CaMK4 to alleviate
dysfunction and inflammation in PTZ-induced epilepsy rat model(Liu et al., 2019b). Inhibition of microRNA-
129-2-3p regulates GABRA1 to protect against refractory TLE in KA-treated primary hippocampal neurons
and KA-induced epilepsy rat model(Wang et al., 2021a). MicroRNA-129-5p also targets HMGB1 to in-
hibit the development of autoimmune encephalomyelitis-related epilepsy by TLR4/NF-kB pathway(Liu et
al., 2017a). MicroRNA-136 inhibits WNT/-Catenin signaling pathway to play a neuroprotective effect on
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pilocarpine-induced TLE rats (Cui and Zhang, 2022). Overexpression of microRNA-137 inhibits seizure
activity in two different epilepsy mouse models (PTZ and pilocarpine) and suppresses neuronal excitabil-
ity in Mg2+-free-induced brain slice model of epileptiform activity(Wang et al., 2018b). MicroRNA-139-5p
negatively regulates GluN2A-NMDAR in pilocarpine-induced epilepsy rat model and TLE patients and up-
regulated microRNA-139-5p also regulates the Notch pathway to reduce spontaneous recurrent epileptiform
discharge-induced apoptosis and oxidative stress in rat primary hippocampal neurons(Alsharafi et al., 2016;
Zhao et al., 2021). MicroRNA-153 is downregulated in plasma and temporal cortex of mTLE patients and
overexpression of microRNA-153 reduces HIF-1α expression in rat astrocytes of refractory epilepsy(Li et
al., 2016). MicroRNA-204 regulates TrkB-ERK1/2-CREB signaling to inhibit epileptiform discharges in
Mg2+-free medium cultured hippocampal neurons(Xiang et al., 2016). Dynamic changes of microRNA-211
expression is associated with epileptiform activity and cholinergic imbalances in murine forebrain(Bekenstein
et al., 2017). MicroRNA-221-3p inhibits HIF-1α to suppress seizures and microglia activation in the VPA-
resistant epilepsy of KA-induced epilepsy mice model(Fu et al., 2021). MicroRNA-322-5p regulates the
TLR4/TRAF6/NF-κB axis to reduce neuronal inflammation in pilocarpine-induced epilepsy rat model(Zhou
et al., 2022). MicroRNA-344a regulates seizure-induced apoptosis signaling pathways in PTZ-induced chronic
epilepsy rat model (Liu et al., 2017b). Overexpressed microRNA-494 inactivates the NF-κB signaling path-
way to reduce hippocampal neuron injury by inhibiting RIPK1 in pilocarpine-induced epilepsy rat model(Qi
et al., 2020). MicroRNA-542-3p suppresses TLR4/NF-κB signaling pathway to reduce seizure-induced brain
injury and the expression of P-gp in KA-treated primary hippocampal neurons and KA-induced epilepsy
rat model(Yan et al., 2019). Oddly, microRNA-128 is significantly downregulated at various phases of TLE
development in epilepsy rat models and TLE patients(Tan et al., 2013; Alsharafi and Xiao, 2015). How-
ever, it has been found that microRNA-128 is upregulated in KA-induced epilepsy rat model and promotes
apoptosis by the SIRT1 cascade in PC12 cells(Chen et al., 2019). MicroRNA-128 can inhibit the expression
of various ion channels and the signaling of ERK2 network that regulate neuronal excitability. Meanwhile,
microRNA-128 also inhibits SNAP-25 and SYT1 expression to regulate epilepsy sensitivity in KA-induced
epilepsy mice model(Wang et al., 2021b). In addition, microRNA-378, microRNA-575, microRNA-629-3p,
microRNA-1202, microRNA-1225-5p, and microRNA-138-5p may also be diagnostic indicators and predict-
ing surgical prognosis in human epilepsy(Gattás et al., 2022; Li et al., 2022; Ünalp et al., 2022).

In a word, these novel biomarkers may help to identify new epileptic treatment targets and contribute to
improved epileptic patients’ quality of life through earlier diagnosis and a more precise prognosis.

2.3.2 lncRNA

LncRNAs are a class of long transcripts that do not have protein-coding ability, which have become regula-
tory molecules widely involved in biological processes(Villa et al., 2019). Increasing evidences indicate that
lncRNAs are associated with RNA processing, the control of nuclear organization and transcriptional and
post-transcriptional regulation of gene expression (Yao et al., 2019). LncRNAs, as competitive endogenous
RNAs (ceRNAs), competitively suppress microRNAs to regulate transcription of RNAs(Chen et al., 2021a).
Moreover, lncRNAs are involved in multiple biological processes, such as cell death, immuno-inflammatory
responses, proliferation, organogenesis, genomic imprinting and chromatin remodeling (Fernandes et al.,
2019). LncRNAs have been also implicated in several human diseases, such as neurological disorders, au-
toimmune disease, cardiovascular disease, metabolic disease and cancer (Hu et al., 2018; Villa et al., 2019). In
the CNS, some lncRNAs may play key roles in neuronal function, development and maintenance of memory,
cognitive function and synaptic plasticity(Wu et al., 2013). More and more studies believe that regulation
of lncRNAs is closely related to epilepsy, which may become the prospect of new therapeutic interventions
for epilepsy(Irwin et al., 2021).

In epilepsy, many studies have reported that lncRNAs are dysregulated in epilepsy and are involved in the
pathological process of epilepsy(Table2) (Villa et al., 2019). Abnormal expression of lncRNAs has been
found in both epileptic animal models and epileptic patients(Lee et al., 2015; Jang et al., 2018; Xiao et al.,
2018). In pilocarpine-induced epileptic mouse model, the differentially expressed lncRNAs are unique in each
brain region(Jang et al., 2018). It has been found that occurrence and progression of TLE is closely related
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to the changed methylation profiles of lncRNAs. In this study, 384 lncRNAs are significantly dysregulated in
pilocarpine-induced epileptic model and 279 lncRNAs are significantly dysregulated in KA-induced epileptic
model(Lee et al., 2015). Hypermethylated lncRNAs are associated with drug metabolism ion channel activity,
GABAR activity and synaptic transmission, suggesting that lncRNAs may be involved in the mechanism of
refractory mTLE(Xiao et al., 2018).

