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Abstract 54 

1. Traits have become a crucial part of ecological and evolutionary sciences, helping 55 

researchers understand the function of an organism's morphology, physiology, growth and 56 

life-history, with effects on fitness, behaviour, interactions with the environment, and 57 

ecosystem processes. However, compiling and analysing trait data comes with data-scientific 58 

challenges due to the complex nature of trait data.  59 

2. We offer 10 (mostly) simple rules, with some detailed extensions, as a guide in making 60 

critical decisions that consider the entire life cycle of trait data. 61 

3. This article is particularly motivated by its last rule, i.e. to propagate the good practices, 62 

and has the intention of bringing awareness of the different facets of a trait's life cycle to the 63 

community.  64 

4. When it comes to working with trait data, we gain particularly as an interdisciplinary 65 

community of field biologists, synthesis ecologists, computer scientists and database 66 

managers. We hope these basic guidelines can be useful as a starter for active communication 67 

in disseminating such integrative knowledge and how to make trait data future-proof. 68 

 69 

Keywords: data life cycle, data science, FAIR principles, good practices, metadata, open 70 

science, phenotype, trait data  71 

 72 
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Introduction 77 

As early as 300 BC, Greek philosophers such as Theophrastus forged the first formal systems 78 

defining and classifying organisms by their combination of morphological, physiological, 79 

behavioural, and phenological characteristics, i.e., their traits (Weiher et al., 1999). Having 80 

knowledge about an organism’s traits often allows deeper understanding of its life-history, 81 

behaviour, fitness, interactions and potential responses to and effects on ecosystem processes 82 

(Violle et al., 2007). Trait-based research questions in ecology and evolution often focus on 83 

the processes that drive trait patterns (Sutherland et al., 2013), and view the organism as a 84 

functional rather than a taxonomic unit. Traits offer a bridge between different dimensions: 85 

from organismal biology, e.g. population abundance (Webb et al., 2010), species distribution 86 

(Sporbert et al., 2021), and phylogeny (Junker et al., 2015; Tucker et al., 2018) to ecosystem 87 

functioning (Lavorel & Garnier, 2002; Wright et al., 2016). 88 

 89 

Traits are commonly defined as a measure of an entity (Garnier et al., 2017), where the entity 90 

can be the whole individual, or a specific organ or tissue (e.g. a tail fin, a leaf or wood) and 91 

the quantity is an observable characteristic of that entity (e.g. the length of a fish, its colour, 92 

the length of a tail fin, or the density of wood tissue). Together, all traits of an individual 93 

organism represent its phenotype resulting from the historical evolution of the genotype and 94 

potential current interactions with the environment. Therefore, a trait record can inform not 95 

only about the entity that was observed (e.g. taxonomic classification or age) and the 96 

quantity/characteristic that was measured, but also about the environment in which the 97 

individual has developed that trait (e.g. where a fish was caught, where a tree lived or the soil 98 

depth where an invertebrate was observed)(Kattge et al., 2011).  99 

 100 
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There are many ways to define and measure traits of organisms (Kearney et al., 2021; Walker 101 

et al., 2022). For example, a plant leaf can be described by several hundred diverse individual 102 

measurable characteristics. These include surface area, sodium concentration, phenology, and 103 

maximum photosynthetic rate (see e.g. Kattge et al., 2020). On the one hand, different traits 104 

of an individual are often correlated, e.g., for a tree to grow tall it usually needs a thick stem. 105 

It is essential to recognise these correlations in the way the data are collected (e.g. on the 106 

same tree) and stored. In this case, for a trait record to be meaningful it needs to be connected 107 

to a complex combination of multiple measurements. In contrast, a trait record can also be 108 

rather simple, if the given trait is well defined, if it depends only on the genotype and is not 109 

affected by current interaction with the environment. 110 

 111 

In essence, trait data are a special kind of data: they are diverse, often not well defined, 112 

relatively simple or potentially complex, independent of one-another or correlated, and range 113 

between cheap and costly to collect. However, they are very informative as they represent the 114 

evolutionary adaptation or developmental acclimation of the individual organisms to their 115 

environment and allow for quantitative and predictive ecology and biodiversity research. 116 

Therefore - if collected, stored and published in a meaningful way - organismal trait data 117 

have an extraordinary value for reuse, which is e.g. indicated by the >20.000 data requests to 118 

the TRY Plant Trait Database since 2015 (Kattge et al., 2020). 119 

 120 

To enable the reuse of these trait data beyond their original research campaign, to make them 121 

meaningful in other contexts and to avoid data degradation, observation records must be 122 

clearly defined, where possible the environmental and mereological context given, as well as 123 

provenance and protocols for collection documented (Michener, 2006). Recent efforts to 124 

expand trait knowledge across the Tree of Life (Gallagher et al., 2020) call for datasets which 125 
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are open and FAIR (Findable, Accessible, Interoperable, Reusable) (Wilkinson et al., 2016), 126 

key principles at the heart of the emergent Open Science movement (Nosek et al., 2015). 127 

