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Abstract

The basic idea of this article is to investigate the numerical solutions of Gardner Kawahara equation, a particular case of

extended Korteweg-de Vries (KdV) equation, by means of finite element method. For this purpose, a collocation finite element

method based on trigonometric quintic B-spline basis functions is presented. The standard finite difference method is used to

discretize time derivative and Crank-Nicolson approach is used to obtain more accurate numerical results. Several numerical

examples are presented and discussed to exhibit the feasibility and capability of the finite element method and trigonometric

B-spline basis functions. More specifically, the error norms $L {2}$ and $L {\infty }$ are reported for numerous time and

space discretization numbers in tables. Graphical representations of the solutions which describe motion of wave are presented.

1



P
os
te
d
on

A
u
th
or
ea

25
J
u
l
20
22

—
T
h
e
co
p
y
ri
gh

t
h
ol
d
er

is
th
e
au

th
or
/f
u
n
d
er
.
A
ll
ri
g
h
ts

re
se
rv
ed
.
N
o
re
u
se

w
it
h
ou

t
p
er
m
is
si
on

.
—

h
tt
p
s:
//
d
oi
.o
rg
/1
0.
22
54
1/
au

.1
65
87
25
28
.8
69
89
12
4/
v
1
—

T
h
is

a
p
re
p
ri
n
t
an

d
h
a
s
n
o
t
b
ee
n
p
ee
r
re
v
ie
w
ed
.
D
a
ta

m
ay

b
e
p
re
li
m
in
a
ry
.

figures/fig1/fig1-eps-converted-to.pdf

2



P
os
te
d
on

A
u
th
or
ea

25
J
u
l
20
22

—
T
h
e
co
p
y
ri
gh

t
h
ol
d
er

is
th
e
au

th
or
/f
u
n
d
er
.
A
ll
ri
g
h
ts

re
se
rv
ed
.
N
o
re
u
se

w
it
h
ou

t
p
er
m
is
si
on

.
—

h
tt
p
s:
//
d
oi
.o
rg
/1
0.
22
54
1/
au

.1
65
87
25
28
.8
69
89
12
4/
v
1
—

T
h
is

a
p
re
p
ri
n
t
an

d
h
a
s
n
o
t
b
ee
n
p
ee
r
re
v
ie
w
ed
.
D
a
ta

m
ay

b
e
p
re
li
m
in
a
ry
.

figures/fig5/fig5-eps-converted-to.pdf

3



P
os
te
d
on

A
u
th
or
ea

25
J
u
l
20
22

—
T
h
e
co
p
y
ri
gh

t
h
ol
d
er

is
th
e
au

th
or
/f
u
n
d
er
.
A
ll
ri
g
h
ts

re
se
rv
ed
.
N
o
re
u
se

w
it
h
ou

t
p
er
m
is
si
on

.
—

h
tt
p
s:
//
d
oi
.o
rg
/1
0.
22
54
1/
au

.1
65
87
25
28
.8
69
89
12
4/
v
1
—

T
h
is

a
p
re
p
ri
n
t
an

d
h
a
s
n
o
t
b
ee
n
p
ee
r
re
v
ie
w
ed
.
D
a
ta

m
ay

b
e
p
re
li
m
in
a
ry
.

figures/fig6/fig6-eps-converted-to.pdf

4



A New Numerical Approach to Gardner Kawahara Equation

in Magneto-Acoustic Waves in Plasma Physics

Yusuf UCAR1, Nuri Murat YAGMURLU1, Alaattin ESEN1, and Berat KARAAGAC2

1Department of Mathematics, Inonu University, Malatya, TURKEY
2Department of Mathematics Education, Adııyaman University, Adııyaman, TURKEY

July 23, 2022

Abstract

The basic idea of this article is to investigate the numerical solutions of Gard-
ner Kawahara equation, a particular case of extended Korteweg-de Vries (KdV)
equation, by means of finite element method. For this purpose, a collocation
finite element method based on trigonometric quintic B-spline basis functions
is presented. The standard finite difference method is used to discretize time
derivative and Crank-Nicolson approach is used to obtain more accurate nu-
merical results. Several numerical examples are presented and discussed to
exhibit the feasibility and capability of the finite element method and trigono-
metric B-spline basis functions. More specifically, the error norms L2 and L∞
are reported for numerous time and space discretization numbers in tables.
Graphical representations of the solutions which describe motion of wave are
presented.

2010 Mathematics Subject Classification: 65M70, 35C08,41A15

Keywords:Gardner-Kawahara equation, Collocation, Quintic Trigonomet-
ric B-splines.