BDNF antisense RNA (BDNF-AS; BDNF-OS), is a lncRNA transcribed from the opposite strand of BDNF
(Lipovich et al., 2012). Study has found that BDNF-AS levels are significantly decreased and BDNF expres-
sion is significantly increased in human neocortex of intractable epilepsy(Lipovich et al., 2012). Meanwhile,
that BDNF-AS can negatively regulate the expression of BDNF has also been confirmed in vitro(Modarresi
et al., 2012). Thus, regulation of BDNF by BDNF-OS may be as a treatment for intractable epilepsy. New
evidence has revealed that lncRNAs mainly serve as ceRNA targeting microRNAs in regulating neuronal
apoptosis. LncRNA H19 suppresses microRMA-let-7b to regulate hippocampal neuron apoptosis and lncR-
NA H19 also regulates JAK/STAT signaling to promote activation of hippocampal glial cell in TLE rat
model(Han et al., 2018a; Han et al., 2018b). LncRNA FTX regulates microRNA-21-5p/SOX7 axis to sup-
press apoptosis of hippocampal neurons in a rat model of TLE(Li et al., 2019b). Meanwhile, LncRNA GAS5
inhibits microRNA-219 to affect CaMKIIγ/NMDAR pathway and promote the progression of epilepsy(Zhao
et al., 2022). However, lncRNA GAS5 silencing regulates microRNA-135a-5p to suppress the expression of
KCNQ3, thereby preventing the progression of epilepsy(Li et al., 2019a). LncRNA TUG1 may be a biomarker
of TLE diagnosis in children, and regulates miR-199a-3p to affect cell activity and apoptosis of hippocampal
neuron (Li et al., 2021). LncRNA UCA1 regulates microRNA-495/Nrf2-ARE signal pathway to suppress
seizure-induced brain injury and seizure, and lncRNA-UCA1 has dynamic regulation effect on NF-κB in
hippocampus of epilepsy rats(Wang et al., 2017; Geng et al., 2018). Meanwhile, lncRNA UCA1 regulates
microRNA-375/SFRP1-mediated WNT/β-Catenin pathway to alleviate aberrant hippocampal neurogene-
sis in KA-induced epilepsy model (Diao et al., 2021). LncRNA UCA1 regulates microRNA-203-mediated
MEF2C/NF-κB signaling pathway to inhibit inflammation in epilepsy(Yu et al., 2020). LncRNA ILF3-AS1
suppresses microRNA-212 to mediate epileptogenesis in the hippocampus and targets microRNA-212 to
promote the expression of inflammatory cytokines and MMPs in TLE(Cai et al., 2020). Previous studies
have confirmed that lncRNA NEAT1 is responsive to neuronal activity and is associated with hyperex-
citability states. However, LncRNA NEAT1 also targets microRNA-129-5p and regulates Notch signaling
to regulate inflammatory responses in epilepsy (Barry et al., 2017; Wan and Yang, 2020). LncRNA XIST
sponges miR-29c-3p and regulates NFAT5 expression to promote the secretion of inflammatory cytokines in
LPS-treated CTX-TNA2(Zhang et al., 2021). LncRNA Nespas, as a regulator of microRNA-615-3p, inhibits
the PI3K/Akt/mTOR pathway to suppress apoptosis of epileptiform hippocampal neurons by upregulating
Psmd11(Feng et al., 2021). SP1 activated-lncRNA SNHG1 regulates microRNA-154-5p/TLR5 axis to medi-
ate the development of epilepsy(Zhao et al., 2020). LncRNA ZFAS1 upregulates microRNA-421 to activate
the PI3K/AKT pathway, thereby inhibiting apoptosis and autophagy of hippocampal neurons in epilepsy(Hu
et al., 2020a). Meanwhile, lncRNA ZFAS1 can also promote neuronal apoptosis and inflammation response,
thereby aggravating the development of epilepsy(He et al., 2021a). These regulation mechanisms of lncRNAs
in epilepsy and seizure-induced brain injury by targeting microRNAs may provide new targets for biological
therapy of epilepsy. Silencing lncRNA PVT1 can downregulate WNT signaling pathway to promote the ex-
pression of BDNF and suppress the activation of hippocampal astrocytes in epileptic rats(Zhao et al., 2019b).
Related research has found that MALAT1 can regulate the density of dendritic spines, and loss of lncRNA
BC1 can reduce the convulsion thresholds(Murugan and Boison, 2020). Downregulated lncRNA MALAT1
regulates the PI3K/Akt signaling pathway to protect hippocampal neurons against excessive autophagy and
apoptosis in rats with epilepsy(Wu and Yi, 2018). In addition, lncRNA KCNH5-1 plays a key vital role in
developing TLE with hippocampal sclerosis (HS)(Wang et al., 2022).

In addition, circular RNAs (circRNAs) are a class of lncRNAs with a closed loop structure that regulate
gene expression, which abundant in brain tissue. The abnormality of circRNAs may reflect the pathogenesis
of TLE, but the roles of circRNAs in epilepsy are still limited. It has been found that circ-EFCAB2 and
circ-DROSHA may be potential therapeutic targets and biomarkers for TLE patients(Li et al., 2018b).

11



P
os

te
d

on
9

A
u
g

20
22

—
T

h
e

co
p
y
ri

gh
t

h
ol

d
er

is
th

e
au

th
or

/f
u
n
d
er

.
A

ll
ri

gh
ts

re
se

rv
ed

.
N

o
re

u
se

w
it

h
ou

t
p

er
m

is
si

on
.

—
h
tt

p
s:

//
d
oi

.o
rg

/1
0.

22
54

1/
au

.1
66

00
56

33
.3

21
02

70
2/

v
1

—
T

h
is

is
a

p
re

p
ri

n
t

a
n
d

h
as

n
o
t

b
ee

n
p

ee
r-

re
v
ie

w
ed

.
D

a
ta

m
ay

b
e

p
re

li
m

in
a
ry

.

Meanwhile, circ-DROSHA can regulate microRNA-106b-5p/MEF2C axis to reduce the neural damage in
TLE cell model (Zheng et al., 2021). Circ-UBQLN1 upregulates microRNA-155-mediated SOX7, thereby
inhibiting apoptosis and oxidative stress and promoting proliferation of hippocampal neurons in epilepsy(Zhu
et al., 2021). Circ-ANKMY2 regulates the microRNA-106b-5p/FOXP1 axis to affect TLE progression (Lin
et al., 2020). Circ-Hivep2 regulates microRNA-181a-5p/SOCS2 signaling to promote microglia activation
and inflammation in KA-induced epileptic mice model (Xiaoying et al., 2020).