Global and local datasets of organismal traits have rapidly grown in scope since the 1990’s 128 

(e.g. Herberstein et al., 2022; Kattge et al., 2020; J. S. Madin et al., 2016). However, these 129 

datasets bear a variety of new challenges linked to harmonisation, biases, expertise and 130 

communication (Salguero-Gómez et al., 2021). These challenges result in a major trade-off 131 

between investing in collection of new trait data or reusing open trait data (Westoby et al., 132 

2021). Indeed, many studies in trait-based research reuse available trait data or collect 133 

additional trait data and/or assemble new data (e.g. examples in Kattge et al., 2020). Thus, 134 

these studies also often involve linking to different types of data, which requires 135 

interoperability between datasets (Feng et al., 2022; Gallagher et al., 2020). 136 

 137 

These key aspects are just a few of many dimensions illustrating how and why researchers 138 

not only have to make biological decisions, but also a wide range of data-science decisions 139 

when working with traits. Multiple complexities of trait data structure and manipulation are 140 

not obvious at a first glance (Michener, 2006). For instance, there is sometimes confusion and 141 

lack of awareness of trait standards, measurement units, and trait data are particularly prone 142 

to errors in recording, translation, and understanding. By offering a larger perspective, the 143 

trait data life cycle can help clarify these confusions and inform about good practices when 144 

working with trait data (Fig.1). In this article, we bring awareness to some common pitfalls in 145 

the usage of trait data and offer 10 rules for making critical decisions that consider the entire 146 

life cycle of trait data. We start each rule with a general and simple statement and develop the 147 

complexity of each rule within more detailed subsections. 148 

 149 
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 150 

Figure 1: Ten (mostly) simply rules and where they apply in the overall trait data life cycle. Each rule is 151 

primarily applied to a specific element of the cycle (in bold) but can also be important to other elements 152 

(secondary application). Rules 9 and 10 apply to the whole cycle. 153 

 154 

Rule 1: Define your trait 155 

Let your study question or hypothesis determine both the trait(s) to be used and how those 156 

traits are collected and analysed. Clear upfront definitions of traits will avoid bias through 157 

e.g. confusion of scales and definitions, data gaps or inclusion of inadequate traits (Dawson et 158 

al., 2021; González-Suárez et al., 2012; Hulme et al., 2013; Messier et al., 2017).   159 

 160 

Follow your hypothesis: Increasingly, trait data describing organisms of interest are publicly 161 

available for reuse. Vast availability extends the potential scope of what is possible with 162 

limited resources (e.g. Falster et al., 2021; Kattge et al., 2020). However, when reusing trait 163 

data, we relinquish control of what variables are collected, which species are sampled, and 164 
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the methods used for collection (Koricheva et al., 2013). Undirected fishing expeditions for 165 

traits can yield large datasets, but these may not necessarily be appropriate to answer a given 166 

research question, for various reasons (e.g. coverage, distribution, meaningfulness and 167 

resolution, Violle et al., 2015). Furthermore, the wealth of available trait data may distract 168 

from initial hypotheses, risking random exploration of the available traits and fishing for 169 

significant relationships without a clear focus. Thus, trait selection and collection should in 170 

most cases be primarily tethered to a concrete hypothesis, not defined by availability of 171 

existing data. This rule does, however, not completely exclude extensive data exploration and 172 

data-driven discovery within a given range as relevant to the research question and 173 

subsequent streamlining (Violle et al., 2015).  174 

 175 

Consider the scale: Research questions define the appropriate hierarchical level for sampling: 176 

a continental-scale study of thousands of species may treat the intra-specific variation as 177 

statistical noise. In contrast, this variation may be the study focus in locally scaled projects. 178 

There is no "correct" scale, either in terms of spatial grain (e.g., km2, m2), temporal duration 179 

(e.g., seconds, years), or taxonomic coverage (e.g., clade, species, population or individual), 180 

but not every scale will be appropriate for every question. So, when defining the traits of 181 

interest, it is important to define the scale at which these need to be collected or aggregated to 182 

match the research question (Messier et al., 2017).  183 

 184 

Be aware of existing trait definitions and homologies: Much effort has already gone into 185 

creating definitions and protocols for traits collection. Yet, trait naming and corresponding 186 

definitions may differ between studies and trait databases (Ankenbrand et al., 2018; Dawson 187 

et al., 2021; Kunz et al., 2022). For example, specific leaf area (SLA) and leaf mass per area 188 

(LMA) are essentially the same trait, one being the inverse of the other. Similarly, for discrete 189 
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traits, values may differ between resources (e.g. “therophyte” and “annual” are synonyms). 190 