1 Introduction

Most of the natural principles and laws in the real worls are modelled by differential
equations and only a few of them could be solved analytically. Thus obtaining nu-
merical solutions for those equations has become more important. Gardner-Kawahara
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equation belongs to the class of nonlinear Partial Differential Equations (PDEs) and
has gained much more popularity as it models several physical phenomena in the
nature. In fact, Gardner-Kawahara equation is a particular form of extended KdV
equation. The equation can be widely encountered in shallow water waves having
surface tension as well as in plasma physics. In terms of physical interpretation, the
Gardner-Kawahara equation expalins the solitary wave propagation in media [9].In
the study of interfacial waves between two immiscible fluids, there are such situa-
tion when the double critical conditions can occur, i.e. when both the coefficients of
quadratic nonlinearity and third-order dispersion vanish simultaneously. In the near-
critical situation the basic governing equation is the Gardner-Kawahar equation. In
the present article, numerical solutions of the nonlinear Gardner-Kawahara equation
in the following form

ut + κux + λu ux − αu2ux + µuxxx + βuxxxxx = 0

are going to be sought for. Where κ, λ, α, µ and β are positive real parameters. The
problem is subject to the following initial-boundary conditions

u (x, 0) = f(x), x ∈ [a, b] (1.1)

u (a, t) = g1(t), u (b, t) = g2(t), t ≥ 0 (1.2)

ux (a, t) = g2(t), ux (b, t) = g4(t), t ≥ 0 (1.3)

uxx (a, t) = g5(t), uxx (b, t) = g6(t), t ≥ 0 (1.4)

in which f(x) is a given smooth function, g1(t) and g2(t) are prescribed functions
to be given in Numerical computation and analysis section.First of all, by using the
conversion. uxxx = v in the equation, it will be converted into a coupled system of
equations. Then quintic B-spline basis functions are going to be used for approximate
solutions.

In order to solve the nonlinear Gardner-Kawahara equation both analytically and
numerically, several researchers have used various methods and techniques. In recent
years, a great many of authors have been pushing forward several theories with dif-
ferent styles and perspectives. Among others, Hussein and Taha [4] have efficiently
and successfully used (G’/G)-expansion method to find new solitary wave solutions
of the Gardner-Kawahara equation. Swain et al. [9] have investigated the equation
using the Lie symmetry method. First they have reduced the equation into a non-
lienar ordinary differential equation form and then obtained the exact solution in the
explicit form by different significant methods. Khusnutdinova et al. [6] have obtained
soliton solutions to the fifth-order Korteweg-de Vries equation and their applications
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to surface and internal water waves. Wazwaz [10] has found out soliton solutions for
the fifth-order KdV equation and also the Kawahara equation with time-dependent
coefficients. Zahra et al. [11] have proposed an effective scheme based on quartic
B-spline for the solution of Gardner equation and Harry Dym equation. Kurkina et
al. [7] have derived a new model equation describing weakly nonlinear internal waves
at the interface between two thin layers of different density for the specific relation-
ships between the densities, layer thickness and surface tension between the layers.
For this purpose, they derived and dubbed the Gardner-Kawahara equation repre-
senting a natural generalization of the well-known Kortweg-de Vries (KdV) equation
containing the cubic nonlinear term as well as fifth-order dispersion term.They also
investigated solitary wave solutions numerically and categorized in terms of two di-
mensionless parameters, the wave speed and fifth-order dispersion and concluded that
the derived equation may be applicable to wave description in other media.

2 Structure of the method

The governing equation describing the long internal waves having small amplitude at
the interface in a two-layer fluid is widely known KdV equation (see, e.g., [1–3] and
those references therein).

ut + cux + αu ux + β1uxxx = 0 (2.5)

But, under certain conditions, KdV equation degenerates due to the fact that some
of its coefficients vanish. Thus a generalization becomes necessary epecially when the
density interface is located near the half of the depth of the fluid. If this is the case,
then the coefficient of the quadratic nonlinearity tends to be anomalously small, and
one should consider the next order nonlinear term in order to balance the dispersion
effect. This condition leads to Gardner equation.

ut + cux + αu ux − α1u
2ux + β1uxxx = 0 (2.6)

Both the Kdv and Gardner equations are definably integrable; that is, they possess
soliton solutions.There are also situations when the dispersion coefficient vanishes.
When this happens, the next-order dispersion should be considered. This leads to
the fifth-order KdV equation with quadratic nonlinearity.

ut + cux + αu ux + β1uxxx + β2uxxxxx = 0 (2.7)

Although this equation was derived by Kakutani and Ono in 1969 [5], it is currently
known as the Kawahara equation. In the meantime, in the case of internal waves in
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two-layer fluid with strong surface tension at the interface the double-critical situation
is also possible when both the coefficients of quadratic nonlinearity and the tird order
dispersion become so small that the next order are required. In the vicinity of the
double critical situation the governing equation, namely GK equation is generally
given in the following form

ut + κux + λu ux − αu2ux + µuxxx + βuxxxxx = 0 (2.8)

together with the appropriate physical initial and boundary conditions, in which t
is time , x is the space coordinate and κ, λ, α, µ and β are predefined parameters.
For the considered problems, the appropriate initial and boundary conditions will be
taken from the exact solution.

