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Abstract

In this article, we consider a one-dimensional porous-elastic system with porous-viscosity and a distributed delay of neutral

type. First, we prove the global existence and uniqueness of the solution by using the Faedo–Galerkin approximations along

with some energy estimates. Then, based on the energy method and by constructing a suitable Lyapunov functional as well as

under an appropriate assumptions on the kernel of neutral delay term, we show that despite of the destructive nature of delays

in general, the damping mechanism considered provockes an exponential decay of the solution for the case of equal speed of

wave propagation. In the case of lack of exponential stability, we show that the solution decays polynomially.
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GLOBAL WELL-POSEDNESS AND ENERGY DECAY FOR A
ONE DIMENSIONAL POROUS-ELASTIC SYSTEM SUBJECT TO

A NEUTRAL DELAY

SARA LABIDI, HOUSSEM EDDINE KHOCHEMANE*, SAMI LOUCIF, ABDELHAK
DJEBABLA

Abstract. In this article, we consider a one-dimensional porous-elastic sys-
tem with porous-viscosity and a distributed delay of neutral type. First, we
prove the global existence and uniqueness of the solution by using the Faedo�
Galerkin approximations along with some energy estimates. Then, based on
the energy method and by constructing a suitable Lyapunov functional as well
as under an appropriate assumptions on the kernel of neutral delay term, we
show that despite of the destructive nature of delays in general, the damping
mechanism considered provockes an exponential decay of the solution for the
case of equal speed of wave propagation. In the case of lack of exponential
stability, we show that the solution decays polynomially.

1. Introduction

In 1972, Goodman and Cowin [14] have given an extension of the classical elas-
ticity theory to porous media by introducing the concept of a continuum theory
of granular materials with interstitial voids into the theory of elastic solids with
voids. In addition, Nunziato and Cowin [22] have presented a nonlinear theory for
the behavior of porous solids in which the skeletal or matrix material is elastic and
the interstices are void of material. In this theory the bulk density is written as
the product of two �elds, the matrix material density �eld and the volume fraction
�eld. Furthermore, this representation introduces an additional degree of kinematic
freedom. The intended applications of the theory of elastic materials with voids are
to geological materials like rocks and soils and to manufactured porous materials.
In [23], Quintanilla gave the �rst investigation concerning the study of asymptotic

behavior of the solutions for a one-dimensional porous-elastic system where he
proved that the damping through porous-viscosity is not strong enough to provoke
an exponential decay. In [1, 2], Apalara showed that the same system considered
in [23] is exponentially stable for the case of equal speeds of wave propagation.
In [4], Casas and Quintanilla studied the one-dimensional porous-elastic system in
the presence of the usual thermal e¤ect with microtemperature damping and they
used the semi-group approach to prove the exponential stability of the solutions
irrespective of the speeds of wave propagations. In [5], Casas and Quintanilla
proved that the combination of porous-viscosity and thermal e¤ects provokes an
exponential stability of the solutions. In [18], Magańa and Quintanilla showed that
viscoelasticity damping and temperature produced slow decay in time and when

2000 Mathematics Subject Classi�cation. 35L70, 35B40, 93D20, 74D05, 93D15.
Key words and phrases. Exponential decay, polynomial decay, porous-elastic system, neutral

delay, multipliers method, Faedo�Galerkin approximations.
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2 S. LABIDI, H. E. KHOCHEMANE*, S. LOUCIF, A. DJEBABLA

the viscoelasticity is coupled with porous damping or with microtemperatures, the
system decays in an exponential way.
Delay e¤ect arises in many applications depending not only on the present state

but also on some past occurrences and it has attracted lots of attentions from re-
searchers in diverse �elds of human endeavor such as mathematics, engineering,
science, and economics. The presence of delay may be a source of instability of
systems which are uniformly asymptotically stable in the absence of delay unless
additional control terms have been used (see [6, 7, 13, 20, 21, 28]. Also, the intro-
ducing of this complementary control may lead to ill-posedness as shown in many
works such as ([7, 24]) and the references therein. In addition to the well-known
discrete delays, there are several others and we are interested here in the neutral de-
lay where the delay is occurring in the second (highest) derivative, for more details,
see previous studies ([8]-[11, 16, 27]) and the references therein.
Among the investigations that have been realized concerning the asymptotic

behavior with neutral delay, we cite the work of Tatar [26] where he considered the
following damped wave equation with neutral delay8>><>>:

utt = uxx � ut �
Z t

0

h (t� s)utt (s) ds; x 2 (0; 1) ; t > 0;
u (0; t) = u (1; t) = 0; t � 0;
u (x; 0) = u0 (x) ; ut (x; 0) = u1 (x) ; x 2 (0; 1) ;

and he showed that the solution decays in exponential manner under some condi-
tions on the kernel of distributed neutral delay.
In [25] Seghour et al. studied the following thermoelastic laminated system with

neutral delay8>>>><>>>>:
�wtt +G ( � wx)x +Awt = 0; x 2 (0; 1) ; t > 0;
I� (3stt �  tt)�G ( � wx)� (3s�  ) + ��x = 0; x 2 (0; 1) ; t > 0;

3I�

�
st +

Z t

0

h (t� r) st (r) dr
�
t

+ 3G ( � wx) + 4s� 3sxx = 0; x 2 (0; 1) ; t > 0;

�t � ��xx + � (3s�  )tx = 0; x 2 (0; 1) ; t > 0;

with boundary conditions�
 (0; t) = s (0; t) = �x (0; t) = wx (0; t) = 0; t � 0;
� (1; t) = w (1; t) = sx (1; t) =  x (1; t) = 0; t � 0;

and initial data �
(w; ; s; �) (x; 0) = (w0;  0; s0; �0) ; x 2 (0; 1) ;
(wt;  t; st) (x; 0) = (w1;  1; s1) ; x 2 (0; 1) ;

and they showed that the dissipation given by the combination of neutral delay with
the heat e¤ect and the frictional damping stabilize exponentially the system in the
case of equal wave speeds. In the opposite one, and with an additional assumption
on the kernel, they proved a polynomial stability.
In [15], Kerbal and Tatar considered the following neutrally retarded viscoelastic

Timoshenko system8<:
'tt = ('x +  )x ;�
 t +

Z t

0

k (t� s) t (s) ds
�
t

=  xx �
Z t

0

g (t� s) xx (s) ds� ('x +  ) ;
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for x 2 (0; 1) ; t > 0 with initial and boundary conditions8<: ' (x; 0) = '0 (x) ; 't (x; 0) = '1 (x) ; x 2 (0; 1) ;
 (x; 0) =  0 (x) ;  t (x; 0) =  1 (x) ; x 2 (0; 1) ;
' (0; t) = ' (1; t) =  (0; t) =  (1; t) = 0; t � 0;

and under certain conditions on the kernel, they proved that the neutral delay does
not prevent the system from being stabilized by the viscoelastic term.
Motivated by the previous works, in this paper, we consider the following porous-
elastic system with porous-viscosity subject to a distributed delay of neutral type8>>>>>><>>>>>>:

�utt � �uxx � b�x = 0; x 2 (0; 1) ; t > 0;

J

�
�t +

Z t

0

k (t� s)�t (s) ds
�
t

� ��xx + bux + ��+ �1�t = 0; x 2 (0; 1) ; t > 0;

u (x; 0) = u0 (x) ; ut (x; 0) = u1 (x) ; x 2 (0; 1) ;
� (x; 0) = �0 (x) ; �t (x; 0) = �1 (x) ; x 2 (0; 1) ;
ux (0; t) = ux (1; t) = � (0; t) = � (1; t) = 0; t > 0;