Furthermore, when comparing traits and trait states across organisms, it is important to be 191 

aware of the ‘homology’ of the character. Homologous traits share similarity of structure, 192 

physiology, or development (often by common evolutionary ancestry), whereas non-193 

homologous (or analogous) characters may perform a similar function, but differ in structure, 194 

physiology, or development.       195 

 196 

Be pragmatic: In a perfect trait research world, we could measure or retrieve the exact traits 197 

for the exact scale and organisms needed to answer our specific question. This vision is rarely 198 

real. Instead, we often need to work with proxies of traits that are difficult to measure (e.g. 199 

reproductive output is often used as a proxy for fitness (McGraw & Caswell, 1996)) or are 200 

incomplete in a database (e.g. diet or behavioural traits are less complete than morphological 201 

traits, Oliveira et al., 2017). There is a common understanding of these technical or financial 202 

limitations in the scientific community; ultimately, we need to be pragmatic to advance 203 

research questions. However, it is crucial to explain and justify the choice of traits, especially 204 

when these are used as proxies or “best available data”.   205 

Rule 2: Do not reinvent the wheel 206 

Build on existing trait resources to reduce the likelihood of redundancy and ensure 207 

compatibility with current data. The decision when to collect new trait data is generally based 208 

on the research question, the scope of the analysis (e.g. local, global) and the availability of 209 

the existing data. Financial and geographic constraints may also influence the decision to use 210 

current trait data instead of embarking on a measurement campaign. However, the existing 211 

trait data must be ‘fit for purpose’ to avoid compromising the capacity to answer the research 212 

question.  213 
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 214 

Check public data sources: Most data probably exist decentralised as individual trait datasets 215 

in the form of raw data attachments to publications, data papers, or data uploads to unspecific 216 

public databases (e.g. Zenodo https://zenodo.org, DataDryad https://datadryad.org). However, 217 

these datasets can be challenging if not registered at central hubs (e.g. https://opentraits.org). 218 

To counter this challenge, dedicated centralised trait databases have been and continue to be 219 

developed (e.g., TRY (Kattge et al., 2020), Encyclopedia of Life (EOL) TraitBank (Parr et 220 

al., 2015), Marine Traits Portal of the World Register of Marine Species (WoRMS) (Marine 221 

Species Traits editorial board), AusTraits (Falster et al., 2021). Common to these efforts is 222 

the fact that they contain already harmonised, error-checked, and standardised values. These 223 

resources usually provide user-friendly interfaces for searches and dynamic, up-to-date 224 

aggregations of data. Particularly for studies of larger scale (e.g. many taxa, many 225 

bioregions), it often makes sense to consult these existing big databases and data registries. 226 

 227 

Identify data origins: Trait data are not always raw or first-hand: they can be created and 228 

perhaps aggregated from original observations and measurements (e.g. Kattge et al., 2020), 229 

but also mobilised from literature or undigitised legacy trait data (e.g. Parr et al., 2015), 230 

synthesised as imputed trait data (e.g. Penone et al., 2014), reused from data publications 231 

(e.g. Kattge et al., 2020), or mined from texts with automated algorithms or other contexts 232 

(Thessen et al., 2018). Thus, when reusing trait data, it is important to check and report 233 

information about the source to downstream analyses and subsequent publications. 234 

Importantly, providing this information also gives credit to the original trait data collectors.  235 

 236 

Fill the gaps: Existing databases are taxonomically and biogeographically biased, ‘gappy’, 237 

and traits assigned to the same species are rarely collected in the same locations or conditions 238 
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(Etard et al., 2020; Penone et al., 2014). Despite the presence of large trait databases, new 239 

trait collections continue to remain valuable. When collecting new data, we encourage 240 

researchers to first check available trait databases, identify such gaps, and contribute to the 241 

wider trait community by filling these gaps even if this collection goes beyond the current 242 

project. Additional traits may be easily collected with little extra effort yet provide the 243 

possibility to close gaps in trait coverage. Filling gaps may be especially valuable in 244 

biodiverse but hard to access regions (Etard et al., 2020), for rare but functionally important 245 

species which may be less likely to have traits documented (Leitão et al., 2016), or for 246 

threatened species which will benefit from functional approaches to their conservation 247 

(Gallagher et al., 2021). 248 

Rule 3: Rely on measurement protocols and know your units 249 

To ensure comparability, data reuse and synthesis, relate primary measurements of your traits 250 

to the wider body of published trait data. Conform your measurement procedures to existing 251 

trait measurement protocols, or – if no such standard protocols exist –document with 252 

precision and build upon unambiguous concepts. Also, confusion and errors in terms of 253 

recording and reporting of units can be propagated through large trait compilations. Thus, 254 

define your units clearly; they are essential for harmonising different trait data sets, 255 

approximations and uncertainties. 256 

Beware of ambiguities: In most cases, researchers of a domain (e.g. plants) have adopted 257 

sufficiently specific trait definitions to allow comparison of widely used measurements and 258 

enable synthesis within the field. However, some difficulties in measurement remain. To 259 

illustrate, specific leaf area (SLA) is the ratio of the surface area to leaf biomass of an 260 

individual leaf. However, the application of the concept of SLA may differ between research 261 
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contexts, because the value reported may relate to measurements of individual leaves or an 262 

average of all leaves on the shoot, for one or both sides of the leaf, including or excluding the 263 