For numerical evaluation of an initial-boundary value problem by a finite elements
method, let us divide the solution region (x, t) ∈ [a, b]× [0, T ] of Gardner-Kawahara
equation given by Eq. (2.8) in space direction into N equal consecutive sub-space
intervals as a = x0 < x1 < · · · < xN−1 < xN = b, ∆x = h = xi+1 − xi, i = 0(1)N − 1
by nodal points {xi}Ni=0 and in temporal direction into M equal consecutive sub-time
intevals as 0 = t0 < t1 < · · · < tM−1 < tM = T, ∆t = k = tj+1− tj, j = 0(1)M − 1 by

nodal points {tj}Mj=0 where T stands for final time.For the numerical discretization of
Eq. (2.8), first of all, we have split it as follows

v = uxxx

ut + κux + λu ux − αu2ux + µv + βuxx = 0

For the nonlinear terms, the following Rubin-Graves type linearization is applied

(uux)n+1 = un+1unx + unun+1
x − ununx

(u2 ux)n+1 = un+1 un unx + un un+1 unx + un un un+1
x − 2un un unx

For the numerical discretization of Eq. (2.8), using the first-order forward fi-
nite difference approximation for the derivative in time and the Crank-Nicolson type
formulation for all space derivatives, we first obtain the following semi-discretized
equation

vj+1 + vj
2

=
(uxxx)j+1 + (uxxx)j

2
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uj+1 − uj
k

+ κ
(ux)j+1 + (uuxj)j

2
+ λ

(u ux)j+1 + (u ux)j
2

−α
(u2ux)j+1 + (u2ux)j

2
+ µ

vj+1 + vj
2

+ β
(uxx)j+1 + (uxx)j

2
= 0 (2.9)

The trigonometric quintic B-splines T 5
m(x) , (m = −1(1)N + 1), at the knots xm are

defined over the interval [a, b] by [8]

T 5
i (x) =

1

θ



p5(xi−3)
−p4(xi−3)p(xi−1)

−p3(xi−3)p(xi)p(xi−2)
−p2(xi−3)p(xi+1)p

2(xi−2)
−p(xi−3)p(xi+2)p

3(xi−2)− p(xi+3)p
4(xi−2)

p3(xi−3)p
2(xi)

+p2(xi−3)p(xi+1)p(xi−2)p(xi)
+p2(xi−3)p

2(xi+1)p(xi−1)
+p(xi−3)p(xi+2)p

2(xi−2)p(xi)
+p(xi−3)p(xi+2)p(xi−2)p(xi+1)p(xi−1)

+p(xi−3)p
2(xi+2)p

2(xi−1)
+p(xi−3)p

3(xi−2)p(xi)
+p(xi+3)p

2(xi−2)p(xi+1)p(xi−1)
+p(xi+3)p(xi−2)p(xi+2)p

2(xi−1)
+p2(xi+3)p

3(xi−1)
−p2(xi−3)p3(xi+1)

−p(xi−3)p(xi+2)p(xi−2)p
2(xi+1)

−p(xi−3)p2(xi+2)p(xi−1)p(xi+1)
−p(xi−3)p3(xi+2)p(xi)
−p(xi+3)p

2(xi−2)p
2(xi+1)

−p(xi+3)p(xi−2)p(xi+2)p(xi−1)p(xi+1)
−p(xi+3)p(xi−2)p

2(xi+2)p(xi−1)
−p2(xi+3)p

2(xi−1)p(xi+1)
−p2(xi+3)p(xi−1)p(xi+2)p(xi)

−p3(xi+3)p
2(xi)

p(xi−3)p
4(xi+2) + p(xi+3)p(xi−2)p

3(xi+2)
+p2(xi+3)p(xi−1)p

2(xi+2)
+p3(xi+3)p(xi)p(xi+2) + p4(xi+3)p(xi+1)

−p5(xi+3)
0

, xi−3 ≤ x < xi−2

, xi−2 ≤ x < xi−1

, xi−1 ≤ x < xi

, xi ≤ x < xi+1

, xi+1 ≤ x < xi+2

, xi+2 ≤ x < xi+3

, otherwise
(2.10)