(1.1)
where the functions u and � represent respectively the displacement of the solid
elastic material and the volume fraction . The parameter � designate the mass den-
sity and J equals to the product of the mass density by the equilibrated inertia The
coe¢ cients �; �; �; �1 are positive constants represent the constitutive parameters
de�ning the coupling among the di¤erent components of the materials such that

�� > b2: (1.2)

where b is a real number di¤erent from zero. The initial data u0; u1; �0; �1 belongs
to the suitable functional space and the integral represents the neutral delay term
where k is the relaxation function that speci�ed in the preliminaries. The system
(1.1) was constructed by considering the following basic evolution equations of the
one-dimensional porous materials theory

�utt = Tx; J

�
�t +

Z t

0

k (t� s)�t (s) ds
�
t

= Hx +D; (1.3)

where T; H and D represent respectively the stress tensor, the equilibrated stress
vector and the equilibrated body force. Consequently, to get the system (1.1) we
take the constitutive equations T; H and D at this form

T = �ux + b�; H = ��x;

D = �bux � ��� �1�t; (1.4)

and by combination (1.4) in (1.3), we obtain (1.1):
The main goal of this paper is to prove a global well-posedness of the problem by

using the Faedo-Galerkin method. Moreover, based on the multipliers method and
under some assumptions on the kernel of neutral delay, we show that despite of the
destructive nature of delays in general, the porous-viscosity given an exponential
behavior for the case of equal speeds of wave propagation, that is

� =
�

�
� �

J
= 0: (1.5)

In the opposite one, we establish an polynomial stability result.
This paper is organized as follows. In Section 2, we introduce some assumptions

and transformations needed in the next sections to prove the main result. In Section
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3,we prove the existence and uniqueness of the solution. In Section 4, we show the
decay of the energy. In Section 5 and 6, we use the energy method to prove the
exponential and polynomial stability result.

2. Preliminaries

In this section we present our assumptions on both kernels and introduce the
energy functional and some other functional.
We use the standard Lebesgue space L2 (0; 1) and the Sobolev space H1

0 (0; 1)
with their usual scalar products and norms. Let de�ne the space H as

H =H1
� (0; 1)� L2� (0; 1)�H1

0 (0; 1)� L2 (0; 1) ;
where H1

� (0; 1) = H1 (0; 1) \ L2� (0; 1) such that

L2� (0; 1) =

�
f 2 L2 (0; 1) :

Z 1

0

f (x) dx = 0

�
:

H2
� (0; 1) =

�
 2 H2 (0; 1) :  x (0) =  x (1) = 0

	
:

To simplify the calculations, we are obliged to announce this Lemma which are
usable in the following sections.
(H1) The kernel k is a nonnegative continuously di¤erentiable and summable func-
tion satisfying

k0(t) � 0; 8t � 0; �k =
Z 1

0

k(s)ds:

(H2) exp (&t) k(t) 2 L1 (R+) for some & > 0:
Note that if

R +1
0

e&sk(s)ds <1 and lim
t�!1

exp (&t) k(t) <1, thenZ +1

0

e&s jk0(s)j ds = �
Z +1

0

e&sk0(s)ds = �e&sk(s) j10 +&

Z +1

0

e&sk(s)ds <1:

Lemma 1 ([25]). For any function  2 C1
�
[0;1) ;L2 (0; 1)

�
and any k 2 C1 ([0;1)),

we have the following identityZ 1

0

 (t)

�Z t

0

k (t� s) t(s)ds
�
dx

= �1
2
(k0� ) (t) + 1

2

d

dt

Z 1

0

�Z t

0

k (t� s) 2(s)ds
�
dx

+
k (t)

2

Z 1

0

 2dx� k(t)
Z 1

0

 (0) (t) dx;

where

(k� ) =
Z t

0

k(t� s)
�Z 1

0

( (t)�  (s))2 dx
�
ds; t � 0:

Theorem 1 ([3]). Let B0 � B1 � B2 be three Banach spaces. We assume that
the embedding of B1 in B2 is continuous and that the embedding of B0 in B1 is
compact. Let p; r such that 1 � p; r � +1. For T > 0, we de�ne

Ep;r =

�
v 2 Lp (0; T ;B0)

dv

dt
2 Lr (0; T ;B2)

�
:

i) If p < +1, the embedding of Ep;r in Lp(0; T ;B1) is compact.
ii) If p = +1 and r > 1, the embedding of Ep;r in C0(0; T ;B1) is compact.
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In view of the boundary conditions, our system can have solutions (uniform in the
variable x), which do not decay. To avoid such case and also to be able to use
Poincaré�s inequality for u , we perform the following transformation
From (1.1)1; we observe that Z 1

0

uttdx = 0:

If we take � (t) =
R 1
0
udx, we observe that � (0) =

R 1
0
u0dx and �0 (0) =

R 1
0
u1dx:

Moreover, � is a solution of the following initial value problem�
�00 (t) = 0; 8t � 0;
� (0) =

R 1
0
u0dx; �0 (0) =

R 1
0
u1dx:

The solution of the problem is given by

� (t) =

Z 1

0

u (x; t) dx = t

Z 1

0

u1 (x) dx+

Z 1

0

u0 (x) dx

Consequently, if we let

�u (x; t) = u (x; t)� t
Z 1

0

u1 (x) dx�
Z 1

0

u0 (x) dx;

we have Z 1

0

�u (x; t) dx = 0; 8t � 0:

In what follows, we will work with �u but, for convenience, we write u instead of �u
with initial data given as

�u0 (x) = u0 (x)�
Z 1

0

u0 (x) dx; �u1 (x) = u1 (x)�
Z 1

0

u1 (x) dx:

3. Global well-posedness

In this section, we will prove the global existence and the uniqueness of the so-
lution of problem (1.1) by using the classical Faedo-Galerkin approximations along
with some priori estimates. The well-posedness of (1.1) is given by the following
theorem.

Theorem 2. Assume that (H1)-(H2), (1.2) hold, and the initial data

(u0; u1) 2 H1
� (0; 1)� L2� (0; 1) ;

(�0; �1) 2 H1
0 (0; 1)� L2 (0; 1) ; (3.1)

problem (1.1) has a unique global strong solution

u 2 C
�
R+;H2

� (0; 1) \H1
� (0; 1)

�
\ C1

�
R+;H1

� (0; 1)
�
\ C2

�
R+; L2 (0; 1)

�
;

� 2 C
�
R+;H2 (0; 1) \H1

0 (0; 1)
�
\ C1

�
R+;H1

0 (0; 1)
�
\ C2

�
R+; L2 (0; 1)

�
: (3.2)

In addition, the solution (u; �) depends continuously on the initial data:

Proof. We divide the proof into three steps: we �rst construct Faedo�Galerkin
approximations, then thanks to a priori estimates we look to prove that tn = T for
n 2 N. Finally, we pass to the limit.
Step 1: Faedo�Galerkin approximations.
We construct approximations of the solution (u; �) by the Faedo-Galerkin method

as follows (see Refs [12] and [19]): For every n � 1, letWn = span fe1; e2; :::; eng be
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a Hilbert basis (orthonormal basis) ofH2
� (0; 1)\H1

� (0; 1) and L
2
� (0; 1) : Also, we de-

note by �n = span f�1; �2; :::; �ng a Hilbertian basis ofH2 (0; 1)\H1
0 (0; 1) and L