petiole, and focus on the leaf or leaflet (example taken from Garnier et al., 2017). While fully 264 

justified in the specific research setting, identifying and dealing with semantic 265 

disambiguation is a major challenge in trait-based synthesis. 266 

Adhere to existing standards: Methodological handbooks for trait measurements have been 267 

proposed, e.g. for plant (Cornelissen et al., 2003), macrofungi (Dawson et al., 2019) or for 268 

terrestrial invertebrate functional traits (Moretti et al., 2017). These handbooks provide 269 

precise, taxon-specific definitions and recommended methods for trait measurement, 270 

measurement precision and replication. They also provide considerations and warnings of 271 

misconception and error, and point to the key literature debating the methodology. Taking 272 

formalisation of trait concepts even one step further are thesauri of trait concepts (Garnier et 273 

al., 2016, 2017), e.g. TOP. The bottom line is: research that provides original trait 274 

measurements should consider existing measurement protocols, make an explicit choice, and 275 

describe any deviations from or additions to protocols. When such handbooks do not exist it 276 

is good practice to also report accompanied the specific measurement protocol in the 277 

metadata (see Rule 4). For instance, how the length of a fish has been measured and if 278 

potential extensions of the tail fin were taken into account. 279 

 280 

Understand your units: Trait data are necessarily ‘rich in dimensions’. That is, trait data may 281 

require multiple SI base units and may also be measured and reported in multiple alternative 282 

configurations of units. For example, photosynthetic rate involves three SI base units e.g. 283 

mass per area per time, and is often reported in units of µmol CO2m-2s-1 or an amount per unit 284 

area per unit time. Simple measures of size, area, and time are often reported in differing 285 

units, though all can be related to more fundamental base units. All metric trait data can be 286 
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reduced to the seven base units as defined by the SI standard (m, g, s, K, A, cd, mol). 287 

Significant data management effort is needed to record units accurately, preserve them 288 

through metadata, and convert them correctly to avoid propagating errors (Calder, 1982).  289 

Rule 4: Context is crucial 290 

Always pair your data points with metadata. Sampling protocols ideally also define metadata 291 

that can be considered as covariates of the measurement procedure or inform the user about 292 

the provenance of the trait data. Together with the trait measurements, metadata defines an 293 

observation and its context (Madin et al., 2008). While such metadata may already be 294 

important for the proximate research question, it further helps future users to better 295 

understand and reproduce the methods and correctly interpret the trait values. The reuse value 296 

of existing datasets increases with the quantity and quality of metadata, so that datasets with 297 

sufficient context information are more likely to be reused in future synthesis analyses or 298 

included in larger databases. 299 

 300 

Define at least the minimum context: Some metadata are considered essential and universal 301 

between all domains, such as unique ID for observations to cross-references to other 302 

measures, geolocation, time and date, life stage (e.g. juvenile), health status, scale (e.g. leaf), 303 

habitat type (e.g. natural habitat) and measurement details (e.g. following standards, devices 304 

used, etc.)(Schneider et al., 2019). Further metadata must include the source and authorship 305 

of the trait measurement. To permit effective reuse, authorship attributes should include the 306 

original data collectors and the databases where these data were gathered, as they may have 307 

undergone processing therein (Rule 2).  308 

 309 
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Cover the domain-specific standard, if possible: Deciding which further metadata to collect 310 

often involves a trade-off between which data are commonly collected in a specific domain 311 

and the time and expense involved in collecting or processing such data. Metadata preferably 312 

include detailed documentation and code of how traits were measured (e.g. manufacturer and 313 

version of devices used) and processed (e.g. standardizations or species means). We 314 

recommend checking existing well-used datasets and databases of the specific domains 315 

before collecting new trait data to determine which common metadata should be covered.  316 

 317 

Link to other data by metadata: A good practice is to directly link the data with publications 318 

(e.g. by DOI) for the scientific context and further information in the materials and methods 319 

sections, as well as identification of trait data providers (e.g. by ORCID) to provide 320 

opportunities for feedback and requests for additional information. Often traits are measured 321 

with the objective to also collect other data, such as ecosystem function (e.g. Bongers et al., 322 

2021) or species composition (e.g. Breitschwerdt et al., 2018). In these cases, functions 323 

measured‚ and species composition recorded would be part of the metadata, or links to that 324 

data in other repositories.  325 

Rule 5: Structure trait data 326 

Do not underestimate the importance of the structure of your dataset. It might sound trivial at 327 

first glance to think about how to structure the data, but poorly structured data may become a 328 

nightmare to work with in downstream analyses, or to reformat for publication, deposit in a 329 

public database, or synthesise in meta-analyses. It thus makes sense to consider structural 330 

aspects even in the early stages of a project using traits.  331 

 332 
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Minimum trait data standards: The minimal, essential information for a trait record includes 333 

taxon name, trait name, observation ID, trait value, unit (if applicable), and source. Several 334 

standards are available to help structure this minimal information set (Fegraus et al., 2005; 335 