5



in which

p(xi) = sin

(
x− xi

2

)
, θ = sin

(
h

2

)
sin(h) sin

(
3h

2

)
sin(2h) sin

(
5h

2

)
, i = 0, ...., N

The set of trigonometric quintic B-splines
{
T 5
−2(x), T 5

−1(x), T 5
0 (x), . . . , T 5

N+1(x)
}

forms
a basis for the smooth functions defined over [a,b]. Therefore, an approximation
solution uN(x, t) and vN(x, t) can be written in terms of the trigonometric cubic B-
splines as trial functions:

u(x, t) ≈ uN(x, t) =
N+1∑
i=−2

T 5
i (x)δi(t) (2.11)

v(x, t) ≈ vN(x, t) =
N+1∑
i=−2

T 5
i (x)σi(t) (2.12)

where δi(t)’s and σi(t)’s are unknown, time dependent quantities to be determined
from the boundary and trigonometric quintic B-spline collocation conditions. Each
trigonometric quintic B-spline covers six elements so that each element [xi, xi+1] is
covered by six trigonometric quintic B-splines. For this problem, the finite elements
are identified with the interval [xi, xi+1]. Using the nodal values ui, u

′
i, u

′′
i , u

′′′
i and

u
(4)
i are given in terms of the parameter δi by:

ui = u(xi) = a1δi−2 + a2δi−1 + a3δi + a2δi+1 + a1δi+2 (2.13)

u′i = u′(xi) = b1δi−2 + b2δi−1 − b2δi+1 − b1δi+2

u′′i = u′′(xi) = c1δi−2 + c2δi−1 + c3δi + c2δi+1 + c1δi+2

u′′′i = u′′′(xi) = d1δi−2 + d2δi−1 − d2δi+1 − d1δi+2

u
(4)
i = u(4)(xi) = e1δi−2 + e2δi−1 + e3δi + e2δi+1 + e1δi+2

and again using the nodal values vi, v
′
i, v

′′
i , v

′′′
i and v

(4)
i are given in terms of the pa-

rameter σi by:

vi = v(xi) = a1σi−2 + a2σi−1 + a3σi + a2σi+1 + a1σi+2 (2.14)

v′i = v′(xi) = b1σi−2 + b2σi−1 − b2σi+1 − b1σi+2

v′′i = v′′(xi) = c1σi−2 + c2σi−1 + c3σi + c2σi+1 + c1σi+2

v′′′i = v′′′(xi) = d1σi−2 + d2σi−1 − d2σi+1 − d1σi+2

v
(4)
i = v(4)(xi) = e1σi−2 + e2σi−1 + e3σi + e2σi+1 + e1σi+2

6



where

a1 =
sin5

(
h
2

)
θ

a2 =
2 sin5

(
h
2

)
cos
(
h
2

) (
16 cos2

(
h
2

)
− 3
)

θ
,

a3 =
2
(
1 + 48 cos4

(
h
2

)
− 16 cos2

(
h
2

))
sin5

(
h
2

)
θ

,

b1 = −
5 sin4

(
h
2

)
cos
(
h
2

)
2θ

,

b2 = −
5 sin4

(
h
2

)
cos2

(
h
2

) (
8 cos2

(
h
2

)
− 3
)

θ
,

c1 =
5 sin3

(
h
2

) (
5 cos2

(
h
2

)
− 1
)

4θ
,

c2 =
5 sin3

(
h
2

)
cos
(
h
2

) (
−15 cos2

(
h
2

)
+ 3 + 16 cos4

(
h
2

))
2θ

,

c3 = −
5 sin3

(
h
2

) (
16 cos2

(
h
2

)
− 5 cos2

(
h
2

)
+ 1
)

2θ
,

d1 = −
5 sin2

(
h
2

)
cos
(
h
2

) (
25 cos2

(
h
2

)
− 13

)
8θ

,

d2 = −
5 sin2

(
h
2

)
cos2

(
h
2

) (
8 cos4

(
h
2

)
− 35 cos2

(
h
2

)
+ 15

)
4θ

,

e1 =
5
(
125 cos4

(
h
2

)
− 114 cos2

(
h
2

)
+ 13

)
sin
(
h
2

)
16θ

,

e2 = −
5 sin

(
h
2

)
cos
(
h
2

) (
176 cos6

(
h
2

)
− 137 cos4

(
h
2

)
− 6 cos2

(
h
2

)
+ 15

)
8θ

,

e3 =
5
(
92 cos6

(
h
2

)
− 117 cos4

(
h
2

)
+ 62 cos2

(
h
2

)
− 13

) (
−1 + 4 cos2

(
h
2

))
sin
(
h
2

)
8θ

,

When the values of u and v and their respective derivatives given by Eqs.(2.13)
and (2.14) are used in Eq. (2.9), an algebraic system in the following form is obtained

