Novel results on the multi-parameters Mittag-Leffler function

Yu-Mei Pan! and Jian-Gen Liu?

!China University of Mining and Technology - Xuzhou Campus
2China University of Mining and Technology

July 18, 2022

Abstract

In this article, the multi-parameters Mittag-Leffler function is studied in detail. As a consequence, a series of novel results such
as the integral representation, series representation and Mellin transform to the above function, are obtained. Especially, we
associate the multi-parameters Mittag- Leffler function with two special functions which are the generalized Wright hypergeo-
metric and the Fox’s-H functions. Meanwhile, some interesting integral operators and derivative operators of this function, are

also discussed.
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1. Introductions

Fractional calculus is one of the important branches of modern pure mathematics and applied
mathematics. However, the special functions play an essential role in constructing differential general
fractional derivatives and building relations and identities between other fractional derivatives [1,2].
Among them, the Mittag-Leffler function is an important function in the field of fractional calculus,
which was first introduced by the Swedish mathematician M.G. Mittag Leffler at the beginning of 20-
th century to deal with the divergent series [3]. The Mittag-Leffler function is generally regarded as a
generalized form of the exponential function. Usually, it naturally occurs as the solution of fractional
differential equations or fractional integral equations [4]. Subsequently, the generalized form of the
Mittag-Leffler function and its applications have aroused wide interest of many scholars from all around
the world and given a series of novel results about them (see Ref. [1,2,5,6]).

Let us recall the Mittag-Leffler function in detail. In 1903, the Mittag-Leffler function of one

parameter was defined as [7]
o n
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where I' (-) denotes the Euler’s gamma function. When o = 1, it can be reduced into the classical
exponential function [1].
In 1905, Wiman introduced the two parameters Mittag-Leffler function [8], defined as
00 n
Eop(z) = T;] Fan i3’ (o, B,2 € C, R (a) > 0).
And then in 1971, T.R. Prabhakar gave the three parameters Mittag-Leffler function also known
as the Prabhakar function [9], which was defined by

n
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this function plays a fundamental role in the description of the anomalous dielectric properties in
disordered materials and heterogeneous systems manifesting simultaneous nonlocality and nonlinearity
[10].

Next, Shukla and Prajapati introduced another extension form of the Mittag-Leffler function in

Ref.[11] (see also Srivastava and Tomovski [12]), which was defined as

ZI‘ om—i—ﬁ n"

where ¢, a, 3,0,z € C and (5)nq = % is the generalized Pochhammer symbol [13].

Further, Salim and Faraj presented in [15] by the following expression of the form

q,r B = (6) n 2"
Bt &)= L T hm o) W

where z,p,0,0,7 € C, min{R (p), R (c),R(9),R(7)} >0, ¢,r >0 and ¢ < R (p) + r. Meanwhile, its
corresponding integral operator was defined as

x
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Later in 2014, Ozarslan extended the Mittag-Leffler function [17] as follows:

n
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where

1
/tw (1 — )P T dr, (min {R (), R (5) . R ()} > 0), (3)
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is the extended Euler’s Beta function [18].
In 2017, Rahman et al. presented in [19] the function of the form

o0
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where z,p,0,0,c € C;R (p),R(5),R(c) > 0;p > 0,¢q > 0 with B, as an extension of the beta function.
Its the corresponding integral operator was defined by [19]

T
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The another recent extension was defined by Andrié¢ et al. in Ref.[20]
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where p,o,7,5,c € C, R(p),R (o), R(7),R(0),R(c) >0,p>0,7>0,and 0 < ¢ < r+ R(p).

The purpose of this paper is to derive some novel results for the multi-parameters Mittag-Leffler
function. Besides, the relationship between the multi-parameters Mittag-Leffler function and the
generalized Wright hypergeometric and the Fox’s-H functions, are also found. To the best knowledge

of the authors, these good results have not appeared elsewhere.

2. Preliminary

Before giving novel results for the multi-parameters Mittag-LefHer function, let us introduce the
relevant basic knowledge. Throughout this investigation, we need the following well-known facts and
rules to study the various properties and relations formulas of the function E52%¢ (z;p).