Kattge et al., 2011; J. Madin et al., 2007; Parr et al., 2015; Schneider et al., 2019; Wieczorek 336 

et al., 2012). A good start for data structuring is to adopt one of these well-established 337 

schemes. 338 

 339 

Preserve metadata and further observations recorded together: A complex aspect of 340 

structuring trait data is how to keep metadata and data links. This linkage is critical for 341 

various questions that address intra-specific variation, derived traits, or multivariate 342 

modelling on individuals. A good practice is to have unique identifiers for every entity that 343 

requires relations. Using such IDs allows linking to other traits and further data types, like 344 

community records of the plot in which the individual was found, DNA barcodes or 345 

information on the experiment that involved the individual. One approach is the Extensible 346 

Observation Ontology (OBOE) (Madin et al., 2007), which various large databases have also 347 

adopted (e.g. TRY, Kattge et al., 2020). 348 

 349 

Apply version control: The process from gathering to analysing trait data is long, which 350 

might result in many different versions of a trait dataset. Thus, it is important to keep track of 351 

these different versions. It is recommended to keep the raw trait dataset and the processed 352 

trait dataset used for analysis as separate copies. Version names should be structured in a 353 

logical way, e.g. combining project acronyms, researchers’ initials, short names of the trait 354 

dataset, version numbers, file status and/or dates. Use of versioning or change control 355 

systems like Git (Spinellis, 2012) is highly recommended to keep track of changes to data. 356 
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Also, conventions that include a current (e.g. my_data_current.tsv), as well as versioned copy 357 

(e.g. my_data_1.0.tsv) help automated systems by providing a stable interface for indexing.  358 

Rule 6: Check and process  359 

Rigorously check your data quality, integrity and compatibility during each step of data 360 

processing. Trait-based analyses, mainly when data are consolidated from different sources, 361 

can harbour various inherent incompatibilities that may cause biases and severe scientific 362 

misinterpretations. For trait compilations, data usually need to be harmonised, subset, 363 

transformed, derived and/or aggregated into comparable formats to fit the research question. 364 

It is crucial that steps are wherever possible scripted, and by that directly reproducible, and 365 

where not that manual steps are well documented. 366 

 367 

Harmonise trait data: If trait data originate from multiple sources, each source may identify 368 

the same entities or concepts differently (Kunz et al., 2022). Harmonisation is crucial to 369 

reconcile equivalent entities and explicitly connect related entities by “similar” or subclass 370 

relationships. Ideally, these entities or concepts should be identified by standard identifiers 371 

(see Rule 5). Manual harmonisation may be necessary to detect and reconcile spelling 372 

variations, before text strings are mapped to identifiers. But for common classes of data there 373 

are a variety of services available that allow automated and reproducible harmonisation, e.g. 374 

for taxonomic names (B. Boyle et al., 2013; Chamberlain & Szöcs, 2013; Global Names 375 

Architecture.) (reviewed by Grenié et al., 2022), units (Gama, 2014) or geographic names 376 

(Boyle et al., 2022). Other covariates and categorical trait values may be semantically 377 

reconciled where appropriate ontologies exist (Kunz et al., 2022; Violle et al., 2015). 378 

 379 
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Filter where needed and double-check data contexts: Not all trait data are equally suitable 380 

for all purposes. Erroneous or duplicate data points need to be identified and removed before 381 

analyses (Kattge et al., 2020). As with other kinds of data, outlier detection and data 382 

visualisation provide valuable methods for the detection of such data errors (de Bello et al., 383 

2013). For trait data mainly compiled from different sources, other reasons may also render 384 

data points inappropriate. For example, if metadata suggest that the observation is from a 385 

cultivated occurrence such as a botanical garden, greenhouse, zoo or farm, values might not 386 

be representative for wild specimens (Gering et al., 2019). Observations stemming from 387 

introduced or experimental populations may violate assumptions as well. Observations can be 388 

collected from different subsets of the population (e.g. adult vs juvenile, healthy vs diseased), 389 

at different times of year (e.g. breeding season vs overwintering), in different contexts (e.g., 390 

experimental temperature treatments), and using other protocols. It is essential to exclude 391 

unsuitable observations, usually by making use of the associated metadata. 392 

 393 

Derive traits from raw data: Research questions may concern composite or derived traits, 394 

such as ‘hand-wing index’ (the ratio between wing length and body length in birds). Where 395 

possible it is advisable to calculate derived traits directly from the raw data to avoid bias and 396 

allow for new calculations. This procedure may not always be possible because of data gaps; 397 

in this case the calculation can be done at a higher level (e.g. at the taxonomic level of 398 

interest). 399 

 400 

Aggregate trait data: Trait data may come at different levels of resolution. A dataset may 401 

include multiple measurements per individual, per population, or species, or even higher 402 

taxonomic levels. Such structures may imply first aggregating (e.g. to calculate average trait 403 

values) within individuals, then populations, then species derived from a particular data 404 
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source, and then across data sources if the species is represented in several of these 405 