−d1δn+1
i−2 − d2δn+1

i−1 + d2δ
n+1
i+1 + d1δ

n+1
i+2 + a1σ

n+1
i−2 + a2σ

n+1
i−1 + a3σ

n+1
i + a2σ

n+1
i+1 + a1σ

n+1
i+2

= d1δ
n
i−2 + d2δ

n
i−1 − d2δni+1 − d1δni+2 − a1σn

i−2 − a2σn
i−1 − a3σn

i − a2σn
i+1 − a1σn

i+2

(2.15)
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and

δn+1
i−2
(
a1 + k

2
(a1Λ1 + b1Λ2)

)
+ δn+1

i−1
(
a2 + k

2
(a2Λ1 + b2Λ2)

)
+ δn+1

i

(
a3 + k

2
a3Λ1

)
+δn+1

i+1

(
a2 + k

2
(a2Λ1 + b2Λ2)

)
+ δn+1

i+2

(
a1 + k

2
(a1Λ1 + b1Λ2)

)
= δni−2

(
a1 − k

2
b1Λ3

)
+ δni−1

(
a2 − k

2
b2Λ3

)
+ δni (a3) + δni+1

(
a2 + k

2
b2Λ3

)
+δni+2

(
a1 + k

2
b1Λ3

)
(2.16)

where
Λ1 = λux − 2αuux
Λ2 = κ+ λu− αu2
Λ3 = κ+ αu2.

As it is seen from the ssytems of equations given above, each of the systems
given by Eqs. (2.15) and (2.16) consists of (N+1) equations for i = 0, 1, 2, ...N.But
the system in Eq. (2.15) contains (N+9) unknowns and Eq.(2.16)contains (N+5)
unknowns. In order to obtain a solvable coupled system, the unknowns δ−2, δ−1,
δN+1, δN+2, σ−2, σ−1, σN+1, σN+2 are elimanted from Eq.(2.15) and the unknowns
δ−2, δ−1, δN+1, δN+2 are eliminated from Eq.2.16.This elimination process is carried out
by applying the boundary conditions given by Eq.(1.2) to the first and the last rows
of the system of equations in Eqs.(2.15) ve (2.16). Finally, the systems of Eqs.(2.15)
and (2.16) can be written in the (2N+2)x(2N+2)-type matrix form as follows

[
A B
C D

] [
δn+1

σn+1

]
=

[
Φ1

Φ2

] [
δn

σn

]
(2.17)

Here, A and B are the coefficients corresponding to the unknowns δ and σin the
algebraic system constructed for the first equation of Gardner-Kawahara equations
sytem which is converted into coupled form by means of auxiliary variable. In a
similar way, C and D are the coefficients of the second equation of the constructed
coupled algebraic system of equations. Φ1 and Φ2 are known values found on the
right hand side of the algebraic equations system, δn and σn represent the coefficients
matrices.

In fact, the matrix given by Eq.(2.17) is an iterative system. In order to start the
iteration, the initial values of δ0 and σ0 for the value of n = 0 are needed. When looked
at from this perspective, it is obvious that the initial condition given by Eq. (1.1) is
enough to solve this problem. When the initial condition is written for i = 0, 1, 2, ...N ,
it is certain that again a system of equations of the form (N + 1) × (N + 5) is
encountered

8



u (a, 0) = a1δ−2 + a2δ−1 + a3δ0 + a2δ1 + a1δ2 = f(a),
u (x1, 0) = a1δ−1 + a2δ0 + a3δ1 + a2δ2 + a1δ3 = f(x1),
...
u (xN−1, 0) = a1δN−3 + a2δN−3 + a3δN−1 + a2δN + a1δN+1 = f(xN−1),
u (xN , 0) = a1δN−2 + a2δN−1 + a3δN + a2δN+1 + a1δN+2 = f(xN).

The elimination process for this system is also dealt with the help of boundary condi-
tions. Once a solvable system has been obtained. Thus, the first procedure has been
applied in order to obtain the desired solution at the final time T by solving the
system of equations given by Eq. (2.17). During the solution process, firstly, for the
time discretization forward finite difference scheme and then for the space discritiza-
tion finite element collocation method based on trigonometric quintic B-spline basis
functions are going to be implemented.