Definition 1 [20] Let p,0,7,0,c,w € C, R(p), R (o), R(7),R(),R(c) > 0, with p > 0,7 > 0,
and 0 < ¢ <r+R(p). Let f € Ly [a,b] and = € [a,b]. Then the generalized fractional integral operator

w?§7,rl7q7c

6a+7p7077-

f is defined by the following expression

(shfmeer) (@) = / (z = 1)7  Epp® (w(x — );p) f () dt. (7)

a

Definition 2 [21] The left Riemann-Liouville fractional integral #FI2, and derivative /D2, of

order « of a function f(z) € C'[a,b] are defined as

xT

RIS, f(z) = F(la) / ( — 0)°7Vf () dt, (R (a) > 0) ®)
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and
d’ﬂ
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(FEI2- 2 f (), (R(a) > 0,n = [R(a)] + 1), (9)

where [z] denotes the greatest integer in the real number z. In the above definition, we note that, the

A order fraction integral of a power function (¢t — a)*~* can be written as follows [21]

2y [t @ = @ @M (e R () R () > 0). (10)

(A+n)

Definition 3 [22,24] Let 0 < p < 1,0 < v < 1, and f € L; (a,b). The left Hilfer fractional

derivative D!’ with respect to z is defined as follows

(221 @) = (B4 (15708 ) @), (1)

Eq.(11) yields the classical Riemann-Liouville fraction derivative operator D!  when v = 0. Moreover,
in its special case when v = 1, the definition (11) would reduce to the familiar Caputo fractional
derivative operator [12](see, for details, [23,p.90 et seq.]). According to Eq.(11), the following result

holds true for the fractional derivative operator D47’ [10]

<Dfl‘f(t — a)’\_l) () = T T (x — a))‘_“_l, (x>a;0<pu<1;0<v<1;R(N) >0). (12)

(A—p)

The generalized Wright hypergeometric function is defined as[23]

(ai, A;) 2 P T (a; + An) 2"
p¥q(2) =p¥q e a | = Z H‘; IF (bZ + Bl-n) n!
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where z € C;a;,b; € C; A;, B e R; (i =1,2,...,p;5 = 1,2, ..., q).
Definition 4 [23] The relationship between the Wright generalized hypergeometric and Fox’s-H

function is defined as

Ay) - A 1—ai, A1), - ,(1—a, A
0, (a1, Ar) (ap, Ap) 2| = H;,’é’ﬂ —z’ ( ar, A1), S ( ap, Ap) . (13)
(blvBl) (anBl]) (071)>(1_b1731)>"' 7(1_bQ7B11)
where a;, A; € C;R(A4;) > 0;(j =1,...,p).
The Mellin transform of the function f(z) is defined as[24]
M{f(z);s}_F(s)_/zs—lf(z)dz,(ére(s)>0). (14)
0



3. Main results

In this section, we present the main results of this paper.

Theorem 1 If the extended Mittag-Leffler function is defined by (6), then

0,0,T

1
EYee (2;p) = 50_ /t5 (1 — ¢)e 01T m™ W9 FoTa (t92) dt, (15)
0

where E; g% (2) is defined in (1).
Proof. Using equation (3) in equation (6), one gets

1

o0 e 1 (c) 2"
FEOTC () — E dtng—1(1 _ pye-o-1 " ) 1
0,0,T (Z’p) - /t ( t) B ((5, c— 5) r (Pn + U) (T)m‘ ( 6)
n=0 |

Interchanging the order of summation and integration in equation (16), which is guaranteed under the

assumptions given in the statement of the conditions in (6), we obtain

1
(t22)"
E6rq, . t5 1 c o— 1 t(l o) dt. 17
e = g [0 S ra o

Plugging equation (1) into equation (17), the desired result is proofed. [

Corollary 1 Taking ¢ = 7+, in Theorem 1, we have
n q
S (. u®~ p<1+u> . U
B Gin) = ey | e B () #) e
0

Corollary 2 Taking ¢ = sin?f in Theorem 1, the following integral representation is yielded

us
2 2 95 951y —— B .
sin?~1fcos® 20 1ge sinZocosZe 000 (sin®?z) do.

et &0 = 5525

p,0,T

Theorem 2 If the conditions about parameters p, o, 7,9, ¢, q,r, w in (6) is satisfied, for any interval
w,0,T,q,C f

(a,b) C R and any function f € Lj (a,b), then the generalized fractional integral operator ¢, 07
can be written as

I S OOB o+ ,—(5 n(c)n n+o
(Eaf,’piglff ) (wip) = a B(Z,qcc_a) = (T)nj <RLI‘§++ ! ) (w:p), (18)

n=0

where the series on the right-hand is locally uniformly convergent.