In a word, those results indicate the role for lncRNAs in modulating neuronal activity and suggest a novel
mechanistic link between an activity-dependent lncRNA and epilepsy.

2.3.3N6-methyladenosine (m6A) modification.

As the most abundant epigenetic modification of eukaryotic mRNA, m6A methylation is considered to
be the most common internal modification of mRNAs and ncRNAs in organisms(Tao et al., 2022; Yang
et al., 2022). The occurrence of m6A methylation is controlled by a core methyltransferase complex, in-
cluding methyltransferase-like 3 and 14 (METTL3 and METTL14) and wilms tumor 1-associated protein
(WTAP)(You et al., 2022). Meanwhile, two m6A demethylases (FTO and ALKBH5) can specifically elimi-
nate the m6A sites from target mRNAs(You et al., 2022). In addition, m6A-binding proteins mainly include
YTH domain-containing RNA-binding proteins(YTHDF1/2/3), which can specifically recognize and bind
to m6A-modified mRNA(Lei and Wang, 2022). Changes of m6A modification cause abnormal nervous sys-
tem functions, including brain tissue development retardation, synaptic dysfunction, memory and cognitive
function changes(Lei and Wang, 2022). It has been reported that m6A modification is highly enriched
in the brain and plays an important role in CNS development and neurodegenerative diseases involved in
Parkinson’s disease (PD), Alzheimer’s disease (AD), epilepsy(Livneh et al., 2020).

In knockout of METTL3 mice, the cerebellum is severely atrophied, and the weight of the whole brain and
cerebellum is significantly reduced, and the decrease of m6A modification causes apoptosis in the cerebel-
lum(Wang et al., 2018a). Deficient ALKBH5 can result in disturbance of the m6A modification of genes
related to cerebellar development (Ma et al., 2018). The dysregulation of m6A modification impairs synapse
formation and function. Knockdown of FTO in axons increases m6A modification of Growth associated
protein 43 (GAP-43) mRNA, thereby reducing translation of GAP-43 mRNA and inhibiting axons(Yu et
al., 2018). Meanwhile, some experiments have shown that the loss of YTHDF1 or YTHDF3 leads to synap-
tic dysfunction(Merkurjev et al., 2018). Those findings suggest that m6A modification is closely related
to brain tissue development. METTL3-mediated m6A mRNA modification enhances learning and memory
ability(Zhang et al., 2018d). Absent YTHDF1 in the hippocampus of adult mice, can lead to learning and
memory deficits, and re-expression of YTHDF1 can repair the associated damage(Shi et al., 2018). Mean-
while, FTO is expressed in the CA1 region of the hippocampus of mice and negative feedback regulates the
formation of memory(Walters et al., 2017). In addition, METTL3-mediated m6A modification facilitated
processing and maturation of pri-microRNA-221 to upregulate microRNA-221-3p, thereby aggravating cog-
nitive deficits of rats(Niu et al., 2022). Those studies suggest relationship between m6A modification and
the formation of memory and cognitive. In human AD samples, it has been observed that a high concen-
tration of METTL3 in insoluble fractions is correlated positively with the concentration of the insoluble
tau protein(Huang et al., 2020). Meanwhile, FTO also promote the occurrence of AD by targeting TSC1-
mTOR-Tau signaling(Li et al., 2018a). In epilepsy, epileptogenesis is closely related to NMDARs. However,
overexpressed FTO in dopaminergic neurons reduces the level of mRNA m6A modification, induces the ex-
pression of NMDAR1, promotes oxidative stress and Ca2+ influx, thus promoting degeneration or apoptosis
of neurons(Li et al., 2018a). Meanwhile, VPA can also induce the expression of FTO and FTO knockdown
eliminated the inhibitory effect of VPA on MBD2 and Na1.3 expression in epilepsy(Tan et al., 2017). In
addition, based on the evidence that microRNA-134 and microRNA-146a are involved in the pathogenesis
of epilepsy, both microRNA-134 and microRNA-146a contain a potential m6A site in the seed region, which
is thought to play an important role in microRNA recognition of target mRNA(Rowles et al., 2012). Those
studies may suggest close relationship between m6A modification and epilepsy. However, there’s not a lot of
research about m6A modification in epilepsy. In a word, the study of m6A modification will be conducive
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to reveal the underlying pathophysiological mechanism of neuropsychiatric diseases. Meanwhile, regulation
of the level of m6A modification in the brain is an effective strategy for the treatment of CNS diseases,
including epilepsy and decline of epilepsy-related cognitive and memory.

3. REST

NRSF, also known as REST, is a zinc finger transcription factor that is widely expressed in neuronal and
non-neuronal cells(Soga et al., 2021; Su et al., 2022a). NRSF, a master regulator of the CNS, is the basis
of neuronal differentiation, plasticity and survival, which is also involved in hyperexcitability, oxidative
stress and neurodegeneration(Ghosh et al., 2021; Su et al., 2022a). REST is expressed in a wide range of
brain regions, including the cerebral cortex and the hippocampus(Butler-Ryan and Wood, 2021). Relevant
studies have found that the expression of REST is continuously upregulated in patients and animal models
of epilepsy, so it has become the focus of epilepsy research(Butler-Ryan and Wood, 2021).

After binding to DNA, NRSF can bind to the neuron-restrictive silencer element (NRSE) to recruit co-
repressors and then suppress transcription of NRSE downstream genes by epigenetic mechanisms(Su et al.,
2022a). The N-terminal domain of NRSF can recruit the corepressor mSin3 by its paired amphipathic helix
(PAH1) domain. mSin3 can recruit HDACs to nucleosomes, thereby promoting a chromatin repressive en-
vironment by histone deacetylation(Laherty et al., 1997; Nomura et al., 2005). Separately, the C-terminal
domain can recruit REST corepressor 1 (CoREST), thereby recruiting chromatin modifying enzymes, in-
cluding HDACs and HMT(Andrés et al., 1999; Yang et al., 2006). Meanwhile, CoREST contains two SANT
domains that allow it to interact with histones(Yang et al., 2006). Finally, NRSF expression can be downregu-
lated post-translationally by B-TrCP ubiquitination(Westbrook et al., 2008). In addition, REST-interacting
LIM domain protein (RILP) is one of the chief nuclear importers of NRSF. The REST/NRSF plays an
important role in nuclear translocation. RILP has been found to interact directly with ZFD5 of NRSF and
is required for proper differentiation and maintenance of neuronal phenotypes(Shimojo and Hersh, 2006).