3 Numerical computation and analysis

In the present section, three different test problems for controlling the numerical
simulations have been handled and solved by the proposed numerical scheme. For all
computations, the MATLAB software is used. To testify the accuracy and efficiency of
the scheme, we have calculated L2 and L∞ error norms for the numerical unum (x, t)
and analytical uexact (x, t) solutions. In this section, we are going to present new
numerical results for Gardner-Kawahara equation using finite element method based
on trigonometric quintic B-spline basis. In subsection 4.1, we start with numerical
investigation of first example and in sub-section 4.2, we present new numerical results
for second example for the problem given in Eq (2.8). The programs used here
have been coded in Matlab R2018a. The interval of the problems are discussed in
[xL, xR] as [0, 10] and the final time is selected as T = 5. Number of time and space
discretization are changed for all examples. Numerical results are compared with
exact ones and the results produced in this article are measured via the absolute
error given by the following formulas

L2 =
N∑
j=0

√(
(uexact (x, t))j − (unum)j (x, t)

)2
(x, t) ∈ [xL, xR]× [0, T ]

L∞ = max |uexact (x, t)− unum (x, t)|

9



3.1 Example 1:

Consider the following Gardner-Kawahara equation given [9]

ut (x, t) +κux (x, t) +λu (x, t)ux (x, t)−α (u (x, t))2 ux (x, t) +µuxxx (x, t) +βuxxxxx (x, t) = 0
(3.18)

with initial condition

u (x, t) = ϑ (tanh(x))2 , xL ≤ x ≤ xR

and boundary conditions

u (xL, t) = ϑ (tanh(xL − ct))2

u (xR, t) = ϑ (tanh(xR − ct))2

where [xL, xR] = [0, 10] and the parameters seen in the equation (3.18) are taken as
κ = 1, α = 2, ϑ = 1.

The other parameters are calculated using these values as follows

λ =
16αϑ

15
, µ =

αϑ2

45
, β =

αϑ2

360

Additionally, the parameter seen in the initial condition is computed as

c =
5α + αϑ2

5

The exact solution of this problem is given by

u (x, t) = ϑ (tanh(x− ct))2 (3.19)

The initial and boundary conditions of the equation are directly taken from the
analytical solution. (3.19).

The proposed numerical scheme is applied to this problem and the computed ap-
proximate results for different values of the time step size k and partition number
N at some values of T on the solution domain [0, 10] are displayed in tables. In
Table 1, the numerical results are presented for ∆t = 0.1, 0.05, 0.025 and h = 1/N =
1/100, 1/200, 1/400, 1/800 where N is partition number of interval [0, 10]. It is ob-
served from the Table that the high accuracy is achieved. In other words, the error
is not spread with increasing the time. In Table 2, the numerical results at the point

10



Table 1: The error norms L2 and L∞ for N = 100, 200, 400, 800 and ∆t = 0.1, 0.005,
0.025, 0.00125 at tf = 5 on x ∈ [0, 10] of Example 1.

tf = 5 ∆t = 0.1 ∆t = 0.05
N L2 L∞ L2 L∞
100 3.50033× 10−2 2.82159× 10−2 1.00019× 10−2 7.55899× 10−3

200 3.43956× 10−2 2.81899× 10−2 1.00573× 10−2 7.75841× 10−3

400 3.39665× 10−2 2.79280× 10−2 1.00021× 10−2 7.76200× 10−3

800 3.37323× 10−2 2.78452× 10−2 9.95381× 10−3 7.74103× 10−3

∆t = 0.025 ∆t = 0.00125
L2 L∞ L2 L∞

100 2.24511× 10−3 1.71609× 10−3 4.55957× 10−4 2.91257× 10−4

200 2.49505× 10−3 1.89270× 10−3 1.06954× 10−4 7.10721× 10−5

400 2.53888× 10−3 1.93589× 10−3 2.24935× 10−5 1.56145× 10−5

800 2.53948× 10−3 1.94299× 10−3 2.65972× 10−6 2.47563× 10−6

(xj, tn) are reported for ∆t = 0.0001 and h = 1/800 and compared with the exact
ones. The Absolute errors |unum − uexact| in the Table 2 shows that finite element
method based on trigonometric quintic splines leads for achieving the high accuracy.
It is seen from those tables that the numerical solutions obtained by the proposed
scheme are in very good agreement with the analytical ones, and L2 and L∞ errors are
reasonably small enough. This fact is a clear evidence for the accuracy and reliability
of the numerical scheme. Figure 1 shows wave profiles of numerical solutions It is
apparently seen from the figure that the obtained numerical solutions also verify the
continuity with the correct physical behavior of the problem. 4

3.2 Example 2:

As the second example,, the Gardner-Kawahara equation (3.18) is considered where
the parameters and the exact solution are as follows. When the parameters a = 1,
α = 0.1, λ = 0.1, ϑ0 = −0.001 are taken and the remaining parameters are calculated
as follows

µ =
8λϑ0 − 2αϑ2

0

36
, β =

αϑ2
0

360
, c =

45a+ 15λϑ0 − 8αϑ2
0

45

over the solution domain [xL, xR] = [−10, 10].The exact solution of this problem is
given by

11



Table 2: Some nodal values of U (x, t) for N = 800 and ∆t = 0.0001 at tf = 5 on
x ∈ [0, 10] of Example 1.