Proof. The starting point is the series formula (6) for the multi parameters Mittag-Leffler function.

r R(p)
This series is known to be locally uniformly convergent in |z| < T%(q#q)p, which converges for all z



provided that ¢ < r + R (p) [17]. Thus we can interchange the summation and integration in the
formula (19), and work as follows
x
(cutpaer) @ = [ @ =07 B o —0"ip)f () dt
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Note 1 By using Eq.(18) defined in Theorem 2, then the proof of Theorem 2.5 in [14] can skip
two steps.

Meanwhile, we note that Eq.(18) is a generalization of the following fractional integral operator.

Proposition 1 Taking p = 0 in Theorem 2, Eq.(18) reduces to the generalized fractional integral
operator 5§)Jfg’UTf in Eq.(7). That is,

(cuias )@ =Y fﬂ (s (@), (20)
n=0 \'/nr

Proposition 2 Taking 7 = r = 1 Theorem 2, Eq.(18) reduces to the generalized fractional

w,0,q,¢

arpof 0 Ed.(5), which can be written as

integral operator &

w c - B 5+ ) -0 n(c)n n—+o
(s i = 3 BEEELEGIET (P ) e )

Theorem 3 The-multi parameters Mittag-Leffler fractional integral operator (7) with the param-
eters satisfying conditions in (6), interacts naturally with Riemann-Liouville differintegral operators

in the following ways. For any f € L' function, and any u € C such that R (1) + R (o) > 0, we have
BLIL (s f) i) = (605800 f) (@sp). (22)
Further, if ® (x) > 0, then
RLp (ewfrae ) (uip) = eilpee (REIL 1) (w3p). (23)
Proof. For the first identity, by the series formula (18) it is enough to show that

RELLFRIZTT f = BRI (n 2 0) (24)



which is clearly true by the semigroup property for Riemann-Liouville fractional integral. For the

second identity, by (18) it is enough to show that
RLISL+RLIS$+U]C RLIPTL+URLI +f> (n > 0) (25)

which again is clearly true, by the basic properties of Riemann-Liouville differintegrals. [J
Note 2 Equations (22) and (23) are generalization of the other differintegral operators in [9,13].
Theorem 4 The expression for the multi-parameters Mittag-LefHler function Eﬁ;;;‘#c (z;p) in terms

of the generalized Wright hypergeometric function as follows

1
B9 (2 p) :/t‘S 1 )0 le” LN ( , 2t dt. (26)
0
Proof. By using equation (15), we can directly get

Eyg%e (2p)
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Il
O O O—_

(c) (t7z)"
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(¢q)  (r0)  (1,1)
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,ztd di. O

Theorem 5 The representation for the multi-parameters Mittag-Leffler function ng,’fi’c (z;p) in

terms of the Fox’s H-function as follows

EﬁZqT’ (23p)
_ _ 28
_/ c o— 16 i t)H35 e (1 CaQ)a(l 7_70)7(071) ) ( )
0 7 (0,1),(1—(5,0),(1—c—|—5,0),(1—a,p),(l—T,r)

Proof. Substituting equation (13) into equation (27), we can directly get the result. O
Theorem 6 The Mellin transform of the multi-parameters Mittag-Leffler function E;E;Q;%’C (z;p) is
given by

p,0,T . 3\:[/3 b z 9 (29)

5T (1) - 5 :F(S)F(q)F(c+s—5) (¢c,r) (1,1) (04 s,q)
{E “(=p) } L) (c—9) (g, 7) (o,p) (c+2s,q)

where 3WU3 is the generalized Wright hypergeometric function.