2 (0; 1) :
For given initial data

(u0; u1) 2 H1
� (0; 1)� L2� (0; 1) ;

(�0; �1) 2 H1
0 (0; 1)� L2 (0; 1) ;

we seek functions ynj ; h
n
j 2 C2 ([0; T ]) ; such that the approximations(

un (x; t) =
Pj=n

j=1 y
n
j (t) ej (x) ;

�n (x; t) =
Pj=n

j=1 h
n
j (t)�j (x) ;

(3.3)

check the following approximate problem8><>:
�untt;��unxx � b�nx = 0;
J�ntt + J

�R t
0
k (t� s)�nt (s)ds

�
t

���nxx + bunx + ��n + �1�nt = 0;
(3.4)

with the initial data�
un (x; 0) = un0 (x) ; u

n
t (x; 0) = un1 (x) ;

�n (x; 0) = �n0 (x) ; �
n
t (x; 0) = �n1 (x) ;

(3.5)

which satis�es8>>>>>><>>>>>>:

un0 =
Pn

j=1

nR 1
0
u0ejdx

o
ej �!

n!1
u0 strongly in H1

� (0; 1) ;

un1 =
Pn

j=1

nR 1
0
u1ejdx

o
ej �!

n!1
u1 strongly in L2� (0; 1) ;

�n0 =
Pn

j=1

nR 1
0
�0�jdx

o
�j �!

n!1
�0 strongly in H1

0 (0; 1) ;

�n1 =
Pn

j=1

nR 1
0
�1�jdx

o
�j �!

n!1
�1 strongly in L2 (0; 1) :

(3.6)

Through 3.4, we get8>><>>:
� huntt; ekiL2(0;1) � � hunxx; ekiL2(0;1) � b h�nx ; ekiL2(0;1) = 0;
J h�ntt; �kiL2(0;1) + J

D�R t
0
k (t� s)�nt (s)ds

�
t
; �k

E
L2(0;1)

�� h�nxx; �kiL2(0;1) + b hunx ; �kiL2(0;1) + � h�n; �kiL2(0;1) + �1 h�nt ; �kiL2(0;1) = 0;
(3.7)

with (un0 ; u
n
1 ) and (�

n
0 ; �

n
1 ) are chosen, respectively, inWn and �n: According to the

standard ordinary di¤erential equations theory, the �nite dimensional problem (3.7)
has a solution

�
ynj ; h

n
j

�
j=1;::;n

2 C2 ([0; tn])
2. Then, thanks to a priori estimates

that follow imply that in fact tn = T; 8T > 0.
Step 2: Energy estimates
A priori estimate I.
For every n � 1; we use integration by parts in (3.7), we get8>>>><>>>>:

�
R 1
0
unttekdx+ �

R 1
0
unxekxdx� b

R 1
0
�nxekdx = 0;

J
R 1
0
�ntt�kdx+ J

R 1
0
�k

�R t
0
k (t� s)�nt (s)ds

�
t
dx

+�
R 1
0
�nx�kxdx+ b

R 1
0
unx�kdx+ �

R 1
0
�n�kdx

+�1
R 1
0
�nt �kdx = 0; 8k = 1; ::; n:

(3.8)
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Multiplying (3.8)1 and (3.8)2, respectively, by (ynk )t and (h
n
k )t, then, by using inte-

gration by parts, we obtain

1

2

d

dt

Z 1

0

n
� (unt )

2
+ � (unx)

2
+ J (�nt )

2
+ 2bunx�

n + � (�n)
2
+ � (�nx)

2
o
dx

+ J

Z 1

0

�nt

�Z t

0

k (t� s)�nt (s)ds
�
t

dx+ �1

Z 1

0

(�nt )
2
dx = 0: (3.9)

Note that �Z t

0

k (t� s)�nt (s)ds
�
t

= k (t)�nt (0) +

Z t

0

k (t� s)�ntt(s)ds:

Then

J

Z 1

0

�nt

�Z t

0

k (t� s)�nt (s)ds
�
t

dx

= Jk (t)

Z 1

0

�nt �
n
t (0)dx+ J

Z 1

0

�nt

�Z t

0

k (t� s)�ntt(s)ds
�
dx:

By using Lemma (1), we get

J

Z 1

0

�nt

�Z t

0

k (t� s)�nt (s)ds
�
t

dx

= Jk (t)

Z 1

0

�nt �
n
t (0)dx�

J

2
(k0��nt ) (t)

+
J

2

d

dt

Z 1

0

�Z t

0

k (t� s) (�nt )
2
(s)ds

�
dx

+ J
k(t)

2

Z 1

0

(�nt )
2
dx� Jk(t)

Z 1

0

�nt (0)�
n
t dx:

So, (3.9) becomes

1

2

d

dt

Z 1

0

n
� (unt )

2
+ � (unx)

2
+ J (�nt )

2
+ 2bunx�

n + � (�n)
2
+ � (�nx)

2
o
dx

+
J

2

d

dt

Z 1

0

�Z t

0

k (t� s) (�nt )
2
(s)ds

�
dx =

J

2
(k0��nt ) (t)

�
�
J
k(t)

2
+ �1

�Z 1

0

(�nt )
2
dx � 0: (3.10)

Now integrating (3.10), we obtain

1

2

Z 1

0

n
� (unt )

2
+ � (unx)

2
+ J (�nt )

2
+ 2bunx�

n + � (�n)
2
+ � (�nx)

2
o
dx

+
J

2

Z 1

0

�Z t

0

k (t� s) (�nt )
2
(s)ds

�
dx

� 1

2

Z 1

0

n
� (un1 )

2
+ J (�n1 )

2
+ � (�n0 )

2
+
h
� (unx)

2
+ 2bunx�

n + � (�nx)
2
i
(x; 0)

o
dx:

Hence, the previous inequality takes the following form

En (t) � En (0) ;
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where

En (t) =
1

2

Z 1

0

n
� (unt )

2
+ � (unx)

2
+ J (�nt )

2
+ 2bunx�

n + � (�n)
2
+ � (�nx)

2
o
dx

+
J

2

Z 1

0

�Z t

0

k (t� s) (�nt )
2
(s)ds

�
dx: (3.11)

Note that

� (unx)
2
+ 2bunx�

n + � (�n)
2
=
1

2

"
�

�
unx +

b

�
�n
�2
+ �

�
�n +

b

�
unx

�2
+

�
�� b2

�

�
(unx)

2
+

�
� � b2

�

�
(�n)

2

�
;

and because �� > b2; we deduce that

� (unx)
2
+ 2bunx�

n + � (�n)
2
>
1

2

��
�� b2

�

�
(unx)

2
+

�
� � b2

�

�
(�n)

2

�
:

Consequently, En (t) is non-negative.
In view of the hypotheses on the function k, we deduce

0 � En (t) � En (0) :

Now, since the sequences (un0 )n2N ; (u
n
1 )n2N ; (�

n
0 )n2N ; (�

n
1 )n2N ; converge (see (3.6)),

using (H1) and (H2), we can �nd a positive constant C independent of n such
that

En (t) � C: (3.12)

Then tn = T , for all T > 0:
A priori estimate II
Through (3.3), also as

�
ynj ; h

n
j

�
j=1;::;n

2
�
C2 [0; T ]

�2
and

(ej)j�1 � H2
� (0; 1) \H1

� (0; 1) � H1 (0; L) ,! C (0; L) ;

(�j)j�1 � H2 (0; 1) \H1
0 (0; 1) � H1 (0; L) ,! C (0; L) ;

we have �
un 2 C2

�
0; T ; H2

� (0; 1) \H1
� (0; 1)

�
;

�n 2 C2
�
0; T ; H2 (0; 1) \H1

0 (0; 1)
�
;

(3.13)

and from (3.13), we getZ 1

0

(unxx)
2
+ (�nxx)

2
dx <1; 8t 2 [0; T ] : (3.14)

Step 3 : The limit process.
From (3.12)-(3.14), we conclude that

(un)n2N� is bounded in L
1 �0; T ;H2

� (0; 1) \H1
� (0; 1)

�
;

(unt )n2N� is bounded in L
1 �0; T ;L2� (0; 1)� ;

(�n)n2N� is bounded in L
1 �0; T ;H2 (0; 1) \H1

0 (0; 1)
�
;

(�nt )n2N� is bounded in L
2
�
0; T ;L2 (0; 1)

�
: (3.15)
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By using Aubin�Lions�Simon theorem (1), Since

The embedding of H1
� (0; 1) in L

2
� (0; 1) is continuous.