∆t = 0.0001 N = 800 tf = 5
x uN u |uN − u|

0.0125 0.9999929044 0.9999965897 3.6853× 10−6

1.00 0.9999782695 0.9999754235 2.8461× 10−6

2.00 0.9998195042 0.9998184168 1.0875× 10−6

3.00 0.9986613945 0.9986590493 2.3452× 10−6

4.00 0.9901351172 0.9901339628 1.1544× 10−6

5.00 0.9293507812 0.9293491751 1.6061× 10−6

6.00 0.5800286973 0.5800256584 3.0389× 10−6

7.00 0.0000037425 0.0000000000 3.7425× 10−6

8.00 0.5800247405 0.5800256584 9.178× 10−7

9.00 0.9293523536 0.9293491751 3.1784× 10−6

9.9875 0.9898817862 0.9898854692 3.6830× 10−6

Figure 1: Numerical simulations of Problem I for values of N = 400, ∆t = 0.01,
tf = 5 over [0, 10].
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Table 3: The error norms L2 and L∞ for N = 100, 200, 400, 800 and ∆t = 0.05, 0.025,
0.0025, 0.00125, 0.005, 0.0025 at tf = 5 on x ∈ [−10, 10] of Example 2.

tf = 5 ∆t = 0.05 ∆t = 0.025
N L2 L∞

100 4.30729× 10−6 4.33615× 10−6 1.09531× 10−6 1.11416× 10−6

200 4.28870× 10−6 4.27028× 10−6 1.07519× 10−6 1.06383× 10−6

400 4.28846× 10−6 4.28469× 10−6 1.07495× 10−6 1.06331× 10−6

800 4.28846× 10−6 4.29290× 10−6 1.07495× 10−6 1.06679× 10−6

∆t = 0.0025 ∆t = 0.00125
L2 L∞ L2 L∞

100 6.53519× 10−8 8.59348× 10−8 6.21053× 10−8 8.03733× 10−8

200 1.10242× 10−8 1.10836× 10−8 3.01022× 10−9 3.24820× 10−9

400 1.07621× 10−8 1.06229× 10−8 2.69316× 10−9 2.66066× 10−9

800 1.07586× 10−8 1.06441× 10−8 2.68971× 10−9 2.66106× 10−9

Table 4: The error norms L2 and L∞ for N = 400 and ∆t = 0.001 at tf = 1, 2, 3, 4, 5
on x ∈ [−10, 10] of Example 2.

∆t = 0.001 N = 400
tf L2 L∞
1 3.44977× 10−10 3.40962× 10−10

2 6.89955× 10−10 6.81975× 10−10

3 1.03493× 10−9 1.02304× 10−9

4 1.37991× 10−9 1.36415× 10−9

5 1.72489× 10−9 1.70521× 10−9

u (x, t) = ϑ
(
1− tanh2(x− ct)

)
(3.20)

The presented numerical scheme is applied to the second test problem and the
calculated approximate results for different values of the time step size k and partition
number N at some values of T on the solution domain [−10, 10] are displayed in tables.
In Tables 3-4, some values of the error norms L2 and L∞ computed by the presented
method of Example 2 are listed. It can be easily seen from the each table that the
error norms obtained by the present method are sufficiently small. This is also an
evidence for the effectiveness of the presented method.
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Figure 2: Numerical simulations of Problem III for values of N = 400, ∆t = 0.01,
tf = 5, k = 0.6, λ = 1, β = 0.01, α = 3 over [−10, 10].