Proof. Taking the Mellin transform of the multi-parameters Mittag-Leffler function E;E;Q’f#c (z;p),

we have
oo
MBS (sp)is} = [0 B i) dp. (30)
0
Inserting equation (6) into equation (30), we get
00 1
1 __p
M{Ef,’;qf’ (2:p); } B(éc—é)/ps_l /t(s_l(l—t)c_(s_le t(1p—t>E;;;ﬂ (t2)dt | dp.  (31)
0 0

Interchanging the order of integrals in equation (31), which is valid because of the conditions in the
statement of the equation(6), yields

1 o]

M {E;f;;% (2:0); } 5 — /t5 Y1 — )T EGT (t02) /ps_le_t(lp—t> dp | dt.  (32)
0 0
Now taking u = t(lp_ 7y In equation (32) and using the fact that I' (s f u® e “du, one obtains
0
1
M E(Squ( F(S) t6+s—1(1 ¢ ct+s—35— 1Ec‘rq (tq )dt (33)
por (#D);s = Blo.c—9) ) s
0

Interchanging the order of summation and integration, we have

1
00
M {Eg;gj ( p) } 5 c—o Z ; pn+a— /tqn-i-(s"rs 1 t)0+8—5—1dt (34)
n=0 0

Next, by considering the Beta function in equation (34), the following result was obtained

. L (s) > (€)y 2"B(gn+0 + s,c+ s —0)
M{EE G0} = 55 2 (g Tt o)

_iF(s)F(q)F(o—knr) 'l+n) F'(+s+ng) I'(c+s—3d) 2"
- I'(c—90) I'(¢g+nr) T(pn+o) T (c+2s+ng)n! (35)

r@r@lets—8) [ @ an Gisg |-
T@) T=0) ° | (1) (o) (c+2s9) |

Corollary 3 Taking s =1 in Theorem 6, we obtain

o0
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0
(36)
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Theorem 7 For the multi-parameters Mittag-Lefler function Ef,’;’?;c (z;p), the following differen-

tiation formula holds

dr (o B WL —=n)T(c—0—n)T(c)
dpn {ESW (z’p)} =D ()T (c—06)T (c—2n)

Ep e (2 p) (37)

Proof. Taking the p-derivative n times in equation (6), we can directly get the result. [
Theorem 8 Let z > a(a € RT :=[0,+00)),0 < £ < 1,0 < v < 1,w € C and all parameters meet

the conditions in (6). The following expressions hold

(24 [ =@ Bl (wt — )] ) (2) = (2 — ) DB (wix—a)ip),  (39)

(D2 [t =) By (w(t = a)fsp)] ) (@) = (2 = @) B (w(z — a)fsp)  (39)

and

(Dl [t = 0 B (w(t = a)ip)| ) (@) = (@ = @) B (w(e —a)sp). (40)

Proof. By applying equations (6) and (12) on the left-hand of the first identity, it is straightforward
to get this result.
For the second identity, we use a similar discussion.

For the last identity, indeed, we have
(D [t = o) ESe (w(t — )3 p)]) () =
e e} n n+o—1
_ <D§ff S B0 =0) (O urle—o D (@

2T BGe-0) Tonta) O
5+nq,c—5) (c)nq w" U pn+o—
_Z B@c—0) T(pmto) )., (P [ =] ) @)

_z Otnae—0) Oy _w Tonie) |,

)pn—i-o—,u—l
B(S.c—8) T(pn+0)(r), L (pmto—p)

—Q

_ .73— 0' n— 12 6+nq,0_5) (C)nq F(pn—{—a) [w(l‘_a)p]n
B(G,c-9) T(mto) (T, Tlnto—p)

= (z—a)” " E5 (w(z —a)’;p). O

4. Concluding remarks

In this paper, we have studied the multi-parameters Mittag-Leffler function, together with the cor-

responding fractional integral operator that contains this function as its kernel. Meanwhile, we have



obtained a new series expression for this transform, in terms of the classical Riemann-Liouville fraction-

al integrals. Furthermore, we have showed the Mellin transform of the multi-parameters Mittag-Leffler

function in terms of the generalized Wright hypergeometric and Fox’s-H functions. Finally, the frac-

tional integrals and fractional derivatives of the multi-parameters Mittag-Leffler function were also
described.
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