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Supplementary Text

Preliminary Status Classifier

FFT energy Ef of a signal sequence is defined as follows:

Ef =

N∑
i=1

F 2
i (1)

where Fi is the ith amplitude of the Fourier transform of at and N is the length of the amplitude array. at
is the total acceleration, which combines the accelerations in three axes (i.e., x, y, and z) as follows:

at =
√
a2xt + a2yt + a2zt(2)The other parameter V ar (at) is the acceleration variance of the signal sequence,

which is expressed as follows:

V ar (at) =

∑n
i=1 (ati − at)2

n
(3)

In Equation (3), n is the length of the acceleration array.

Segmentation Method

Fixed-window Segmentation (FWS)

The IMU reading of tth sampling is denoted as xt,xt, and all the readings from 1st sampling to tth are
Xt; therefore, the relationship between xt and Xt is Xt = {x1, x2, ... xt}. Each reading consists of 3-axis

1
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acceleration and 3-axis angular velocity, which is expressed as follows:

xt=[axt, ayt, azt, gxt, gyt, gzt] (4)Then, the segmentation process divides the signal Xt into slices, which
is a set of contiguous readings. The slice set is denoted as S and s1, s2 ... st ∈ S, and the nth slice sn
consisting of the readings between ath and bth is as follows:

sn=[xa, xa+1, ... xb] (5)The window size of the nth slice is denoted as Ln. Since FWS usually divides raw
sensor signals into same-length slices, Ln is a constant value for all slices, denoted as L. In CSM, we set
L to 1 second, and the readings passed into the FWS is divided into 1-second slices. Since the sampling
frequency of our sensor is 25, one FWS slice can contain 25 readings.

Probability Density Function Segmentation (PDFS)

However, not all of the mice behaviors end in or last for 1 second, and the sample length would be less
than 1 second. Thus, if a behavior’s duration deviates from the length of a predefined fixed window, the
quality of the features extracted from that sample would be low, as they could not represent the entire
sample. For instance, one of the features is the mean value of accelerations in the x-direction of a slice
containing a behavior within a fixed window (e.g., 1 second). If the duration of that behavior is much
shorter than 1 second, the slice must contain information of other behavior(s), which would dominate the
mean value. Thus, to solve this problem, we design the first Adaptive Window Segmentation (AWS) named
the probability density function segmentation (PDFS), which utilizes a probability density function (PDF)
with a multivariate Gaussian distribution. The PDF function defines the probability of a reading belonging
to a slice and decides whether to extend the slice to include the reading (Mickey & Rencher, 1998).

Due to the uncertainty in the window size and their boundary positions, during the processing, we define
the stop boundary point of the previous slice as the changepoint and elapsed time since the last changepoint
as the ”run”. rt is the length of the current run if it stops at time t, and the reading set with run length rt
is x

(r)
t . The PDF for all the readings of the current run x

(r)
t at time t falls within a particular range, which

can be expressed as follows:

fn

(
x
(r)
t

)
=

1(√
2π
)d · ∣∣∣ rt−1

rt
K
∣∣∣ 12 e−

1
2

rt∑
i=1

(xi − µ)
T · rt

(rt − 1)S
· (xi − µ) (6)

First, we define two windows: a base window Wb with a fixed size (b) and an expanding window
Wewithanotherfixedsize(e)thatismuchsmallerthanthatofthebasewindow.EachrunstartsfromthebeginningofaWb,
and we first calculate the probability density (p1) of the data in current run. Then, the run is extended by
adding one We to Wb to form a new temporary segmentation window (b + e), and the probability density
(p2) of current run is calculated. By comparing the two probability density values, the decision of extending
the current window is made. If p1 is smaller than p2, the base window is taken as the segmentation window.
Otherwise, the extending window is kept. For the next round, the probabilities before and after adding an
expanding window will be calculated again for the comparison and determination of the expanding.

We define the expanding times of the temporary segmentation window as ne, and the run length in PDFS
at time t is determined by those three parameters.

rt = b+ ne · e (7)

Bayesian OnlineOnline ChangepointChangepoint Detection Detection Segmentation (BOCDS)

We design the second AWS utilizing one of the popular changepoint detection techniques, the Bayesian
Online Changepoint Detection (BOCD). Therefore, this segmentation method is named the Bayesian Online

2
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Changepoint Detection Segmentation (BOCDS). It can generate an accurate posterior prediction of the next
data point xt+1 in the sequence based on the received sensor readings x1:t, which can be expressed as follows:

P (xt+1|x1:t) =
∑
rt

P
(
xt+1|rt, x(r)t

)
· P (rt|x1:t) (8)

The details about the equation derivation are referred to in Adams et al.’s work(Adams & MacKay, 2007).
Based on this equation, we could predict the next data point and detect the abrupt change in the signal
sequence. We first input the four primary parameters required by the model and set one of the boundaries
at the stop point of the last slice. Then, we start to calculate several probabilities, including predictability,
growth probability, and changepoint probability, starting from the next point. The related prediction is
conducted based on these probabilities. If this point is predicted as the changepoint, the current run would
stop at this point; otherwise, the run length would increase, and we would perform a similar step for the
next data point. Using the BOCDS, the continuous readings are divided into windows of different sizes in
real-time.