3.3 Example 3

As the last example, the Gardner-Kawahara equation (3.18) is considered where the
parameters and the exact solution is as follows. When the parameters are taken as
a = 1, α = 3, k = 0.6, λ = 1, β = 0.001 the other parameters are calculated as follows

Amp =
6
√

10βk2√
α

, µ =
1

2

[
−40k2β +

√
10βλ√
α

]
c = a− 64k4β +

2
√

10βk2λ√
α

.

over the solution domain [xL, xR] = [−10, 10].For this test problem the exact solution
is

u(x, t) = Amp sech2(kx− ct) (3.21)

The newly given numerical scheme is also applied to the last test problem and the
computed approximate results for different values of the time step size k and partition
number N at some values of T on the solution domain [−10, 10] are displayed in tables.
From the tables 5-6, it is obviously seen that the error norms are again sufficiently
small enough. This is also an evidence for the correctness and reliability of the present
method. Figure 2 shows wave profiles of numerical solutions It is apparently seen from
the figure that the obtained numerical solutions also verify the continuity with the
correct physical behavior of the problem. Figure 3 illustrates the error values between
the wave profile of both analytical and numerical solutions. It is easy to see from the
figure that both solutions are so close to each other that the errors are so small.
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Table 5: The error norms L2 and L∞ for N = 100, 200, 400, 800 and ∆t =
0.1, 0.05, 0.025, 0.0125, 0.01, 0.00625 at tf = 5 on x ∈ [0, 10] of Example 3.

tf = 5 ∆t = 0.1 ∆t = 0.05
N L2 L∞ L2 L∞
100 1.02377× 10−6 9.22495× 10−7 6.25711× 10−7 4.80110× 10−7

200 1.00544× 10−6 6.80180× 10−7 2.46280× 10−7 1.74076× 10−7

400 1.01344× 10−6 6.88123× 10−7 2.75748× 10−7 1.88348× 10−7

800 1.00766× 10−6 6.81887× 10−7 2.62404× 10−7 1.79857× 10−7

∆t = 0.025 ∆t = 0.0125
L2 L∞ L2 L∞

100 6.45687× 10−7 5.12302× 10−7 6.65059× 10−7 5.35246× 10−7

200 6.40611× 10−8 5.54092× 10−8 5.15831× 10−8 3.67079× 10−8

400 8.46955× 10−8 5.22023× 10−8 2.54306× 10−8 1.53132× 10−8

800 8.42129× 10−8 5.21506× 10−8 3.74952× 10−8 1.77597× 10−8

∆t = 0.01 ∆t = 0.00625
L2 L∞ L2 L∞

100 6.68433× 10−7 5.38796× 10−7 6.73074× 10−7 5.42629× 10−7

200 5.60563× 10−8 3.57945× 10−8 6.37202× 10−8 3.79268× 10−8

400 1.32595× 10−8 8.49295× 10−9 4.92957× 10−9 3.44549× 10−9

800 2.82291× 10−8 1.26192× 10−8 1.42320× 10−8 5.76886× 10−9

∆t = 0.005 ∆t = 0.0025
L2 L∞ L2 L∞

100 6.74534× 10−7 5.43796× 10−7 6.77105× 10−7 5.45541× 10−7

200 6.74859× 10−8 3.93914× 10−8 7.34651× 10−8 4.16391× 10−8

400 4.45864× 10−9 3.40237× 10−9 1.10974× 10−8 6.05392× 10−9

800 1.14687× 10−8 5.23753× 10−9 3.24496× 10−9 1.39197× 10−9
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Table 6: The error norms L2 and L∞ for N = 100, 200, 400, 800 and ∆t = 0.001,
0.0001 at T = 5 on x ∈ [0, 10] of Example 3.

tf = 5 ∆t = 0.001 ∆t = 0.0001
N L2 L∞ L2 L∞
100 6.78548× 10−7 5.46391× 10−7 6.79372× 10−7 5.46813× 10−7

200 7.72424× 10−8 4.27762× 10−8 7.94907× 10−8 4.34046× 10−8

400 1.55816× 10−8 7.14367× 10−9 1.82022× 10−8 7.87596× 10−9

800 1.71302× 10−9 1.16066× 10−9 4.38535× 10−9 1.92288× 10−9

0 100 200 300 400 500 600 700 800
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Figure 3: Error graphics of Problem III for values of N = 800, ∆t = 0.001, tf = 5,
k = 0.6, λ = 1, β = 0.01, α = 3 over [−10, 10].
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4 Conclusion

In this study, the proposed scheme resulting an implicit linear algebraic system
has been successfully applied to obtain the approximate solutions of the Gardner-
Kawahara equation. The error norms L2 and L∞ of the presented scheme are cal-
culated. The three numerical experiments showed that the approximate solutions
are in very good agreement with the analytical ones, and also the error norms are
adequately small. The obtained results support that the numerical accuracy of the
scheme is in consistency with its theoretical value and that the scheme is also uncon-
ditionally stable. In conclusion, the present numerical scheme, which can be easily
implemented, produces accurate and reliable results. As a future work, the method
can be successfully used to find approximate solutions of such combined partial differ-
ential equations that play an important role in describing nonlinear wave propagation
encountered in physics and applied mathematics.
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sis), Eskişehir Osmangazi University, Fen Bilimleri Enstitüsü..
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