The embedding of H2
� (0; 1) \H1

� (0; 1) in H
1
� (0; 1) is compact.

The embedding of H1
0 (0; 1) in L

2 (0; 1) is continuous.

The embedding of H2 (0; 1) \H1
0 (0; 1) in L

2 (0; 1) is compact.

Then, we get the embedding of E1;1 in C(0; T ;H1
� (0; 1)) is compact where

E1;1 =
�
un= un 2 L1

�
0; T ;H2

� (0; 1) \H1
� (0; 1)

�
;

unt =
dun

dt
2 L1

�
0; T ;L2� (0; 1)

��
;

also, the embedding of ~E1;1 in C([0; T ];H1
0 (0; 1)) is compact where

~E1;1 =
�
�n= �n 2 L1

�
0; T ;H2 (0; 1) \H1

0 (0; 1)
�
;

�nt =
d�n

dt
2 L1

�
0; T ;L2 (0; 1)

��
;

by (3.15), we get (un)n2N� ; (�
n)n2N� bounded in E1;1; ~E1;1 respectively, then

there exist (um)m�1 sub sequence of (u
n)n�1 and (�

m)m�1 sub sequence of (�
n)n�1

such that
um

m!1�! u strongly in C(0; T ;H1
� (0; 1)); (3.16)

�m
m!1�! � strongly in C(0; T ;H1

0 (0; 1)); (3.17)
by using (3.13), (3.16) and (3.17), we arrive at

kumt � utkX =
 ddtum � ut


X

m!1�! 0;

k�mt � �tkY =
 ddt�m � �t


Y

m!1�! 0;

where X = C(0; T ; H1
� (0; 1)) and Y = C(0; T ; H1

0 (0; 1)); then we conclude that

umt
m!1�! ut strongly in X = C(0; T ;H1

� (0; 1)); (3.18)

�mt
m!1�! �t strongly in Y = C(0; T ;H1

0 (0; 1)): (3.19)
Again, by using (3.13), (3.18) and (3.19), we obtain

kumtt � uttkZ =
 ddtumt � utt


Z

m!1�! 0; (3.20)

k�mtt � �ttkZ =
 ddt�mt � �tt


Z

m!1�! 0;

where Z = C(0; T ; L2 (0; 1)); then we deduce that

umtt
m!1�! utt strongly in C(0; T ;L2 (0; 1)); (3.21)

and
�mtt

m!1�! �tt strongly in C(0; T ;L2 (0; 1)): (3.22)
By passing to the limit in (3.8)-(3.6), then we get that, the problem (1.1) accepts

a strong solution satis�es (3.2).
The proof now can be completed arguing as in [17, Théorème 3.1]
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Continuous dependence and uniqueness
For uniqueness, let us assume that

�
�1;�1

�
and

�
�2;�2

�
are two global solutions

of (1.1). Then, (�;�) =
�
�1 � �2;�1 ��2

�
satis�es8>>>><>>>>:

��tt � ��xx � b�x = 0; x 2 (0; 1) ; t > 0;

J

�
�t +

Z t

0

k (t� s) �t (s) ds
�
t

� ��xx + b�x + �� + �1�t = 0; x 2 (0; 1) ; t > 0;

� (x; 0) = �t (x; 0) = � (x; 0) = �t (x; 0) = 0; x 2 (0; 1) ;
�x (0; t) = �x (1; t) = � (0; t) = � (1; t) = 0; t > 0;

(3.23)
Multiplying (3.23)1 by �t , (3.23)2 by �t, integrating the results over (0; 1), and
summing them up, we obtain

1

2

d

dt

Z 1

0

�
��2t + ��

2
x + J�

2
t + 2b�x� + ��

2 + ��2x
�
dx

+
J

2

d

dt

Z 1

0

�Z t

0

k (t� s) �2t (s)ds
�
dx

=
J

2
(k0��t) (t)�

�
J
k (t)

2
+ �1

�Z 1

0

�2tdx � 0: (3.24)

Then, a simple integration over (0; t) and combining by the initial data on(�;�) ;
gives

1

2

Z 1

0

�
��2t + ��

2
x + J�

2
t + 2b�x� + ��

2 + ��2x
�
dx

+
J

2

Z 1

0

�Z t

0

k (t� s) �2t (s)ds
�
dx � 0;

which implies that (�;�) = (0; 0) : So, the problem (1.1) has a unique global solu-
tion.
Now, by integrating (3.24), using Young�s inequality and the positivity of energy,
we get

E (t) � E (0) +
1

2

Z t

0

�Z 1

0

�
��2t + ��

2
x + J�

2
t + 2b�x� + ��

2 + ��2x
�
dx

+
J

2

Z 1

0

�Z t

0

k (t� s) �2t (s)ds
�
dx

�
d�

� E (0) +
1

2

Z t

0

�Z 1

0

�
��2t + (�+ jbj)�2x + J�2t + (� + jbj) �2 + ��2x

�
dx

+
J

2

Z 1

0

�Z t

0

k (t� s) �2t (s)ds
�
dx

�
d�

� E (0) + &1

Z t

0

�Z 1

0

�
�2t + �

2
x + �

2
t + �

2 + �2x
�
dx

+

Z t

0

k (t� s) �2t (s)ds
�
d� (3.25)

On the other hand, we have

E(t) > &2

Z 1

0

�
�2t + �

2
x + �

2
t + �

2 + �2x +

Z t

0

k (t� s) �2t (s)ds
�
dx:



POROUS-ELASTIC SYSTEM WITH NEUTRAL DELAY 11

Applying Gronwall�s inequality to (3.25), we obtainZ 1

0

�
�2t + �

2
x + �

2
t + �

2 + �2x +

Z t

0

k (t� s) �2t (s)ds
�
dx � e&3tE (0) :

This shows that solution of problem (1.1) depends continuously on the initial data.
This ends the proof of Theorem (2). �

4. Stability result

In this section, we use the energy method to study the asymptotic behavior of
solutions of the system (1.1). First, we state and prove the following lemma.