CSM-1(PSC+FWS+PDFS) & CSM-2 (PSC+FWS+BOCDS)

Based on the PSC and three segmentation methods mentioned above, we construct two combined segmen-
tation methods (CSMs). The first CSM consists of the PSC, FWS and PDFS and the second is formed
by the PSC, FWS and BOCDS. In the first CSM, PSC decides the readings belongs to static or dynamic
behaviors. The static readings are divided into same-size segments in FWS, while the dynamic readings are
processed by PDFS. For the second CSM, BOCDS replaces PDFS while keeping other setting same with the
first CSM.

Model training and validation

For model training and validation, the confusion matrix is calculated to evaluate the performance of our
trained model, along with another three metrices defined as follows:

Recall (A) =
LTP (A)

LTP (A) + LFN (A)
(9)

Precision (A) =
LTP (A)

LTP (A) + LFP (A)
(10)

F1 (A) =
2 · Precision (A) ·Recall (A)

Precision (A) +Recall (A)
(11)

where LTP (A) is the total time length of the true positive case for behavior A, LFN (A) is the total time
length of a false negative error for behavior A, and LFP (A) is the total time length of a false-positive error
for behavior A. In the usual classification evaluation, the three metrics are calculated based on the true
or false predicted case number. In our case, readings are divided into slices of different lengths with the
AWSs. Therefore, we evaluate prediction accuracy based on the time lengths of the correctly and incorrectly
classified behaviors.

A high recall value indicates that most of the behavior samples are correctly classified, while a high precision
value means the percentage of correct prediction is large among the total related prediction (Powers, 2020).
To evaluate the overall performance, we calculate the accuracy for the whole training model as follows:

Accuracy(total) =
LTP (total)

Ltotal
(12)

where Ltotalis the total time length of the validation set and LTP (total) is the total time length of all the
true positive cases in the validation set. The overall accuracy is the key parameter representing the overall

3
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effectiveness and accuracy of a classification system, but this accuracy is highly affected by the ratio of
samples between different behaviors. If a dataset is not well-balanced between behaviors, the accuracy is
dominated by the behaviors with high numbers of samples. Thus, we adapt the average recall value (macro-
recall) Recallavg as the main parameter to represent the model accuracy, which is expressed as follows:

Recallavg =
1

M

M∑
A=1

Recall (A) (13)

where M is the number of behavior types, which equals 8 in our system. As a 4-fold cross validation is
employed in this paper to resample our dataset and evaluate our machine learning model, the average recall
value among 4-fold could be defined as follows:

Recall4−fold =
1

4

4∑
K=1

Recallavg−K (14)

here Recallavg−K is the macro-recall value of the Kth fold.

Supplementary Tables

Behavior Label Description
Resting RE Stay still and motionless
Walking W Walking around in the cage
Rearing RA Standing on its hind legs and raise forelimbs from the ground
Digging DI Using forelimbs to dig material put on the cage bottom

Swings its front legs fast to throw the bedding particles around
Eating E Eating food placed in cage

Grooming G Grooming itself to keep clean
Drinking water DW Drinking water placed in cage

Scratching S Using hindlimb to scratch its body

Table 1: Labels and descriptions for eight common mouse behaviors

Time domain Frequency domain
30 features (6 axes) 8 features (2 axes)

Maximum DC component
Minimum FFT amplitude peak
Variance FFT entropy
Average FFT energy

Root Mean Square

Table 2: The calculated features in the recognition system.
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Supplementary Figures

Monitoring Camera

 Food and Water

 Laboratory Mice Cage

 µIMU sensor

B X-axis Acceleration Y-axis Acceleration Z-axis Acceleration

X-axis Angular Velocity Y-axis Angular Velocity Z-axis Angular Velocity

A

Figure 1: Fig. S1. Mouse tracking system hardware setup. (A) Experimental setup. (B) The collected
acceleration and angular velocity signals

Continuous Behavior 
Signal Sequence

Fixed-window 
Segmentation (FWS)

Combined 
Segmentation 
Method (CSM)

(1) PSC Category: dynamic

FW1 FW2 FW3 FW4 FW5 FW6 FW7 FW8 FW9

AW1 AW2 (2) AWS

(3) PSC Category : static

Dynamic 1 Static 1 Dynamic 2 Static 2

AW1 AW2

AW1 AW2 FW3 FW4 (4) FWS

AW1 AW2 FW3 FW4

AW1 AW2 FW3 FW4 FW5 FW6 (6) FWS

AW1 AW2 FW3 FW4 FW5 FW6 (7) PSC Category: dynamic

AW1 AW2 FW3 FW4 FW5 FW6 AW7 AW8 AW9 (8) AWS

Static behavior signal
Dynamic behavior signal

CSM AWS window
PSC sample window

CSM FWS window

FWS window
FWS window affected 
by segmentation error

(5) PSC Category : static

Figure 2: Fig. S2. The working principle of the Combined Segmentation Method (CSM)

Supplementary Video

Rich media available at https://drive.google.com/file/d/1p3rGwQ0969xrQChddNo0BshdFSEYHzeH/

view?usp=sharing
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