REST4, RILP, and CoREST play important roles in the regulation of NRSF activity. However, chromatin
modifiers that leave repressive covalent modifications on histones and DNA can regulate the repressive
function of NRSF(Thompson and Chan, 2018). Meanwhile, function of NRSF depends on recruitment of
HDACs, HMT and DNA methylases, and NRSF also recruits mSin3a to its N-terminal region(Huang et
al., 1999; Thompson and Chan, 2018). From there, mSin3a recruits HDACs that are essential for gene
repression(Laherty et al., 1997). In addition, NRSF recruits G9a which appears to preferentially demethylate
H3K9, and its activity does not overlap with HDAC repression from either mSin3a or CoREST(Roopra et
al., 2004; Mulligan et al., 2008). Meanwhile, Chromodomain on Y-like (CDYL) bridges REST and HMT
for gene repression and inhibition of cellular transformation(Mulligan et al., 2008). CoREST is seen as a
recruiter for HDACs. In addition, CoREST can interact with methyl CpG binding protein 2 (MeCP2) or
binds to methylated DNA to regulate long-term gene inhibition(Lunyak et al., 2002; Thompson and Chan,
2018).

In multiple models of epilepsy, the levels of REST mRNA and protein are consistently upregulated following
seizures. In epilepsy patients, the levels of REST mRNA and protein are also overexpressed which correlates
with the frequency of seizures(Navarrete-Modesto et al., 2019). In KA-induced seizures, the levels of REST
mRNA and protein are increased in rat hippocampal and cortical neurons in vivo, with a downregulation of
REST target genes, and REST protein peaks at 24 h after KA injection (Spencer et al., 2006; McClelland et
al., 2011; Brennan et al., 2016; Carminati et al., 2019). In pilocarpine-induced epilepsy, the levels of REST
mRNA and protein are upregulated 24 h after pilocarpine injection(Hu et al., 2011). Interestingly, REST
protein expression is increased in PTZ-induced epilepsy and is resistant to kindling seizure(Chmielewska
et al., 2020). Related studies have been found that REST can downregulate BDNF and TrkB to reduce
excitability of neurons and protect against seizures, thereby playing a neuroprotective effect in the epilepsy
brain(Butler-Ryan and Wood, 2021). Increased REST can also downregulate AMPAR subunit GluR2 and
increase Ca2+ permeability, ultimately resulting in excitotoxicity, cell death and seizures(Butler-Ryan and
Wood, 2021). In addition, REST, as an important regulator of epilepsy, can inhibit the expression of key
neuronal genes KCC2 and GRIN2A(McClelland et al., 2011; McClelland et al., 2014). Those findings highlight
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an association between REST increase and protection against seizures.

Epileptic encephalopathies (EE) are severe epilepsy syndromes characterized by multiple seizure types, de-
velopmental delay and even regression. Increasingly, it is believed to be caused by de novo genetic mutations,
including many identified mutations in chromodomain helicase DNA binding (CHD) protein family(Wilson
et al., 2021). Related studies have been demonstrated that CHD2 directly binds to REST gene, and REST
expression is decreased when CHD2 is silenced. REST-mediated neural differentiation is facilitated by CHD2
expression, which occurs by a direct association between the REST gene and CHD2 protein, rather than
H3K4me-mediated processes(Shen et al., 2015). However, the interaction between CHD2 and NRSF in this
context has yet to be investigated. In addition, some microRNAs such as microRNA-9, microRNA-124a,
and microRNA-132 have been identified to target REST with direct roles in epigenetics(Wu and Xie, 2006).
Related studies have found that the functional and structural effects of NRSF can regulate persistent me-
mory impairment caused by developmental febrile epilepsy(Patterson et al., 2017). In progressive myoclonus
epilepsy-ataxia syndrome, RILP mutations result in mislocalization of NRSF, thereby preventing the bin-
ding of RILP to NRSF and cause the accumulation of NRSF in the nucleus(Bassuk et al., 2008). NRSF
and REST4 expression are increased during seizures with upregulated proconvulsant gene TAC3 (Gillies et
al., 2009). It was found that increased REST4 expression may regulate NRSF to competitively inhibit the
repression of NKB (Thompson and Chan, 2018). Abnormal regulation of potassium voltage-gated channel
subfamily Q member 2 (KCNQ2), KCNQ3 and the ion channel genes SCN2A promotes the progression of
infant epilepsy, and these genes are inhibited by NRSF(Mucha et al., 2010). In addition, NRSF regulates
hyperpolarization-activated cyclic adenosine monophosphate gated channel type 1 (HCN1) channelopathy
in TLE(McClelland et al., 2011). The dysregulation of NRSF seems to be implicated in epilepsy, and specific
mechanisms are still lacking. Those findings highlight therapeutic potential of REST modulation through
gene therapy in epilepsy patients.

4. Conclusions

In this review, we reviewed that epigenetic regulation, such as histone modifications, DNA methylation, ncR-
NAs and REST/NRSF in epilepsy. Increasing evidence suggests that epigenetic mechanisms play a functional
role in epileptogenesis and therapeutic reconstruction of the epigenome is an effective antiepileptogenic the-
rapy. In addition, some drugs may also play an antiepileptic role through epigenetic mechanisms. Studying
the role of various epigenetic mechanisms in epilepsy may be beneficial to understand the epileptogenesis
and therapy of epilepsy. At present, there are many ways of epigenetic regulation, but the mechanisms of
epigenetic regulation in epileptogenesis and therapy of epilepsy is not fully understood. Therefore, targeting
epigenetic regulation may be a new approach to suppress seizures and the progression of epilepsy, which is
yet to be discovered and explored.
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Figure legends

Figure1. DNA methylation

In the catalysis of DNA methyltransferases (DNMT1, DNMT3a and DNMT3b), a methyl (CH3) group is
added into a cytosine base, which occurs mainly in CpGs. DNA methylation require the transfer of a methyl
group from SAM resulting in the formation of SAH, which is then cleaved into adenosine and homocysteine.