Lemma 2. Let (u; �) be a solution of system (1.1). Then the energy associated to
the system (1.1) is de�ned by

E(t) =
1

2

Z 1

0

�
�u2t + �u

2
x + J�

2
t + 2bux�+ ��

2 + ��2x
�
dx

+
J

2

Z 1

0

�Z t

0

k (t� s)�2t (s)ds
�
dx; (4.1)

satis�es

E0(t) � J

2
(k0��t) (t)� �1

Z 1

0

�2tdx: (4.2)

Proof. Multiplying (1.1)1; (1.1)2 by ut; �t and integrating over (0; 1) and summing
them up, we obtain

d

2dt

Z 1

0

�
�u2t + �u

2
x + J�

2
t + 2bux�+ ��

2 + ��2x
�
dx

+ J

Z 1

0

�
�t

�Z t

0

k (t� s)�t(s)ds
�
t

�
dx = � �1

Z 1

0

�2tdx: (4.3)

Note that �Z t

0

k (t� s)�t(s)ds
�
t

= k (t)�t(0) +

Z t

0

k (t� s)�tt(s)ds:

Then

J

Z 1

0

�
�t

�Z t

0

k (t� s)�t(s)ds
�
t

�
dx

= J

Z 1

0

�t

�
k (t)�t(0) +

Z t

0

k (t� s)�tt(s)ds
�
dx

= Jk(t)

Z 1

0

�t(0)�tdx+ J

Z 1

0

�t

�Z t

0

k (t� s)�tt(s)ds
�
dx:
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By applying the result in Lemma(1); we obtain

J

Z 1

0

��Z t

0

k (t� s)�t(s)ds
�
t

�t

�
dx

= Jk(t)

Z 1

0

�t(0)�tdx�
J

2
(k0��t) (t)

+
J

2

d

dt

Z 1

0

�Z t

0

k (t� s)�2t (s)ds
�
dx

+ J
k(t)

2

Z 1

0

�2tdx� Jk(t)
Z 1

0

�t(0)�tdx: (4.4)

Inserting (4.4) in (4.3), we have

d

2dt

Z 1

0

�
�u2t + �u

2
x + J�

2
t + 2bux�+ ��

2 + ��2x

+J

�Z t

0

k (t� s)�2t (s)ds
��

dx

=
J

2
(k0��t) (t)� J

k(t)

2

Z 1

0

�2tdx� �1
Z 1

0

�2tdx

� J

2
(k0��t) (t)� �1

Z 1

0

�2tdx:

�

Remark 1. The energy E(t) de�ned by (4.1) is non-negative. In fact,

�u2x + 2bux�+ ��
2 =

1

2

"
�

�
ux +

b

�
�

�2
+ �

�
�+

b

�
ux

�2
+

�
�� b2

�

�
u2x +

�
� � b2

�

�
�2
�
;

since �� > b2; we deduce that

�u2x + 2bux�+ ��
2 >

1

2

��
�� b2

�

�
u2x +

�
� � b2

�

�
�2
�
:

Consequently,

E(t) >
1

2

Z 1

0

�
�u2t + J�

2
t + �1u

2
x + ��

2
x + �1�

2 ;

+J

Z t

0

k (t� s)�2t (s)ds
�
dx;

where �1 =
1

2

�
� � b2

�

�
and �1 =

1

2

�
�� b2

�

�
: Then E(t) is non-negative.

4.1. Exponential stability. In this subsection, we establish an exponential decay
result of solutions the problem (1.1) in the case when (1.5) holds. For that, we need
the following lemmas to achieve our goal.
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Lemma 3. Let (u; �) be a solution of system (1.1). Then, the functional

F1 (t) = J

Z 1

0

�

�
�t +

Z t

0

k (t� s)�t(s)ds
�
dx+

b�

�

Z 1

0

�

�Z x

0

ut (y) dy

�
dx

+
�1
2

Z 1

0

�2dx;

satis�es for any "0 > 0,

F 01 (t) � ��
Z 1

0

�2xdx� 2�1
Z 1

0

�2dx+

�
3J

2
+

b2�2

4�2"0

� Z 1

0

�2tdx

+ "0

Z 1

0

u2tdx+
J�k

2

Z 1

0

�Z t

0

k (t� s)�2t (s)ds
�
dx: (4.5)

Proof. By di¤erentiating F1(t) and integrating by parts, we obtain

F 01 (t) = J

Z 1

0

�2tdx+ J

Z 1

0

�t

�Z t

0

k (t� s)�t(s)ds
�
dx

� �
Z 1

0

�2xdx� b
Z 1

0

ux�dx� 2�1
Z 1

0

�2dx+ b

Z 1

0

ux�dx

+
b�

�

Z 1

0

�t

�Z x

0

ut (y) dy

�
dx: (4.6)

Using Young�s and Cauchy-Schwarz inequalities, we obtain

J

Z 1

0

�t

�Z t

0

k (t� s)�t(s)ds
�
dx

� J

2

Z 1

0

�2tdx+
J�k

2

Z 1

0

�Z t

0

k (t� s)�2t (s)ds
�
dx: (4.7)

Using Young�s inequality, we get

b�

�

Z 1

0

�t

�Z x

0

ut (y) dy

�
dx � b2�2

4�2"0

Z 1

0

�2tdx+ "0

Z 1

0

u2tdx: (4.8)

Inserting (4.7) and (4.8) into (4.6), we obtain (4.5). �

Lemma 4. Let (u; �) be a solution of system (1.1). Then, the functional

F2 (t) =
��b

�J

Z 1

0

�xutdx+ b

Z 1

0

�
�t +

Z t

0

k (t� s)�t(s)ds
�
uxdx;

satis�es, for any "1 > 0,

F 02 (t) � �
b2

4J

Z 1

0

u2xdx+ C"1

Z 1

0

�2xdx+ "1 (2 + k (0))

Z 1

0

u2tdx

+
b2k (t)

4"1

Z 1

0

�20xdx+
b2k (0)

4"1

Z 1

0

�Z t

0

jk0 (t� s)j�2x(s)ds
�
dx

+
�21
J

Z 1

0

�2tdx+
�b

�
�

Z 1

0

�tutxdx; (4.9)

where C"1 =
�b2

�J
+
b2k2 (0)

4"1
+
�2

2J
:
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Proof. By di¤erentiating F2(t); and integrating by parts, we obtain

F 02 (t) =
�b

�
�

Z 1

0

�tutxdx�
b2

J

Z 1

0

u2xdx+
�b2

�J

Z 1

0

�2xdx�
b�

J

Z 1

0

�uxdx

+ b

Z 1

0

utx

�Z t

0

k (t� s)�t(s)ds
�
dx� b�1

J

Z 1

0

�tuxdx: (4.10)

Integrating by parts with respect to t the last term of (4.10),we have

b

Z 1

0

utx

�Z t

0

k (t� s)�t(s)ds
�
dx

= b

Z 1

0

utx

�
k (0)� (t)� k (t)� (0) +

Z t

0

k0 (t� s)�(s)ds
�
dx

= �bk (0)
Z 1

0

ut�xdx+ bk (t)

Z 1

0

ut�x (0) dx

� b
Z 1

0

ut

�Z t

0

k0 (t� s)�x(s)ds
�
dx:

Then, (4.10) becomes

F 02 (t) =
�b

�
�

Z 1

0

�tutxdx�
b2

J

Z 1

0

u2xdx+
�b2

�J

Z 1

0

�2xdx

� bk (0)
Z 1

0

ut�xdx+ bk (t)

Z 1

0

ut�x (0) dx�
b�

J

Z 1

0

�uxdx

� b
Z 1

0

ut

�Z t

0

k0 (t� s)�x(s)ds
�
dx� b�1

J

Z 1

0

�tuxdx: (4.11)

By using Young�s inequality, we arrive at

�bk (0)
Z 1

0

ut�xdx � "1

Z 1

0

u2tdx+
b2k2 (0)