(Schneider et al., 2019). The way trait values were aggregated has to be precisely described, 406 

in particular when data transformation is involved. For example, when it is desired to express 407 

leaf area on a log scale, it might make a big difference to take the log before or after 408 

aggregating the data. Importantly, if multiple successive steps of aggregation are necessary, 409 

there is the need to properly measure the uncertainty of the final trait values and assess the 410 

effect of aggregation on the results and conclusions, e.g., by sensitivity analyses with 411 

different aggregated datasets (Kunz et al., 2022). 412 

 413 

Transform and standardise: Likewise for other types of data, transformations such as the 414 

natural logarithm or square root may be essential to conform with the requirements of 415 

analytical models. Beyond these, data challenges include how to combine binary, categorial 416 

and continuous traits into the same analysis (de Bello et al., 2021). It is thus very useful to 417 

explore transformation and standardisation options applied in current trait scientific literature. 418 

For example, to compare the effects of several explanatory traits on a specific response in a 419 

linear model approach, values can be standardised for each trait to range between 0 and 1, or 420 

by scaling their mean to 0 and their standard deviation to 1 or 0.5 (in case of making 421 

continuous traits comparable with categorical traits, (Gelman, 2008)).  422 

 423 

Work with relative errors: Units are important when we deal with approximations, 424 

uncertainties, and errors (Langtangen & Pedersen, 2016). As an example, a trait measurement 425 

where the length scale is typically measured in mm and has an approximation of 12.5 m to 426 

the exact value 12.52 m with an error of 0.02 m. Switching units to mm leads to an error of 427 

200 mm. A study working in mm would report 2 x102 as the error, while a study working in 428 

m would report 0.02 as the error. As a result, knowing the original measurement units is 429 
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essential and the downstream use of the unitless relative error is recommended (Langtangen 430 

& Pedersen, 2016). 431 

Rule 7: Know the limitations  432 

Follow the latest developments for best practices in trait data analyses. As the downstream 433 

part of data analysis is directly linked to the research question, generalisation of analytical 434 

methods is rarely possible. Given the diversity of research questions, the analytical steps can 435 

thus broadly diverge. However, some best practices can help to avoid common mistakes 436 

made with trait data due to their nature.  437 

 438 

Mind the level: Traits encompass different levels: organ, individual, population, species, and 439 

community (Violle et al., 2007), and this structure determines the tools used for data 440 

analyses. For instance, trait-environment relationships investigated at the species or 441 

community level require different analysis types (e.g. comparative models vs. simple linear 442 

models, see below). It is important to choose the appropriate level early in the research 443 

program to fit the target scientific question and to be able to analyse the data correctly. 444 

 445 

Be careful with categorical traits: By having fewer possible values, categorical traits might 446 

influence the outcome of statistical analyses. In particular, categorical traits might have 447 

disproportionate effects when aggregated with continuous traits in a common metric (e.g. 448 

functional diversity). For instance, when computing Gower distances of traits between 449 

species pairs, a categorial trait treated as a binary trait (0/1) for each possible categorial value 450 

will only result in distances of 0 or 1. In contrast, for a continuous trait, only the species pair 451 

with the highest/lowest trait values will have a value of 1. When averaging Gower distances 452 

of these two traits, the categorical one will have more influence than the continuous one 453 
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(example from Gelman, 2008).  The joint use of continuous and categorical traits thus needs 454 

particular scaling (Gelman, 2008). In general, it is important to be aware of this issue and to 455 

account for it with existing proposed methods (see de Bello et al., 2021). 456 

 457 

Do not confuse trait signals for richness and abundance signals: Metrics aggregating traits 458 

at the community level (e.g. functional diversity or community-weighted means - CWM), are 459 

influenced by the richness, the abundance of species and the overall species composition of 460 

the community. In general, choosing metrics unrelated to abundance (e.g. unweighted means) 461 

or null models (Hawkins et al., 2017) is necessary to separate species abundance, 462 

composition or richness signals from trait information. 463 

 464 

Handle correlations with care: Traits are often correlated causing issues with statistical 465 

analyses (e.g. collinearity in linear models when traits are explanatory variables). Often, these 466 

correlations are due to biological constraints (e.g. allometries), or “strategies” (Díaz et al., 467 

2016). In some cases, it is possible to use multivariate analyses (e.g. principal component 468 

analysis) to reduce trait space dimensionality by use of axes in further analyses. Keeping the 469 

original traits is advised when possible, as the biological meaning can be lost when using 470 

multivariate principal component axes. On another level, since the start of trait analyses at the 471 

community level, numerous metrics have been proposed to characterise functional diversity, 472 

analogous to species diversity. When choosing a metric for a specific analysis, it is essential 473 

to be aware that several of these functional diversity metrics are highly correlated among 474 

themselves and with species richness (see de Bello et al., 2021). 475 

 476 

Consider correction for phylogenetic relatedness: When analysing data from multiple 477 

species in trait-trait correlations or using traits as responses and depending on whether the 478 
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focus of the question is ecological or evolutionary, it may become necessary to account for 479 

the fact that species are not independent units (Pillar et al., 2021). The whole field of 480 

comparative analyses tackles this issue and proposes tools to account for phylogenetic 481 

relatedness in trait analyses (e.g. see Garamszegi, 2014), though care should be taken to 482 

justify the use of such analytical corrections relative to the aims of the research question 483 