Figure2. Histone modifications

Histone modifications mainly include histone acetylation and histone methylation. HDACs and HATs are
necessary enzymes for histone acetylation. HATs catalyze the reversible acetylation reaction at the ε-amino
group of lysine residues. Meanwhile, HDACs can remove acetyl groups silencing the transcriptional activity
of genes and leading to chromatin condensation. Histone methylation is catalyzed by HMTs, which occurs
mainly on lysine (K) and arginine (R) residues. Key enzymes of histone methylation involved in HMTs and
KDMs. Lysine methylation occurs in mono-, di-, and tri-states, whereas arginine methylation only occurs
in mono-and di-states. Histone H3 methylation occurs at lysine residues K4, K9, K27, K36, and K79 and
histone H4 methylation occurs at lysine residues K20.

Figure1. DNA methylation
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Figure2. Histone modifications
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Table1. Regulation of microRNAs in epilepsy.
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MicroRNAs Expression Mechanisms References

MicroRNA-15a Downregulation
(pilocarpine, Mg2+

-free medium)

MicroRNA-15a targets
GFAP to inhibit
inflammation and
apoptosis of
hippocampal neurons
by downregulating
GFAP in
pilocarpine-induced
epilepsy rat model and
Mg2+-free medium
treated TLE cell
model. Propofol
regulates
microRNA-15a-
5p/GluN2B/ERK1/2
pathway to suppress
apoptosis hippocampal
neuronal apoptosis in
Mg2+ -free medium
treated epilepsy cell
model.

(Fan et al., 2020; Liu et
al., 2020)

MicroRNA-20a-5p Upregulation (PTZ) MicroRNA-20a-5p is
involved in synaptic
plasticity and silencing
microRNA-20a-5p
inhibits neuronal
branching and axonal
growth and prevents
epileptogenesis by
regulating
RGMa-RhoA-mediated
synaptic plasticity in the
PTZ-induced epilepsy
model.

(Feng et al., 2020)
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MicroRNAs Expression Mechanisms References

MicroRNA-21-5p Upregulation (electrical
kindling, KA,
pilocarpine)

MicroRNA-21-5p
reduces IL-6 levels, loss
of hippocampal
neurons and apoptosis
by inhibiting STAT3
expression, which
suggesting protective
effects of
microRNA-21-5p in
hippocampal neurons
of epileptic rats. In
KA-induced SE
models, targeting of
microRNA-21-5p also
protects against
seizure-induced injury
by PTEN-mTOR.

(Tang et al., 2018;
Zhang et al., 2020)

MicroRNA-22 Downregulation (KA,
pilocarpine)

MicroRNA-22 inhibit
neuroinflammatory
signaling to protect
against the
development of
epileptogenic brain
networks.
MicroRNA-22 prevents
inflammation and
development of
epileptogenic focus by
targeting P2X7R in the
brain and
microRNA-22 regulates
aberrant neurogenesis
and changes in
neuronal morphology
after SE in KA-induced
epilepsy mice model.

(Jimenez-Mateos et al.,
2015; Beamer et al.,
2018; Almeida Silva et
al., 2020)

MicroRNA-23a Upregulation (KA,
pilocarpine)

MicroRNA-23a is
involved in
hippocampal neuron
injury, hippocampal
oxidative damage and
impairment of spatial
memory in KA-induced
TLE mice.
MicroRNA-23a can
also regulate ADAM10,
which contributes to
epileptogenesis in
pilocarpine-induced SE
mice.

(Zhu et al., 2019a; Zhu
et al., 2019b)
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MicroRNAs Expression Mechanisms References

MicroRNA-25-3p Downregulation (KA,
Mg2+ -free medium)

MicroRNA-25-3p
targets OXSR1 to
suppress oxidative
stress and apoptosis of
neurons, thereby
suppressing
epileptiform discharges
in KA-induced epilepsy
mice model and Mg2+

-free medium treated
epilepsy cell model.

(Li et al., 2020)

MicroRNA-27a-3p Upregulation (KA) MicroRNA-27a-3p
regulates ion
channel-related DEGs
in multiple mTLE and
downregulation of
microRNA-27a-3p
inhibits apoptosis of
hippocampal neurons
and inflammatory
response by
upregulating MAP2K4
in KA-induced epilepsy
models.

(Lu et al., 2019; Su et
al., 2022b)

MicroRNA-29a Downregulation
(Mg2+-free medium)

MicroRNA-29a
regulates
seizure-induced cell
death and
inflammation in
Mg2+-free medium
treated epilepsy cell
model.

(Wu et al., 2021)
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MicroRNAs Expression Mechanisms References

MicroRNA-34 Downregulation (KA,
PTZ, Mg2+-free
medium, epilepsy
patients, TSC)

Activated
microRNA-34a may
lead to impaired
corticogenesis in TSC
during early brain
development and
inhibition of
microRNA-34a can
regulate apoptosis and
Notch signaling to
inhibit epileptiform
discharges in Mg2+-free
medium treated
epilepsy cell model.
MicroRNA-34c plays a
negative role in seizure
and cognitive function
by regulating NMDARs
and AMPARs in
PTZ-induced epilepsy
rat model. Decreased
microRNA-34c-5p
enhances
neuroinflammation to
increase loss of
hippocampal neuron in
DRE from KA-induced
epilepsy mice model
and in children with
DRE.

(Huang et al., 2018;
Wang et al., 2019a; Fu
et al., 2020; Korotkov
et al., 2021)

MicroRNA-101a-3p Downregulation
(pilocarpine, Mg2+

-free medium)

MicroRNA-101a-3p
inhibits apoptosis and
autophagy by
downregulating c-FOS
in pilocarpine-induced
epilepsy rat model and
Mg2+-free medium
treated TLE cell
model.

(Geng et al., 2021)

MicroRNA-103a Upregulation
(pilocarpine)

Inhibition of
microRNA-103a
regulates BDNF to
improve neuron injury
and inhibit activated
astrocytes in
pilocarpine-induced
epilepsy rat model.

(Zheng et al., 2019)
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MicroRNAs Expression Mechanisms References

MicroRNA-124 Downregulation
(pilocarpine, PTZ)

MicroRNA-124 inhibits
some target genes to
prevent upregulation of
hippocampal NRSF,
which participates in
epilepsy and promotes
the activation of
hippocampal microglia
and inflammatory
cytokines.
MicroRNA-124
suppresses seizure,
regulates CREB1
activity, and inhibits
neuronal firing with
decreased expression of
NMDAR in pilocarpine
and PTZ-induced
epilepsy rat model.