4"1

Z 1

0

�2xdx; (4.12)

�b�1
J

Z 1

0

�tuxdx �
b2

4J

Z 1

0

u2xdx+
�21
J

Z 1

0

�2tdx (4.13)

and

+bk (t)

Z 1

0

ut�x (0) dx � "1k (t)

Z 1

0

u2tdx+
b2k (t)

4"1

Z 1

0

�20xdx

� "1k (0)

Z 1

0

u2tdx+
b2k (t)

4"1

Z 1

0

�20xdx; (4.14)

Young�s and Cauchy-Schwarz inequalities leads to

� b
Z 1

0

ut

�Z t

0

k0 (t� s)�x(s)ds
�
dx

� "1

Z 1

0

u2tdx+
b2k (0)

4"1

Z 1

0

�Z t

0

jk0 (t� s)j�2x(s)ds
�
dx: (4.15)

By using Young�s and Poincaré inequalities, we have

� b�

J

Z 1

0

�uxdx �
b2

4J

Z 1

0

u2xdx+
�2

J

Z 1

0

�2xdx: (4.16)
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By substituting (4.12)-(4.16) in (4.11) and taking into account that � = 0 , we get
(4.9). �

Lemma 5. Let (u; �) be a solution of system (1.1). Then, the functional

F3 (t) = �
Z 1

0

uutdx;

satis�es,

F 03 (t) � ��
Z 1

0

u2tdx+
b2

2�

Z 1

0

�2xdx+
3�

2

Z 1

0

u2xdx: (4.17)

Proof. Di¤erentiating F2(t) and integrating by parts, we obtain

F 03 (t) = ��
Z 1

0

u2tdx+ �

Z 1

0

u2xdx� b
Z 1

0

u�xdx;

Young�s and Poincarré inequalities give (4.17). �

Lemma 6. ([25])Let (u; �) be a solution of system (1.1). Then, the functionals

F4 (t) = e�&t
Z 1

0

�Z t

0

e&s ~H1 (t� s)�2t (s)ds
�
dx;

F5 (t) = e��t
Z 1

0

�Z t

0

e�s ~H2 (t� s)�2x(s)ds
�
dx;

satisfy, 8t � 0;

F 04 (t) = �&F4 (t) + ~H1 (0)

Z 1

0

�2tdx�
Z 1

0

�Z t

0

k (t� s)�2t (s)ds
�
dx; (4.18)

F 05 (t) = ��F5 (t) + ~H2 (0)

Z 1

0

�2xdx�
Z 1

0

�Z t

0

jk0 (t� s)j�2x(s)ds
�
dx; (4.19)

where ~H1 (t) =
R1
t
e&s jk (s)j ds and ~H2 (t) =

R1
t
e�s jk0 (s)j ds:

Now, we de�ne the Lyapunov functional L(t) by

L(t) = NE (t) +N1F1 (t) +N2F2 (t) + F3 (t) +N3F4 (t) +N4F5 (t) ; (4.20)

where N; N1; N2; N3 and N4 are positive constants.

Theorem 3. Let (u; �) be a solution of (1.1). Then, there exist two positive
constants �1 and �2 such that the Lyapunov functional (4.20) satis�es

�1 (E (t) + F4 (t) + F5 (t)) � L(t) � �2 (E (t) + F4 (t) + F5 (t)) ; 8t � 0; (4.21)

and

L0(t) � ��1 (E(t) + F4 (t) + F5 (t))+C2k(t)+N2
�b

�
�

Z 1

0

�tutxdx; �1 > 0: (4.22)



16 S. LABIDI, H. E. KHOCHEMANE*, S. LOUCIF, A. DJEBABLA

Proof. From (4.20), we have

jL(t)�NE (t)�N3F4 (t)�N4F5 (t)j

� N1J

Z 1

0

j�j :
�����t + Z t

0

k (t� s)�t(s)ds
���� dx+N1�12

Z 1

0

�2dx

+N1
jbj �
�

Z 1

0

j�j
�Z x

0

jut (y)j dy
�
dx+N2

�� jbj
�J

Z 1

0

j�xj jutj dx

+N2 jbj
Z 1

0

juxj
�����t + Z t

0

k (t� s)�t(s)ds
���� dx+ �Z 1

0

juj jutj dx:

By using Young�s ,Cauchy-Schwarz and poincarré inequalities ,we obtain

jL(t)�NE (t)�N3F4 (t)�N4F5 (t)j � �1E(t):

Therefore,

(N � �1)E (t)+N3F4 (t)+N4F5 (t) � L(t) � (N + �1)E (t)+N3F4 (t)+N4F5 (t) ;

by choosing N (depending on N1; N2; N3, N4) su¢ ciently large we obtain (4.21)
with

�1 = min fN � �1; N3; N4g ;
�2 = max fN + �1; N3; N4g :

Now, by di¤erentiating L (t), exploiting (4.2), (4.5), (4.9), (4.17), (4.18), (4.19) and
setting "0 =

�

4N1
; "1 =

�

4N2 (2 + k(0))
, we get

L0(t) � �
�
N�1 �N1

�
3J

2
+

b2�2

4�2"0

�
�N3 ~H1 (0)�N2

�21
J

� Z 1

0

�2tdx

+
NJ

2
(k0��t) (t)�

�

2

Z 1

0

u2tdx� 2N1�1
Z 1

0

�2dx

�
�
�N1 �N2C"1 �

b2

2�
�N4 ~H2 (0)

� Z 1

0

�2xdx

�
�
b2

4J
N2 �

3�

2

�Z 1

0

u2xdx� &N3F4 (t)� �N4F5 (t)

�
�
N3 �

J�k

2
N1

�Z 1

0

�Z t

0

k (t� s)�2t (s)ds
�
dx

�
�
N4 �

N2
2 b
2k(0) (2 + k(0))

�

� Z 1

0

�Z t

0

jk0 (t� s)j�2x(s)ds
�
dx

+
b2N2

2 k(t) (2 + k(0))

�

Z 1

0

�20xdx+N2
�b

�
�

Z 1

0

�tutxdx:

We select our parameters appropriately as follows
First, we choose N2 large enough such that

b2

4J
N2 �

3�

2
> 0:

We pick N4 large such that

N4 �
N2
2 b
2k(0) (2 + k(0))

�
> 0:
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We select N1 large enough such that :

�N1 �N2C"1 �
b2

2�
�N4 ~H2 (0) > 0:

We choose N3 large such that

N3 �
J�k

2
N1 > 0:

Finally, we take N large enough (even larger so that (4.21) remains valid ) such
that

N�1 �N1
�
3J

2
+

b2�2

4�2"0

�
�N3 ~H1 (0)�N2

�21
J
> 0:

All these choices leads to

L0(t) � ��1
Z 1

0

�
�2t + �

2
x + u

2
t + u

2
x + �

2
�
dx�

Z 1

0

�Z t

0

k (t� s)�2t (s)ds
�
dx

+ �2k(t)

Z 1

0

�20xdx� &N3F4 (t)�N4�F5 (t) +N2
�b

�
�

Z 1

0

�tutxdx; (4.23)

where �1; �2 > 0:
On the other hand, from Eq. (4.1) and by using Young�s inequality, we obtain

E (t) � 1

2

Z 1

0

�
�u2t + J�

2
t + (�+ jbj)u2x + ��2x + (� + jbj)�2

�
dx

+
J

2

Z 1

0

�Z t

0

k (t� s)�2t (s)ds
�
dx

� %1

�Z 1

0

�
u2t + �

2
t + u

2
x + �

2
x + �

2
�
dx

+

Z 1

0

�Z t

0

k (t� s)�2t (s)ds
�
dx

�
; %1 > 0;

which implies that

�
Z 1

0

�
u2t + �

2
t + u

2
x + �

2
x + �

2
�
dx�

Z 1

0

�Z t

0

k (t� s)�2t (s)ds
�
dx � �%2E (t) , %2 > 0:

(4.24)
The combination of (4.23) and (4.24) gives (4.22) with C2 = �2

R 1
0
�20xdx. �

We are now ready to state and prove the following exponential stability result

Lemma 7. Let (u; �) be a solution of (1.1) and assume that (1.2), (H1)-H(2)
hold and � = 0. Then, there exist two positive constants �1 and �2 such that

E (t) � �2e
��1t; 8t � 0: (4.25)

Proof. By using (4.22) and the right side of (4.21), we get

L0(t) � �C1L(t) + C2k(t); (4.26)

where C1 =
�1
�2

> 0.