(Freckleton, 2000; Westoby et al., 1995). 484 

 485 

Account for variability and uncertainty: Very often, intra-specific data are aggregated at the 486 

species level to obtain one trait value per species. All information on variability and 487 

measurement uncertainty is then lost. When information on variability is available and 488 

reasonable in the scope of the study, it is possible to include it, e.g., by weighting species-489 

level measures in functional diversity metrics (de Bello et al., 2021) or by explicitly including 490 

it when inferring trait evolution across lineages (Kostikova et al., 2016; Purschke et al., 491 

2017). This can be an issue, especially if variability is phylogenetically structured 492 

(Garamszegi, 2014; Paterno et al., 2018). 493 

Rule 8: Publish trait data  494 

Openly publish trait data to facilitate answering yet unknown questions beyond their original 495 

study, lay the groundwork for understanding ecological processes beyond clearcut niches 496 

(Elton, 1927; Schneider et al., 2019) and democratise access to valuable trait datasets 497 

(Soranno et al., 2015). Each data point of trait measurements has a considerable value for the 498 

scientific community and future generations working on trait-related research questions. 499 

 500 

Consider the stakeholders: As our scholarly processes evolve to find better, access, integrate, 501 

and reuse scientific data, we face the communal task of treating trait datasets as first-class 502 



 22 

research citizens. However, doing so is not easy as it involves different stakeholders: 503 

publishers have to make their publications open and FAIR (Wilkinson et al., 2016), scientists 504 

have to improve their skills to publish and reuse datasets, and funding agencies have to find 505 

ways to reward exemplary projects. A welcome development is that many publishers now 506 

consider trait data papers (e.g. Falster et al., 2021; Guerrero-Ramírez et al., 2021; Tobias et 507 

al., 2022; Vandvik et al., 2020), which allow for a detailed methodological and context 508 

description, open access, and at the same time, accreditation of trait data collectors by 509 

citations. 510 

 511 

Accept the additional responsibility: Erroneous data might not only bias a current project but 512 

also the future works of others. There are currently no common established practices on how 513 

peer review is also extended to trait data. A way to ensure that a dataset conforms to 514 

community standards is to submit it to an established curated database (e.g. TRY (Kattge et 515 

al., 2020) for plant traits; Coral Traits (Madin et al., 2016)).  516 

 517 

Aim for redundancy:  Public trait data suffer from the same generic issues as other data, e.g. 518 

hardware failures, linkrot (URLs not fully reliable) or content-drift (content changes, but 519 

URLs do not) (Koehler, 1999). To mitigate such issues and reliably preserve data in the long 520 

term, data can be submitted to multiple repositories, e.g. beside trait databases, also in general 521 

storage platforms such as FigShare (https://figshare.com) or Zenodo (https://zenodo.org). 522 

This procedure however requires systematic methods to track changes and separately citable 523 

versions e.g. by unique DOIs.  524 

 525 

Make data accessible for machines and humans: Trait data often carry large numbers of 526 

references and republished original data. Tracing both call for systematic and automated 527 
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methods (Elliott et al., 2020) that rely on machine-readable data. This issue becomes 528 

particularly relevant when reporting already published data, as future studies might run the 529 

risk of using the same trait from independent sources, thus resulting in pseudo-replication of 530 

measurements. Also, in order to facilitate reuse, machine-readable, non-proprietary data 531 

formats should be preferred (i.e. plain csv over excel or pdf).  532 

 533 

Register trait data: Independent of the choice of actual data deposition, it is of great 534 

importance that datasets are also registered in a trait data registry (e.g. https://opentraits.org) 535 

to allow fellow scientists to easily find the data. 536 

Rule 9: Review data and code like the research itself 537 

“Be polite, fair, specific, and constructive”: best practices in peer review have already been 538 

discussed in detail (Roberts, 2004; Spigt & Arts, 2010), but can perhaps be summarised with 539 

such statement. A reviewer should provide information for the editorial team to decide; this 540 

process also applies to the data. Specifically for trait-based papers, it includes considering the 541 

entire life cycle of the trait data:  542 

1. First, are the traits themselves appropriate for the question being asked? It should be 543 

considered how these traits have been used in the past and how they fit into biological 544 

theory. Are they being contextualised appropriately, and are they fit for the purpose to 545 

which they are being used? 546 

2. How were the data collected? Does the protocol conform to current standards, bearing 547 

in mind that the purpose of many papers is to improve standards and so they may not? 548 

Is the collection of new data well justified? Are units and metadata properly 549 

provided?  550 
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3. How were the data processed? Consider not just quality assurance and quality control 551 

but also how the traits were generally processed into a format that can be analysed. 552 