(McClelland et al.,
2014; Brennan et al.,
2016; Wang et al.,
2016c)

MicroRNA-125a-5p Downregulation (PTZ) MicroRNA-125a-5p
targets CaMK4 to
alleviate dysfunction
and inflammation in
PTZ-induced epilepsy
rat model.

(Liu et al., 2019b)

MicroRNA-128 Downregulation
(epilepsy patients,
glioma-associated
epilepsy) /
Upregulation (KA,
pilocarpine)

microRNA-128 is
upregulated in
KA-induced epilepsy
rat model and
promotes apoptosis by
the SIRT1 cascade in
PC12 cells.
MicroRNA-128 can
inhibit the expression
of various ion channels
and the signaling of
ERK2 network that
regulate neuronal
excitability.
MicroRNA-128 also
inhibits SNAP-25 and
SYT1 expression to
regulate epilepsy
sensitivity in
KA-induced epilepsy
mice model.

(Tan et al., 2013;
Alsharafi and Xiao,
2015; Chen et al., 2019;
Wang et al., 2021b).
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MicroRNAs Expression Mechanisms References

MicroRNA-129 Downregulation (KA,
epilepsy patients)

Inhibition of
microRNA-129-2-3p
regulates GABRA1 to
protect against
refractory TLE in
KA-treated primary
hippocampal neurons
and KA-induced
epilepsy rat model.
MicroRNA-129-5p also
targets HMGB1 to
inhibit the
development of
autoimmune
encephalomyelitis-
related epilepsy by
TLR4/NF-kB pathway.

(Liu et al., 2017a;
Wang et al., 2021a)

MicroRNA-132 Upregulation (KA,
Mg2+-free medium)

Depletion of
microRNA-132 can
reduce seizure-induced
neuronal death in
KA-induced epilepsy
mice models and
microRNA-132 can
suppress BDNF/TrkB
signaling to aggravate
epileptiform discharges
in the Mg2+-free
treated hippocampal
neuronal model of SE.
MicroRNA-132 also
reduces the expression
of pro-epileptogenic
factors (COX-2, IL-1β,
TGF-β2, CCL2 and
MMP3) in human
cultured astrocytes of
TLE.

(Jimenez-Mateos et al.,
2011; Xiang et al.,
2015; Korotkov et al.,
2020)
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MicroRNAs Expression Mechanisms References

MicroRNA-134 Upregulation (KA,
pilocarpine, Mg2+-free
medium, epilepsy
patients)

Inhibition of
microRNA-134 can
effectively reduce the
occurrence of
spontaneous recurrent
seizures and silencing
microRNA-134 can
produce
neuroprotective,
reducing the severity of
seizures in KA-induced
epilepsy mice model.
MicroRNA-134 inhibits
the expression of
CREB and p-CREB to
regulate synaptic
plasticity in
pilocarpine-induced
epilepsy rat model.

(Jimenez-Mateos et al.,
2012; Zhu et al., 2015;
Morris et al., 2019)

MicroRNA-135a Upregulation (KA,
epilepsy patients)

Antagonizing
microRNA-135a can
reduce spontaneous
recurrent seizures to
affect synaptic function
and plasticity by
targeting Mef2a in
KA-induced epilepsy
mice model. Inhibition
of microRNA-135a
protects glial cells
against apoptosis by
regulating
SIRT1-related signaling
pathway in
KA-induced BV2
microglia epilepsy
model.

(Vangoor et al., 2019;
Wang et al., 2021c)

MicroRNA-136 Downregulation
(pilocarpine)

MicroRNA-136 inhibits
WNT/-Catenin
signaling pathway to
play a neuroprotective
effect on
pilocarpine-induced
TLE rats.

(Cui and Zhang, 2022)
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MicroRNAs Expression Mechanisms References

MicroRNA-137 Downregulation (PTZ,
pilocarpine, Mg2+-free
medium)

Overexpression of
microRNA-137 inhibits
seizure activity in two
different epilepsy
mouse models (PTZ
and pilocarpine) and
suppresses neuronal
excitability in
Mg2+-free-induced
brain slice model of
epileptiform activity.

(Wang et al., 2018b)

MicroRNA-139-5P Downregulation
(pilocarpine, electrical
kindling, epilepsy
patients)

MicroRNA-139-5p
negatively regulates
GluN2A-NMDAR in
pilocarpine-induced
epilepsy rat model and
TLE patients and
upregulated
microRNA-139-5p also
regulates the Notch
pathway to reduce
spontaneous recurrent
epileptiform
discharge-induced
apoptosis and oxidative
stress in rat primary
hippocampal neurons.

(Alsharafi et al., 2016;
Zhao et al., 2021)

MicroRNA-141 Upregulation (KA) Inhibition of
microRNA-141 can
inhibit P53 to protect
against apoptosis by
SIRT1 expression in
KA-induced epilepsy
rat model.

(Liu et al., 2019a)

MicroRNA-142 Upregulation
(pilocarpine, epilepsy
patients)

MicroRNA-142
performs well in
differentiating between
drug-resistant and
drug-sensitive TLE.
Inhibition of
microRNA-142
promotes
mitochondrial
autophagy and reduces
hippocampal neuron
damage by targeting
PINK1 in
pilocarpine-induced
epilepsy rat model.

(De Benedittis et al.,
2021; Xiao et al., 2021)
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MicroRNAs Expression Mechanisms References

MicroRNA-145 Upregulation
(pilocarpine, epilepsy
patients)

Downregulation of
microRNA-145
improves the abilities
of learning and
memory by reducing
apoptosis of
hippocampal neurons
in pilocarpine-induced
epilepsy rat model.

(Zhao et al., 2019a)

MicroRNA-146a Upregulation (KA,
pilocarpine, epilepsy
patients, TSC)

MicroRNA-146a is a
powerful regulator of
microglia-mediated
inflammation in the
chronic TLE. MicroRNA-
146a-CFH-IL-1β loop
circuit mediates the
perpetuate inflammation
of chronic TLE in
KA-induced epilepsy rat
model and antagonists
targeting microRNA-146a
can protect against SE
by regulating NF-κB
pathway in
pilocarpine-induced
epilepsy rat model.
MicroRNA-146a can
ameliorate dysregulation
of the MMP/TIMP
proteolytic system in
TSC.