Multiplying (4.26) by exp (C1t), we obtain

d

dt
(L(t) exp (C1t)) � C2 exp (C1t) k(t): (4.27)
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Integrating over (0; T ) the inequation (4.27) and choosing C1 smaller than &, we
have

L(T ) exp (C1T ) � L(0) + C2
Z T

0

exp (&t) k(t)dt

� L(0) + C2
Z 1

0

exp (&t) k(t)dt:

Thanks to the hypothesis (H2), we can write

L(T ) � C3 exp (�C1T ) ; C3 > 0;
which yields the serial result (4.25), using the fact that F4 (t) ; F5 (t) are positive and
the other side of the equivalence relation (4.21) again. The proof is complete. �
4.2. Polynomial stability. Here, we prove a polynomial decay result of solutions
of the problem (1.1) when (1.5) does not holds by assuming that the function k
veri�es the same hypotheses (H1)-(H2) and the additional assumption

� (H3) �!k (t) � k0 (t) � 0; where ! is a positive constant.
In order to establish the desired result of this subsection, we need to use the second-
order energy E2 (t) which has been calculate by using the multiplier technique as
in the case of E (t). For that, by di¤erentiating (1.1)1 and (1.1)2 with respect to
time, we obtain the following new system8<:

�uttt = �uxxt + b�xt; x 2 (0; 1) ; t > 0;

J�ttt + J

�Z t

0

k (t� s)�t (s) ds
�
tt

= ��xxt � buxt � ��t + �1�tt; x 2 (0; 1) ; t > 0;

(4.28)
with boundary conditions

uxt (0; t) = uxt (1; t) = �t (0; t) = �t (1; t) = 0; t � 0;
and initial data�

u (x; 0) = u0 (x) ; ut (x; 0) = u1 (x) ; utt (x; 0) = u2 (x) ; x 2 (0; 1) ;
� (x; 0) = �0 (x) ; �t (x; 0) = �1 (x) ; �tt (x; 0) = �2 (x) ; x 2 (0; 1) :

Note that �Z t

0

k (t� s)�t (s) ds
�
tt

=

�Z t

0

k (s)�t (t� s) ds
�
tt

=

�Z t

0

k (s)�tt (t� s) ds+ k(t)�t (0)
�
t

=

Z t

0

k (t� s)�ttt (s) ds+ k(t)�tt (0) + k0(t)�t (0) :

Then, the system (4.28) can be rewritten as follows8>><>>:
�uttt = �uxxt + b�xt; x 2 (0; 1) ; t > 0

J�ttt + J

Z t

0

k (t� s)�ttt (s) ds+ Jk(t)�2 + Jk0(t)�1
= ��xxt � buxt � ��t � �1�tt; x 2 (0; 1) ; t > 0;

(4.29)

where �2 = �tt (0) and �1 = �t (0) are depend on x:
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Lemma 8. The second-order energy E2 (t) associated to the system (1.1) is de�ned
by

E2 (t) =
1

2

Z 1

0

�
�u2tt + J�

2
tt + ��

2 + ��2xt + �u
2
xt + 2b�tutx

�
dx

+
J

2

Z 1

0

�Z t

0

k (t� s)�2tt (s) ds
�
dx; (4.30)

satis�es

E
0

2 (t) � �Jk0(t)
Z 1

0

�1�ttdx� �1
Z 1

0

�2ttdx+
J

2
(k0��tt) (t) ; (4.31)

and
E2 (t) � l; 8t � 0: (4.32)

Proof. By multiplying (4.29)1 by utt, (4.29)2 by �tt; integrating over (0; 1) and
summing up, we obtain

1

2

d

dt

Z 1

0

�
�u2tt + J�

2
tt + ��

2 + ��2xt + �u
2
xt + 2b�tutx

�
dx

+ Jk(t)

Z 1

0

�tt�2dx+ Jk
0(t)

Z 1

0

�tt�1dx

+ J

Z 1

0

�tt

�Z t

0

k (t� s)�ttt(s)ds
�
dx = ��1

Z 1

0

�2ttdx: (4.33)

By using again the result in lemma (1) to estimate the last term of (4.33), we get

J

Z 1

0

�tt

�Z t

0

k (t� s)�ttt(s)ds
�
dx

=
J

2

d

dt

Z 1

0

�Z t

0

k (t� s)�2tt (s) ds
�
dx� Jk(t)

Z 1

0

�2�ttdx

+
Jk(t)

2

Z 1

0

�2ttdx�
J

2
(k0��tt) (t) : (4.34)

By using the positivity of k(t) and the combination of (4.33) with (4.34), we have
(4.30) and (4.31).
Now, by using the hypothesis (H3) and Young�s inequality, we can write

� Jk0(t)
Z 1

0

�1�ttdx � J�1!k(t)

Z 1

0

�2ttdx+
J!k(t)

4�1

Z 1

0

�21dx; (4.35)

letting �1 =
1

2!
and because k0 (t) � 0; then, (4.31) becomes

E
0

2 (t) �
J!2k(t)

2

Z 1

0

�21dx = �k(t);

where � =
J!2

2

Z 1

0

�21dx > 0: A simple integration over (0; T ) and by the hypothesis

(H1), we obtain (4.32). �
We introduce the following functional

~F2(t) = �
�b

�
�

Z 1

0

�tuxdx;
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that satis�es

~F 02(t) = �
�b

�
�

Z 1

0

utx�tdx�
�b

�
�

Z 1

0

�ttuxdx:

By using Young�s inequality, we get

��b
�
�

Z 1

0

�ttuxdx �
b2

8J

Z 1

0

u2xdx+ C0

Z 1

0

�2ttdx:

Then,

~F 02(t) �
b2

8J

Z 1

0

u2xdx+ C0

Z 1

0

�2ttdx�
�b

�
�

Z 1

0

utx�tdx:

We de�ne the following Lyapunov functional as follows

L1(t) = N (E (t) + E2(t)) +N1F1 (t) +N2

�
F2 (t) + ~F2(t)

�
+ F3 (t)

+N3F4 (t) +N4F5 (t) : (4.36)

The Lyapunov functional L1 de�ned by (4.36) is not equivalent to the energy func-
tional E; but it is equivalent to E + E2 + F4 (t) + F5 (t) : Indeed by using (4.36),
Young�s, Poincaré�s and Cauchy-Schwarz inequalities, we have

jL1(t)�N (E (t) + E2(t))�N3F4 (t)�N4F5 (t)j
� �1E (t) + �2E2(t)