Ensure that relevant code (ranging from simple cleaning scripts to full-featured 553 

analysis pipelines and models) is openly available, functional, and conforms to 554 

community standards. Guidelines for source code review like those by the rOpenSci 555 

community (https://ropensci.org/software-review) or The Journal of Open Source 556 

Software (https://joss.readthedocs.io/en/latest/reviewer_guidelines.html) can be 557 

helpful. 558 

4. Ensure that a distinction is made between the ‘raw’ data collected, and the ‘clean’ 559 

final product used for analysis, and that both forms of data are released.  560 

5. Ensure that all data sources are appropriately cited, and the provenance of data is 561 

explained.  562 

While these standards apply to all manuscripts, a distinction should be made between data 563 

papers and research papers. Standards for data release are the same for both types of 564 

publication. However, the expectations for demonstrating data cleaning and conceptual 565 

novelty likely differ between the two (but are, ultimately, determined by the journal’s 566 

guidelines).  567 

Rule 10: Propagate the good practices 568 

Inform the community and the next generation of ecologists about the issues discussed here 569 

and in other resources (e.g. de Bello et al., 2021). As we saw above, there are several issues 570 

to be aware of when collecting, handling, analysing, and publishing trait data, i.e. the life 571 

cycle of trait data. Some of them might be straightforward; others require more technical 572 

knowledge or extensive reading of existing resources. In many cases, good procedures are not 573 

applied simply because ecological or evolutionary scientists are unaware that they exist, e.g. 574 
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when it comes to trait quality control or using a standard structure. Educating can be done 575 

from the small scale of an informal conversation with a colleague, to teaching a large 576 

undergraduate class, up to participating in the collective creation of open access materials in 577 

several languages, accessible from any part of the world. Integrating trait-data-specific 578 

sections into ecology textbooks and modules in ecology courses could become a standard 579 

practice, which will undoubtedly be made easier in the future by disseminating open-access 580 

material by the trait scientific community. You are welcome to use these ten rules as a starter 581 

when teaching your students, colleagues and friends. For diving deeper into each single topic, 582 

we encourage you to also check more comprehensive resources such as the Handbook of 583 

Trait-Based Ecology (de Bello et al., 2021) or the activities of the Open Traits Network 584 

(https://opentraits.org) (Gallagher et al., 2020). 585 

 586 

Train students: Courses specific to trait-based research are often lacking at both the 587 

undergraduate and graduate levels. Where courses or modules are taught, the focus may be 588 

limited to a subset of the trait data life cycle (e.g. Collection and Analysis; Fig. 1), leaving 589 

students lacking critical skills (Feng et al., 2020). The use of Open Educational Resources, 590 

including those built using incubators (Ryder et al., 2020), is one promising method for 591 

making the implementation of such courses and modules easier. In particular, authentic 592 

teaching experiences provide a number of benefits over traditional lectures or “cook-book” 593 

experiments (Brownell et al., 2012), and seem well suited to trait-based ecology given that 594 

many traits can be collected easily and inexpensively, and that there are a host of tools 595 

available (see e.g. de Bello et al., 2021). One example of such authentic teaching experiences, 596 

the TraitTrain plant functional trait courses (https://plantfunctionaltraitscourses.w.uib.no/), 597 

has provided training across the entire trait data life cycle to hundreds of participants and has 598 



 26 

created scientific (Henn et al., 2018), data (Vandvik et al., 2020), methodological (Maitner et 599 

al., 2021), and pedagogical (Geange et al., 2021) publications. 600 

 601 

Train colleagues: Making colleagues aware of important developments in trait-based 602 

research via either formal (e.g. publishing protocols, giving talks) or informal means (e.g. 603 

conversations, social media, email) is an important way of helping to advance the field.  604 

Further, trait-based research is an integrative field and provides many opportunities for 605 

collaboration and idea sharing across branches of life science and so discussing traits with a 606 

wide variety of colleagues is useful. 607 

 608 

Train the world: There is an urgent need for more comprehensive trait data across the globe 609 

and the tree of life (Feng et al., 2022) and thus increasing access to training globally is 610 

critically important. Open access publications, tools, data, and educational resources provide 611 

ways to help lower the barriers to participation (Evans & Reimer, 2009). Further, due to the 612 

relative ease, low cost, and tangible nature of many functional traits, they are well-suited to 613 

inclusion in elementary education and citizen science (e.g. Isaac & Martin, 2019; Schiller et 614 

al., 2021). 615 

Conclusions 616 

This ten rules document is particularly motivated by its last rule and has the intention of 617 

bringing awareness of the different facets of a trait's life cycle to the community. Most 618 

scientists working with traits usually are experts on only one or few aspects of the life cycle 619 

of trait data, which are numerous, ranging from biological theory and field research to 620 

computer sciences as well as publishing and review ethics. When it comes to working with 621 

trait data, we gain particularly as an interdisciplinary community of field biologists, synthesis 622 
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ecologists, computer scientists and database managers. We hope these basic guidelines can be 623 

useful as a starter for active communication in disseminating such integrative knowledge and 624 

how to make trait data future-proof. 625 
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