(Aronica et al., 2010; Su
et al., 2016; Li et al.,
2018c; Zhang et al.,
2018a; Broekaart et al.,
2020)

MicroRNA-148a-3p Upregulation (Mg2+

-free medium)
FS-related
microRNA-148a-3p
plays neuroprotective
roles by increasing the
proliferation of
hippocampal neurons
in Mg2+ -free medium
treated epilepsy cell
model.

(Yu et al., 2021)

MicroRNA-153 Downregulation
(epilepsy patients)

MicroRNA-153 is
downregulated in
plasma and temporal
cortex of mTLE
patients and
overexpression of
microRNA-153 reduces
HIF-1α expression in
rat astrocytes of
refractory epilepsy.

(Li et al., 2016)
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MicroRNAs Expression Mechanisms References

MicroRNA-155 Upregulation (KA,
pilocarpine)

MicroRNA-155
contributes to
epileptogenesis through
the PI3K/Akt/mTOR
signaling pathway.
Inhibition of
microRNA-155
attenuates MMP3
expression in cultured
human astrocytes,
increases the expression
of BDNF and alleviates
seizure severity in the
pilocarpine-induced
epilepsy, and attenuates
KA-induced seizure by
inhibiting microglia
activation.

(Cai et al., 2016; Duan et
al., 2018; Korotkov et al.,
2018; Fu et al., 2019)

MicroRNA-181 Upregulation (KA,
pilocarpine)

MicroRNA-181b can
inhibit P38/JNK
signaling pathway by
targeting TLR4, thereby
reducing apoptosis and
autophagy in
KA-induced epilepsy rat
model. Inhibition of
microRNA-181a-5p also
activates SIRT1 to reduce
neuronal apoptosis,
neuroinflammation,
oxidative stress, cognitive
dysfunction and
activation of astrocyte
and microglia in
pilocarpine-induced
epilepsy rat model.

(Wang et al., 2019b;
Kong et al., 2020)

MicroRNA-183 Upregulation
(pilocarpine)

Downregulated
microRNA-183 results in
an inactivation of
JAK/STAT signaling
pathway by targeting
Foxp1 to promote neuron
proliferation and inhibit
apoptosis of hippocampal
neurons, thereby
attenuating hippocampal
neuron injury in
pilocarpine-induced
epilepsy rat model.

(Feng et al., 2019)
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MicroRNAs Expression Mechanisms References

McroiRNA-187-3p Upregulation (electrical
kindling)

MicroRNA-187-3p is
upregulated and regulates
KCNK10/TREK-2
potassium channel in
electrical
stimulation-induced SE.

(Haenisch et al., 2016)

MicroRNA-194-5p Upregulation (Mg2+

-free medium, epilepsy
patients)

MicroRNA-194-5p
regulates the
proliferation and
apoptosis of
hippocampus neuron in
children with TLE and
Mg2+ -free medium
treated TLE cell
model.

(Niu et al., 2021)

MicroRNA-199a-5p Upregulation
(pilocarpine)

Targeting of
microRNA-199a-5p
protects against neuron
damage by SIRT1-p53
cascade in
pilocarpine-induced
epilepsy rat model.

(Wang et al., 2016a)

MicroRNA-200c-3p Upregulation
(pilocarpine)

Downregulation of
microRNA-200c-3p
upregulates RECK and
inactivates the AKT
signaling to decrease
apoptosis of hippocampal
neuron in
pilocarpine-induced
epilepsy rat model.

(Du et al., 2019)

MicroRNA-203 Upregulation (KA,
pilocarpine, epilepsy
patients)

MicroRNA-203 is
targeted to Ppp2ca in
both humans and mice,
which can target Ppp2ca
to increase seizure
activity in the
KA-induced SE model.
And microRNA-203
antagomirs can targets
GLRB to decrease the
frequency of spontaneous
seizures in
pilocarpine-induced mice
epilepsy.

(Lee et al., 2017; Zhang
et al., 2018b)
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MicroRNAs Expression Mechanisms References

MicroRNA-204 Downregulation
(Mg2+-free medium)

MicroRNA-204 regulates
TrkB-ERK1/2-CREB
signaling to inhibit
epileptiform discharges in
Mg2+-free medium
cultured hippocampal
neurons.

(Xiang et al., 2016)

MicroRNA-211 Downregulation Dynamic changes of
microRNA-211
expression is associated
with epileptiform
activity and cholinergic
imbalances in murine
forebrain.

(Bekenstein et al.,
2017)

MicroRNA-219 Upregulation (KA,
epilepsy patients)

MicroRNA-219 regulates
NMDARs in the
amygdala and
hippocampus of patients
with mTLE and also
suppresses seizure
formation by regulating
the CaMKII/NMDAR
pathway in KA-induced
epilepsy mice model.

(Zheng et al., 2016;
Hamamoto et al., 2020)

MicroRNA-221-3p Downregulation (KA) MicroRNA-221-3p
inhibits HIF-1α to
suppress seizures and
microglia activation in
the VPA-resistant
epilepsy of KA-induced
epilepsy mice model.

(Fu et al., 2021)

MicroRNA-223 Upregulation (KA,
epilepsy patients)

MicroRNA-223 also have
the good performance in
distinguishing
drug-sensitive and
drug-resistant TLE and
microRNA-223 affects
microglial autophagy by
targeting ATG16L1 in
KA-induced epilepsy
mice model.

(De Benedittis et al.,
2021; He et al., 2021b)

MicroRNA-322-5p Downregulation
(pilocarpine)

MicroRNA-322-5p
regulates the
TLR4/TRAF6/NF-κB
axis to reduce neuronal
inflammation in
pilocarpine-induced
epilepsy rat model.

(Zhou et al., 2022)
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MicroRNAs Expression Mechanisms References

MicroRNA-344a Downregulation (PTZ) MicroRNA-344a
regulates seizure-induced
apoptosis signaling
pathways in PTZ-induced
chronic epilepsy rat
model.

(Liu et al., 2017b)

MicroRNA-451 Upregulation (KA) MicroRNA-451 regulates
GDNF expression to
aggravate hippocampal
neuronal apoptosis and
seizure in KA-induced
epilepsy mice model

(Weng et al., 2020)

MicroRNA-494 Downregulation
(pilocarpine)

Overexpressed
microRNA-494
inactivates the NF-κB
signaling pathway to
reduce hippocampal
neuron injury by
inhibiting RIPK1 in
pilocarpine-induced
epilepsy rat model.