� � (E (t) + E2(t)) ; � = max (�1; �2) ;

(N � �) (E (t) + E2(t)) +N3F4 (t) +N4F5 (t)
� L1(t) � (N + �) (E (t) + E2(t)) +N3F4 (t) +N4F5 (t) :

Now by choosing N su¢ ciently large, we obtain

�1 (E (t) + E2(t) + F4 (t) + F5 (t)) � L1(t) � �2 (E (t) + E2(t) + F4 (t) + F5 (t)) ;

where
�1 = min fN � �;N3; N4g ; �2 = max fN + �;N3; N4g

Therefore,
L1(t) � E + E2 + F4 + F5:

Now, we are ready to state and prove the polynomial stability result

Lemma 9. Let (u; �) be a solution of (1.1) and assume that (1.2), (H1)-H(3)
hold and � 6= 0. Then, there exits a positive constant C3 such that

E(t) � C3
t
; t > 0:

Proof. First, note that when � 6= 0; we have

F 02(t) + ~F 02(t) � �
b2

8J

Z 1

0

u2xdx+

�
�b2

�J
+
b2k2 (0)

4"1
+
�2

2J

�Z 1

0

�2xdx

+ "1 (2 + k (0))

Z 1

0

u2tdx+
b2k (t)

4"1

Z 1

0

�20xdx+
�21
J

Z 1

0

�2tdx

+
b2k (0)

4"1

Z 1

0

�Z t

0

k0 (t� s)�2x(s)ds
�
dx+ C0

Z 1

0

�2ttdx: (4.37)
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By di¤erentiating L1 and using (4.2), (4.5), (4.37), (4.17), (4.18) and (4.19), we
get

L01(t) � �
�
N�1 �N1

�
3J

2
+

b2�2

4�2"0

�
�N3 ~H1 (0)�N2

�21
J

� Z 1

0

�2tdx

+
NJ

2
(k0��t) (t)�

�

2

Z 1

0

u2tdx� 2N1�1
Z 1

0

�2dx

�
�
�N1 �N2C"1 �

b2

2�
�N4 ~H2 (0)

� Z 1

0

�2xdx

�
�
b2

8J
N2 �

3�

2

�Z 1

0

u2xdx� &N3F4 (t)� �N4F5 (t)

�
�
N3 �

J�k

2
N1

�Z 1

0

�Z t

0

k (t� s)�2t (s)ds
�
dx

�
�
N4 �

N2
2 b
2k(0) (2 + k(0))

�

� Z 1

0

�Z t

0

jk0 (t� s)j�2x(s)ds
�
dx

+
b2N2

2 k(t) (2 + k(0))

�

Z 1

0

�20xdx� (N�1 �N2C0)
Z 1

0

�2ttdx

+
JN

2
(k0��tt) (t) +N�k(t):

We select our parameters as follows First, we choose N2 large enough such that

b2

8J
N2 �

3�

2
> 0:

We pick N4 large such that

N4 �
N2
2 b
2k(0) (2 + k(0))

�
> 0:

We select N1 large enough such that :

�N1 �N2C"1 �
b2

2�
�N4 ~H2 (0) > 0:

We choose N3 large such that

N3 �
J�k

2
N1 > 0:

Finally, we take N large enough (even larger so that (4.21) remains valid ) such
that 8>><>>:

N�1 �N1
�
3J

2
+

b2�2

4�2"0

�
�N3 ~H1 (0)�N2

�21
J
> 0;

and
N�1 �N2C0 > 0:

Which leads to

L01(t) � �!0E(t) + !1k(t);
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and by integrating over (0; T ) ; we get

!0E(T )T � �L1(T ) + L1(0) + !1
Z T

0

k(t)dt;

� L1(0) + !1
Z 1

0

k(t)dt = l:

So

E(T ) � C3
T
;

with

C3 =
l

!0
:

The proof is complete. �

Conclusion
In this paper, we studied the asymptotic behavior of the solution of porous-elastic
system in the presence of neutral delay. Introducing a single damping mechanism
given by this type of delay makes our problem di¤erent from those considered so
far in the literature and under some assumptions imposed on the kernel of delay,
we have been able to prove an explicit energy decay rate that depends of the wave
speeds of propagation.
Con�ict of interest
This work does not have any con�icts of interest, and there are no funders to report
for this submission.

References

[1] Apalara, T.A., Exponential decay in one-dimensional porous dissipation elasticity. Q. J. Mech.
Appl. Math. 70(4), 363�372 (2017)

[2] Apalara, T.A., Corrigendum: exponential decay in one-dimensional porous dissipation elas-
ticity. Q. J. Mech. Appl. Math. 70(4), 553�555 (2017)

[3] Boyer, F., Fabrie, P.: Mathematical tools for the study of the incompressible Navier-Stokes
equations and related models. Applied Mathematical Sciences, 183. Springer, New York,
(2013)

[4] Casas, P.S., Quintanilla, R.: Exponential stability in thermoelasticity with microtempera-
tures. Int. J. Eng. Sci. 43(1�2), 33�47 (2005)

[5] Casas, P.S., Quintanilla, R.: Exponential decay in one-dimensional porous-thermo-elasticity.
Mech. Res. Commun. 32(6), 652�658 (2005)

[6] Datko, R., Not all feedback stabilized hyperbolic systems are robust with respect to small
time delays in their feedbacks, SIAM J. Control Optim. 26(3) (1988), 697-713.

[7] Datko, R., Lagnese, J., Polis, M. P., An example on the e¤ect of time delays in boundary
feedback stabilization of wave equations, SIAM J. Control Optim., 24(1) (1986), 152-156.

[8] Driver RDA. Mixed neutral system. Nonlin Anal T M A. 1984;8:155-158.
[9] Driver RD. A neutral system with state-dependent delays, in: Trends in Theory and Practice

of Nonlinear Di¤erential Equations (Arlington,Tex., 1982), Lecture Notes in Pure and Applied
Mathematics, vol. 90. New York: Dekker; 1984;157-161.

[10] Eduardo Hernández M, Henriquez HR., Existence results for second order partial neutral func-
tional di¤erential equations. Dyn Cont Discrete Impul Syst Series A: Math Anal. 2008;15:645-
670.

[11] Eduardo Fernández M, Henriquez HR, McKibben MA. Existence of solutions for second order
partial neutral functional di¤erential equations. Integr Equ Oper Theory. 2008;62:191-217.

[12] B. Feng, Global well-posedness and stability for a viscoelastic plate equation with a time
delay, Mathematical Problems in Engineering Article ID585021 2015 (2015), 1-11.

[13] A. Guesmia; Well-posedness and exponential stability of an abstract evolution equation with
in�nity memory and time delay, IMA J. Math. Control Inform., 30 (2013), 507-526.



POROUS-ELASTIC SYSTEM WITH NEUTRAL DELAY 23

[14] Goodman, M.A., Cowin, S.C., A continuum theory for granular materials. Arch. Ration.
Mech. Anal. 44(4), 249�266 (1972).

[15] Kerbal, S., Tatar, N.E., Exponential stabilization of a neutrally delayed viscoelastic Timo-
shenko beam, Turk J Math. 43, 595�611 (2019).

[16] Liu G, Yan J., Global asymptotic stability of nonlinear neutral di¤erential equation. Commun
Nonlinear Sci Numer Simulat. 2014;19:1035-1041.

[17] Lions. J.-L., Quelques Méthodes de Résolution des Problèmes aux Limites non Linéaires,
Dunod, Paris, 1969.
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