(Qi et al., 2020)

MicroRNA-542-3p Downregulation (KA) MicroRNA-542-3p
suppresses TLR4/NF-κB
signaling pathway to
reduce seizure-induced
brain injury and the
expression of P-gp in
KA-treated primary
hippocampal neurons and
KA-induced epilepsy rat
model.

(Yan et al., 2019)

Table2. Regulation of lncRNAs and circRNAs in epilepsy.

LncRNAs Mechanisms References

BDNF-AS Concerning epilepsy, a study found that the expression of BDNF is upregulated in human neocortex removed as a treatment of intractable seizures, whereas the levels of BDNF-AS are significantly decreased. BDNF-AS can negatively regulate BDNF expression. (Lipovich et al., 2012; Modarresi et al., 2012)
LncRNA H19 LncRNA H19 suppresses microRMA-let-7b to regulate hippocampal neuron apoptosis and lncRNA H19 also regulates JAK/STAT signaling to promote activation of hippocampal glial cell in TLE rat model. (Han et al., 2018a; Han et al., 2018b)
LncRNA FTX LncRNA FTX regulates microRNA-21-5p/SOX7 axis to suppress apoptosis of hippocampal neurons in a rat model of TLE. (Li et al., 2019b)
LncRNA UCA1 LncRNA UCA1 regulates microRNA-495/Nrf2-ARE signal pathway to suppress seizure-induced brain injury and seizure, and lncRNA-UCA1 has dynamic regulation effect on NF-κB in hippocampus of epilepsy rats. LncRNA UCA1 regulates microRNA-375/SFRP1-mediated WNT/β-Catenin pathway to alleviate aberrant hippocampal neurogenesis in KA-induced epilepsy model. LncRNA UCA1 regulates microRNA-203-mediated MEF2C/NF-κB signaling pathway to inhibit inflammation in epilepsy. (Wang et al., 2017; Geng et al., 2018; Yu et al., 2020; Diao et al., 2021)
LncRNA MALAT1 Down-regulation of LncRNA MALAT1 protects hippocampal neurons against excessive autophagy and apoptosis via the PI3K/Akt signaling pathway in rats with epilepsy. (Wu and Yi, 2018)
LncRNA PVT1 Silencing lncRNA PVT1 can downregulate WNT signaling pathway to promote the expression of BDNF and suppress the activation of hippocampal astrocytes in epileptic rats. (Zhao et al., 2019b)
LncRNA ILF3-AS1 LncRNA ILF3-AS1 suppresses microRNA-212 to mediate epileptogenesis in the hippocampus and targets microRNA-212 to promote the expression of inflammatory cytokines and MMPs in TLE. (Cai et al., 2020)
LncRNA ZFAS1 LncRNA ZFAS1 upregulates microRNA-421 to activate the PI3K/AKT pathway, thereby inhibiting apoptosis and autophagy of hippocampal neurons in epilepsy. LncRNA ZFAS1 can also promote neuronal apoptosis and inflammation response, thereby aggravating the development of epilepsy. (Hu et al., 2020a; He et al., 2021a)
LncRNA MALAT1 LncRNA MALAT1 regulates dendritic spine density. Downregulated lncRNA MALAT1 regulates the PI3K/Akt signaling pathway to protect hippocampal neurons against excessive autophagy and apoptosis in rats with epilepsy. (Wu and Yi, 2018; Murugan and Boison, 2020)
LncRNA BC1 Loss the lncRNA BC1 reduced convulsive thresholds. (Murugan and Boison, 2020)
LncRNA KCNH5-1 LncRNA KCNH5-1 plays a key vital role in developing TLE with Hippocampal Sclerosis (HS). (Wang et al., 2022)
LncRNA NEAT1 LncRNA NEAT1 is responsive to neuronal activity and is associated with hyperexcitability states. LncRNA NEAT1 also targets microRNA-129-5p and regulates Notch signaling to regulate inflammatory responses in epilepsy. (Barry et al., 2017; Wan and Yang, 2020)
LncRNA GAS5 LncRNA GAS5 inhibits microRNA-219 to affect CaMKIIγ/NMDAR pathway and promote the progression of epilepsy. LncRNA GAS5 silencing regulates microRNA-135a-5p to suppress the expression of KCNQ3, thereby preventing the progression of epilepsy. (Li et al., 2019a; Zhao et al., 2022)
LncRNA TUG1 LncRNA TUG1 may be a biomarker of TLE diagnosis in children, and regulates miR-199a-3p to affect cell activity and apoptosis of hippocampal neuron. (Li et al., 2021)
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LncRNAs Mechanisms References

LncRNA XIST LncRNA XIST sponges miR-29c-3p and regulates NFAT5 expression to promote the secretion of inflammatory cytokines in LPS-treated CTX-TNA2. (Zhang et al., 2021)
LncRNA Nespas LncRNA Nespas, as a regulator of microRNA-615-3p, inhibits the PI3K/Akt/mTOR pathway to suppress apoptosis of epileptiform hippocampal neurons by upregulating Psmd11. (Feng et al., 2021)
LncRNA SNHG1 SP1 activated-lncRNA SNHG1 regulates microRNA-154-5p/TLR5 axis to mediate the development of epilepsy. (Zhao et al., 2020)
Circ-EFCAB2 Circ-EFCAB2 may be potential therapeutic targets and biomarkers for TLE patients. (Li et al., 2018b)
Circ-UBQLN1 Circ-UBQLN1 upregulates microRNA-155-mediated SOX7, thereby inhibiting apoptosis and oxidative stress and promoting proliferation of hippocampal neurons in epilepsy. (Zhu et al., 2021)
Circ-DROSHA Circ-DROSHA may be potential therapeutic targets and biomarkers for TLE patients. Circ-DROSHA can regulate microRNA-106b-5p/MEF2C axis to reduce the neural damage in TLE cell model. (Li et al., 2018b; Zheng et al., 2021)
Circ-ANKMY2 Circ-ANKMY2 regulates the microRNA-106b-5p/FOXP1 axis to affect TLE progression. (Lin et al., 2020)
Circ-Hivep2 Circ-Hivep2 regulates microRNA-181a-5p/SOCS2 signaling to promote microglia activation and inflammation in KA-induced epileptic mice model. (Xiaoying et al., 2020)
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